Как найти совершаемую работу силы тяги

Что такое сила тяги

Сила тяги — сила, прикладываемая к телу для поддержания его в постоянном движении.

Действие силы тяги

Множество сил, действующих на движущийся объект, для упрощения вычислений делят на две группы: силу тяги и силы сопротивления.

Её прекращение

Когда действие силы тяги прекращается, движущееся тело замедляется и постепенно останавливается, так как на него воздействуют силы, мешающие продолжать двигаться, например, трение.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

1 закон Ньютона о действии

Согласно этому закону в формулировке самого Ньютона, любое тело остается в покое или равномерно движется по прямой, пока на него не воздействуют силы, заставляющие его изменить это состояние.

В современной физике в формулировку внесены уточнения:

  • закон применим только в системах отсчета, называемых инерциальными;
  • тело может вращаться на месте, не находясь под воздействием внешних сил, поэтому вместо термина «тело» следует использовать термин «материальная точка».

Чтобы переместить неподвижный предмет, на него должна воздействовать некая сила. Чтобы изменить скорость движения предмета, также необходимо воздействие силы, замедляющей его или ускоряющей. Так как предметы обладают разной массой и соответственно разной инертностью, силы, достаточные для эффективного воздействия, тоже будут различаться.

Состояние ускорения после воздействия силы тяги

Когда движение равномерное, сила тяги и сила трения совершают одинаковую работу, уравновешивая друг друга. Воздействие силы на тело в направлении движения придает ему ускорение. Если направить ту же силу в противоположном направлении, она замедлит движение тела, что можно назвать отрицательным ускорением.

Формулы для определения силы тяги

Согласно второму закону Ньютона, сумма сил, воздействующих на движущееся тело, равна массе (m), умноженной на ускорение (a). Универсальной формулы, подходящей для любого сочетания сил, не существует. Чаще всего силу тяги находят с помощью общей формулы( F_т-;F_{с}=m;times;a), где (F_т) — сила тяги, (F_{с}) — силы сопротивления.
При решении конкретной задачи силы, воздействующие на тело, схематически изображают в виде векторов. На схеме:

  • сила тяжести mg;
  • сила реакции опоры (N);
  • сила трения( F_{тр});
  • сила тяги (F)

Сила тяги

 

При нахождении тела на горизонтальной поверхности сила тяжести и сила реакции опоры уравновесят друг друга. Но если транспортное средство движется в гору или под гору, придется учесть влияние уклона. Тогда формула может выглядеть так: (F_т-;F_с-;mg;times;sinalpha=m;times;a.)

Работа A, которую должна совершить сила тяги, сдвигая тело, связана с ней соотношением (A;=;F;times;s). (s) здесь — расстояние, на которое тело переместилось.

Какое условие должно соблюдаться

Сила тяги всегда должна быть больше противодействующих ей сил.

Формула через мощность

Полезную механическую мощность (N) можно вычислить по формуле (N=F_т;times;v), где (v) — скорость. Для определения силы тяги нужно разделить мощность на скорость: (F_т;=;frac N v.)

Измерение и обозначение силы тяги

Силу тяги обозначают (F_т) или (F). Единица измерения — ньютон ((Н)).
Для решения задач недостаточно измерить усилие, приложенное к объекту, и выразить его конкретным числом, так как сила обладает еще и направлением. Чтобы подчеркнуть, что сила — векторная величина, к буквенному обозначению добавляют стрелку.

Как определить силу тяги двигателя. Примеры решения задач

Задача 1

Автомобиль может разгоняться до 216 км/ч. Максимальная мощность двигателя равна 96 кВт. Определите максимальную силу тяги двигателя.

Решение

Переведем киловатты в ватты, а километры в час — в метры в секунду:

(96;times;1000=96000;Вт)

(frac{216times1000}{3600}=60frac мс)

(F_т;=;frac N v = frac{96000}{60} = 1600 Н)

Задача 2

Троллейбус весом 12 тонн за 5 секунд проезжает по горизонтальной дороге 10 метров. Сила трения равна 2,4 кН. Определите силу тяги, которую развивает двигатель.

Решение

Переведем тонны в килограммы, а килоньютоны в ньютоны:

(12;times;1000=12000;кг)

(2,4;times;1000=2400;Н)

(F_т-;F_{тр}=m;times;a), следовательно, (F_т=mtimes a;+;F_{тр})

Чтобы определить ускорение а, воспользуемся формулой (s;=;frac{at^2}2)

Подставив численные значения величин, получаем:

(a;=;frac{2s}{t^2}^{}=frac{20}{25};=;0,8)

(F_т=;12000times0,8;+;2400;=;12000;Н;=;12;кН)

Задача 3

Транспорт, весящий 4 тонны, едет в гору. Уклон — 1 метр на каждые 25 метров пути. (mu) — 0,1 от силы тяжести, (а = 0). Определите силу тяги.

Решение

Начертим схему:

Сила тяги векторы уклон

 

(mtimes g;+;N;+;F_{тр;}+;F_т;=;mtimes a)

Сделаем проекции на координатные оси:

(OX: -;mg;times;sinalpha;-;F_{тр;}+;F_т;=;0)

(OY: N;-;mg;times;cosalpha;=;0 => N;=;mg;times;cosalpha;)

(F_{тр};=;mu N;=;mu mg;times;cosalpha)

Подставим значение (F_{тр}) в уравнение (OX) и определим (F_т):

(-mg;times;sinalpha;-;mu)

(mg;times;cosalpha;+;F_т;=;0)

(=> F;=;mg;left(sinalpha;+;mu;times;cosalpharight))

Найдем синус и косинус (alpha), подставим их в общую формулу:

(sinalpha;=;frac hl;=;frac1{25})

(cosalpha;=;frac{sqrt{l^{2;}-;h^2}}l;)

(F;=;frac{4;times;10^{3;};times;9,8;timesleft(1;+;0,1;sqrt{l^{2;}-;h^2}right)}{25};=;5,5;times;10^3;Н;=;5,5;кН)

Основное понятие силы тяги в физике

Определение 1

Сила тяги — это показатель силы, которую прикладывают к некоторому телу.

Она служит для обеспечения нахождения данного тела в состоянии равновесия.

Когда сила тяги прекращает свое действие — это может привести к следующим последствиям:

  • остановка, которая связана с силой трения;
  • состояние вязкости окружающей среды;
  • множество других сопутствующих факторов и сил.

Для тела, на которое оказывает свое воздействие сила тяги, характерно постоянное движение. И обозначается следующим значение, а именно: [(v=operatorname{cons} t)]

Особым, частным случаем данного движения является состояние покоя.

При котором, скорость равна нулевому значению.

Определение 2

Состояние инерции — характер движения, при котором соблюдается постоянная скорость движения тела.

Чтобы тело поменяло свое состояние, и изменило скорость своего движения, необходимо приложить к нему силу тяги. При данных условиях скорость тела будет изменяться, причиной этого является получаемое ускорение. Также ускорение может быть отрицательным, в таком случае будет наблюдаться замедление скорости.

Показатель величины ускорения по закону физики обратно пропорционален массе тела.

Из состояния инерции труднее всего вывести тело более массивное и тяжелое.

Также величина ускорения прямо пропорциональна значению интенсивности силы, которая оказывает воздействие на тело.

Данное утверждение можно преобразовать и вывести в виде формулы:

Формула

[mathrm{F}=mathrm{m} cdot mathrm{a}]

Где: F — сила тяги, m — масса тела, которая оказывает воздействие на тело, a — ускорение.

Данная формула наглядно характеризует второй закон Ньютона.

Основные формулы для расчета силы тяги

Наглядно силу тяги можно рассмотреть на примере спортсмена штангиста.  

Именно на данном примере можно подробно понять, как приложенная сила, может вывести тело из состояния равновесия.

Распишем все операции, выполняемые спортсменам поэтапно:

  1. первоначально штанга находится в состоянии инерции, иными словами имеет состояние покоя;
  2. при отрыве от поверхности земли штанги, все мышцы спортсмена имеют способность сокращаться, с силой которая не превышает вес самой штанги (иначе это звучит как: величина силы с которой ее к себе притягивает гравитация Земли);
  3. при отрыве от пола, штанги на определенную высоту, происходит процесс ускорения;

Силой тяги для снаряда, который осуществляет движение будет являться величина силы с которой сокращаются мышцы спортсмена.

Для данного случая, обязательно должно соблюдаться следующее условие:

[F_{M}>F_{T} text {. то есть } F_{M}>m times g]

Где:

  •  [F_{m}] — сила, с которой происходит сокращение мышечной массы (сила тяги для данного случая);
  • [F_{т}] сила тяжести или гравитационная;
  •  m —  масса, которая оказывает воздействие на тело;
  •  g — показатель ускорение свободного падения.

Характер движения тела по инерции всегда нужно уметь отличать от движения, которое совершается равномерно. Следовательно, в случае, когда сила тяги имеет способность уравновешиваться сторонними силами (противодействующими).


Например:

Автомобиль совершает движение и его двигатель находится в состоянии работы. Работающий двигатель придает силу на колеса, через трансмиссию, проделывая следующие операции:  

  • преодолевает силу трения, которая возникает внутри всего механизма;
  • сопротивление воздуха;
  • процесс трения колес о любую поверхность.

Для определения силы тяги, необходимо знать следующие данные:

  •  t — время, за которое происходит разгон транспортного средства;
  • [v] — необходимая скорость;
  • m — непосредственная масса автомобиля.

Сила определяется по формуле:

[F=m times frac{V}{t}]

Из формулы видно, что ускорение выражено как: деление скорости на время разгона транспортного средства:

[a=frac{V}{t}]


Через мощность можно выразить силу.

Определение 3

Мощность — это совершенная работа, любым источником энергии.

Если высокая мощность, то следует что, время за которое источник развивает силу будет уменьшаться.  А именно: способность разогнать тело определенной массы равной m до необходимой величины скорости движения.


Значение совершаемой работы прямо пропорционально силе и вычисляется по формуле:

[A=F times s]

Где: S — расстояние, на которое при помощи силы, перемещается тело;


Расстояние можно определить по формуле, выразив его через скорость тела и время движения:

[s=v cdot t]


Затем определяется мощность, которая должна выполнять в единицу времени и выражается следующей формулой:

[mathrm{N}=frac{d}{t}]

Окончательное уравнение выражает так:

[frac{A}{t}=frac{F cdot V cdot t}{t} Rightarrow N=F cdot V Rightarrow F=frac{N}{V}]

Нет времени решать самому?

Наши эксперты помогут!

Пример решения задачи на определение силы тяги

Нужно определить показатель силы тяги транспортного средства. Оно движется с ускорением равным a. Масса автомобиля равна 1,5 тонны и сила трения составляет 10 процентов от всей силы тяжести.

Сила тяги будет определяться как сумма двух основных сил:

  • Автомобиль, который разгоняется с заданным значением ускорения: [F_{1}=m cdot a]

Где: m — масса автомобиля, a —  показатель ускорения.

  • Преодоление силы трения:

[F_{2}=mu cdot m cdot g]

Где: [mu] —  коэффициент, который характеризует силу трения, g  — значение ускорения свободного падения.

Все числовые известные значения подставим в формулу, и вычислим нужное нам значение силы. В процессе вычисления все единицы измерения переводятся в единицы системы СИ, а именно: килограммы.

[F=F_{1}+F_{2}=m cdot a+mu cdot m cdot g]

[mathrm{F}=1500 cdot 3+0.1 cdot 9.8 cdot 1500=1500 cdot(3+0.98)=5970]

Ответ: 5970.

В сегодняшней статье кратко расскажем про работу и мощность в механике, а также приведем примеры задач для тех, кто учится их решать.

Больше полезной информации для студентов всех специальностей — на нашем телеграм-канале. Подписывайтесь!

Задачи на механическую работу и мощность с решениями

Задача №1. Нахождение механической работы

Условие

Грузчик равномерно толкает ящик с осциллографами по горизонтальному полу. Сила трения равна 450 Н. Найдите работу, совершенную грузчиком, если ящик передвинули на 20 метров.

Решение

Так как ящик двигался равномерно, то сила тяги грузчика равна силе трения.

Задача №1. Нахождение механической работы

Ответ: 9кДж

Задача №2. Расчет работы силы тяжести

Условие

Гантель массой 1 кг падает с высоты 10 метров. Какую работу совершает сила тяжести?

Решение

Задача №2. Расчет работы силы тяжести

Ответ: 100 Дж.

mgh — выражение для потенциальной энергии камня в наивысшей точке.

Задача №3. Расчет механической мощности и работы

Условие

Деревенский житель поднимает ведро из колодца за 20 секунд, действуя с постоянной силой 80 Н. Глубина колодца равна h=10 м. Какую мощность развивает человек?

Решение

Сначала найдем работу, совершаемую при подъеме ведра, а затем вычислим мощность:

Задача №3. Расчет механической мощности и работы

Ответ: 40 Вт.

Задача №4. Нахождение мощности. Связь мощности, силы и скорости

Условие

Мотороллер движется со скоростью 60 км/ч. Сила тяги двигателя равна 245 Н. Какую мощность развивает двигатель?

Решение

Переведем значение скорости в систему СИ и применим формулу, связывающую мощность, силу и скорость:Задача №4. Нахождение мощности. Связь мощности, силы и скорости

Ответ: 4092 Вт.

Задача №5. Нахождение механической работы.

Условие

Мощность двигателя трамвая равна 86 кВт. Какую работу может совершить трамвай за 2 часа непрерывной езды?

Решение

Работу можно вычислить из определения мощности:

Задача №5. Нахождение механической работы.

Ответ: 619200 кДж

Вопросы на механическую мощность и работу

Вопрос 1. Сила тяжести действует на автомобиль, едущий по прямой и горизонтальной дороге. Совершает ли эта сила работу?

Ответ. Не совершает. Работу в данном случае совершает сила тяги двигателя автомобиля.

Вопрос 2. Приведите примеры механической работы.

Ответ. Примеры в которых совершается механическая работа:

  • лошадь тянет телегу (работу совершает сила тяги лошади);
  • бурлаки на Волге тянут баржу (работу совершает мускульная сила рук бурлаков);
  • спортсмен поднимает штангу (работу совершает мускульная сила рук спортсмена).

Вопрос 3. Камень падает с неба. Совершает ли сила тяжести работу?

Ответ. Да, совершает. Это работа так называемых потенциальных, или диссипативных, сил.

Вопрос 4. Какие есть внесистемные единицы измерения мощности?

Ответ. Самая распространенная внесистемная единица измерения мощности — лошадиная сила.

1 лошадиная сила равна примерно 745 Ваттам.

Вопрос 5. Какая еще величина выражается в Джоулях?

Ответ. Джоуль — единица измерения не только работы, но и энергии.

Работа и мощность в механике

Работа в механике

Для работы существует множество определений. Нас в данном случае интересует лишь одно:

Механическая работа — скалярная физическая величина, равная произведению силы, действующей на тело, на модуль перемещения, которое совершает тело под действием этой силы.

Работа в механике

Если направления векторов силы и перемещения не совпадают, в определение добавляется третий множитель: косинус угла альфа между векторами.

Единица измерения работы: Джоуль

Мощность в механике

Мощность показывает, какая работа совершается за единицу времени.

Механическая мощность — скалярная физическая величина, равная отношению работы ко времени, за которое она совершалась.

Мощность в механике

Мощность измеряется в Ваттах.

Нужна помощь в решении задач и других заданий? Обращайтесь в профессиональный студенческий сервис.

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Решение
Работа — это скалярная физическая величина, равная произведению проекции силы на ось X на перемещение, совершенное телом под действием этой силы: А = Fтяги Δr.
Рассчитаем ускорение и перемещение автомобиля:
begin{align}
  & a=frac{Delta upsilon }{Delta t}=frac{10}{5}=2frac{м}{{с}^{2}}, \
 & Delta r=frac{acdot {{t}^{2}}}{2}=frac{2cdot {{5}^{2}}}{2}=25 м. \
end{align}
Воспользуемся вторым законом Ньютона для нахождения силы тяги:
begin{align}
  & {{{vec{F}}}_{тяги}}+vec{N}+mvec{g}+{{{vec{F}}}_{тр}}=mvec{a}, \
 & Ox:{{F}_{тяги}}-{{F}_{тр}}=ma, \
 & Oy:N-mg=0, \
 & N=mg, \
 & {{F}_{тр}}=mu N=mu mg, \
 & {{F}_{тяги}}=ma+mu mg=m(a+mu g)=4cdot {{10}^{3}}(2+0,05cdot 10)={{10}^{4}}H. \
 & {{A}_{{{F}_{тяги}}}}={{F}_{}}cdot Delta r={{10}^{4}}cdot 25=25cdot {{10}^{4}Дж}=0,25 МДж. \
end{align}
Ответ: 0,25 Мдж.

Механическая работа

  1. Зависимость механической работы от величины приложенной силы
  2. Зависимость механической работы от величины перемещения
  3. Определение механической работы
  4. Единицы измерения механической работы
  5. Задачи

п.1. Зависимость механической работы от величины приложенной силы

Приложенная к телу сила приводит его в движение и сообщает ему ускорение. В результате действия силы тело перемещается. В таком случае говорят, что сила совершила работу по перемещению тела.

Допустим, мы перемещаем груз (одну коробку) на расстояние (s_1=10 text{м}) по горизонтальной плоскости, действуя на него силой (F_1=100 text{Н}).

Зависимость механической работы от величины приложенной силы

Пусть масса груза увеличилась вдвое (мы положили вторую коробку сверху на первую). Теперь для перемещения необходима сила (F_2=200 text{Н}). При перемещении на то же расстояние (s_2=s_1=10 text{м}) мы совершим в два раза большую работу. По существу, во втором случае мы перемещаем за один раз две коробки, что равносильно перемещению по одной коробке за два раза.

Следовательно, чем больше приложенная сила, тем большую работу она совершает: работа прямо пропорциональна величине приложенной силы.

п.2. Зависимость механической работы от величины перемещения

Теперь рассмотрим зависимость работы от величины перемещения.

Пусть вначале мы перемещаем груз (одну коробку) на расстояние (s_1=5 text{м}) по горизонтальной плоскости, действуя на него силой (F_1=100 text{Н}).

А затем перемещаем тот же груз с той же силой на расстояние (s_2=10 text{м}).

Зависимость механической работы  от величины перемещения

Во втором случае мы совершим вдвое большую работу.

Чем больше величина перемещения под действием силы, тем большую работу совершает эта сила: работа прямо пропорциональна перемещению в направлении действующей силы.

Уточнение про перемещение в направлении действующей силы очень важно.

И сила и перемещение являются векторными величинами: направление для их описания так же существенно, как и величина.

Работа является величиной скалярной. От взаимного направления силы и перемещения зависит не только величина, но и знак работы: она может быть положительной, равной нулю или отрицательной.

п.3. Определение механической работы

Механическая работа – скалярная величина, равная произведению силы на перемещение в направлении действия этой силы.

В этом курсе мы ограничимся тремя случаями взаимной ориентации векторов силы и перемещения:

  • Если направления векторов силы и перемещения совпадают, то работа положительна и равна произведению модуля силы на модуль перемещения: $$ A=Fs, overrightarrow{F}uparrowuparrowoverrightarrow{s} $$
  • Если направления векторов силы и перемещения противоположны, то работа отрицательна и равна произведению модуля силы на модуль перемещения, взятому со знаком «минус»: $$ A=-Fs, overrightarrow{F}uparrowdownarrowoverrightarrow{s} $$
  • Если направления векторов силы и перемещения перпендикулярны, то работа равна 0. $$ A=0, overrightarrow{F}perpoverrightarrow{s} $$

Остальные случаи взаимной ориентации векторов будут рассмотрены в курсе физики для 9 класса.

Пример определения работы для трех базовых случаев взаимного расположения векторов силы и перемещения

Определение механической работы

Рассмотрим перемещение деревянного бруска по поверхности стола.

Брусок перемещается в направлении приложенной силы тяги (overrightarrow{F}). Направления перемещения и силы тяги совпадают, эта сила совершает положительную работу: $$ A_text{тяги}=Fs, overrightarrow{F}uparrowuparrowoverrightarrow{s} $$

Сила трения направлена противоположно перемещению; она совершает отрицательную работу: $$ A_text{тр}=-Fs, overrightarrow{F}_text{тр}uparrowdownarrowoverrightarrow{s} $$

Сила тяжести направлена перпендикулярно перемещению; её работа равна нулю: $$ A_text{тяж}=0, moverrightarrow{g}perpoverrightarrow{s} $$

п.4. Единицы измерения механической работы

В системе СИ (см. §2 данного справочника) сила измеряется в ньютонах, перемещение – в метрах. А для измерения работы используется «джоуль».

Единицей работы в системе СИ является джоуль (1 Дж) – работа силы 1Н по перемещению тела на 1 м в направлении действия силы: $$ 1 text{Дж}=1 text{Н}cdot 1 text{м} $$

п.5. Задачи

Задача 1. Груз весом 50 Н равномерно подняли, совершив работу 400 Дж.
На какую высоту подняли груз?

Дано:
(P=r0 text{Н})
(A=400 text{Дж})
__________________
(h-?)

Задача 1
Груз перемещается равномерно, следовательно, равнодействующая веса и силы тяги равна нулю begin{gather*} overrightarrow{P}+overrightarrow{F}=0 Rightarrow overrightarrow{F}=-overrightarrow{P} end{gather*} Cила тяги равна весу по величине и противоположна по направлению. begin{gather*} F=P end{gather*} Сила тяги и перемещение направлены в одну сторону – вверх. Работа силы тяги begin{gather*} A=Fh end{gather*} Высота равна begin{gather*} h=frac AF=frac AP end{gather*} Получаем begin{gather*} h=frac{400}{50}=8 (text{м}) end{gather*} Ответ: 8 м

Задача 2. С плотины гидроэлектростанции каждую секунду падает 1800 м3 воды. Какую работу совершает каждую секунду действующая на эту воду сила тяжести, если высота плотины 25 м?

Дано:
(V=1800 text{м}^3)
(h=25 text{м})
(rho=1000 text{кг/м}^3)
(gapprox 10 text{м/с}^2)
__________________
(A-?)

Масса падающей воды begin{gather*} m=rho V. end{gather*} Сила тяжести $$ F=mg=rho Vg. $$ Работа силы тяжести begin{gather*} A=Fh=rho V gh. end{gather*} Получаем: $$ A=1000cdot 1800cdot 10cdot 25=450cdot 10^6 (text{Дж})=450 (text{МДж}) $$ Ответ: 450 МДж

Задача 3. Подъемный кран в течение 50 секунд равномерно поднимал груз массой 2 т, совершив при этом работу 360 кДж. С какой скоростью двигался груз?

Дано:
(t=50 text{с})
(m=2 text{т}=2000 text{кг})
(A=360 text{кДж}=3,6cdot 10^5 text{Дж})
(gapprox 10 text{м/с}^2)
__________________
(v-?)

Груз перемещается равномерно, следовательно, равнодействующая веса и силы тяги равна нулю begin{gather*} overrightarrow{P}+overrightarrow{F}=0 Rightarrow overrightarrow{F}=-overrightarrow{P} end{gather*} Cила тяги равна весу по величине и противоположна по направлению: begin{gather*} F=P=mg end{gather*} Сила тяги и перемещение направлены в одну сторону – вверх. Работа силы тяги: begin{gather*} A=Fh end{gather*} Высота равна: begin{gather*} h=frac AF=frac AP=frac{A}{mg} end{gather*} Подъем происходит равномерно, скорость подъема: begin{gather*} v=frac ht=frac{A}{mgt} end{gather*} Получаем: begin{gather*} v=frac{3,6cdot 10^5}{2cdot 10^3cdot 10cdot 50}=0,36 (text{м/с}) end{gather*} Ответ: 0,36 м/с

Задача 4*. Со дна озера на поверхность воды подняли камень объемом 8 дм3.
Глубина озера 10 м. Определите плотность камня, если при его подъеме лебедка совершила работу 1200 Дж. Сопротивлением воды при подъеме можно пренебречь.

Дано:
(V=8 text{дм}^3=8cdot 10^{-3} text{м}^3)
(h=10 text{м})
(rho_text{в}=1000 text{кг/м}^3)
(A=1200 text{Дж})
__________________
(rho_text{к}-?)

Задача 4*
На камень действуют три силы: сила тяги (overrightarrow{F}) сила Архимеда (overrightarrow{F}_a), сила тяжести (moverrightarrow{g}).
Сила тяги и сила Архимеда в сумме уравновешивают силу тяжести: begin{gather*} F+F_a=mg end{gather*} Сила Архимеда: begin{gather*} F_a=rho_text{в}Vg end{gather*} Работа силы тяги begin{gather*} A=Fh end{gather*} Сила тяги: begin{gather*} F=frac Ah end{gather*} Масса камня begin{gather*} m=rho_{text{к}}V end{gather*} Подставляем: begin{gather*} frac Ah+rho_{text{в}}Vg=rho_{text{к}}Vg end{gather*} Плотность камня: begin{gather*} rho_{text{к}}=frac{A}{hVg}+rho_{text{в}} end{gather*} Подставляем: begin{gather*} rho_{text{к}}=frac{1200}{10cdot 8cdot 10^{-3}cdot 10}+1000=2500 text{кг/м}^3 end{gather*} Ответ: 2500 кг/м3

Задача 5. Лошадь везет сани массой 250 кг с постоянной скоростью 2 м/с.
Найдите коэффициент трения между полозьями и дорогой, если за 1 ч работа по перемещению саней составила 3,3 МДж?

Дано:
(m=250 text{кг})
(v=2 text{м/с})
(t=1 text{ч}=3600 text{с})
(A=3,6cdot 10^6 text{Дж})
__________________
(mu-?)

Задача 5
На сани действуют четыре силы: по вертикали – сила тяжести (mg) и сила реакции опоры (N), по горизонтали – сила тяги (F) и сила трения (F_text{тр}), причем begin{gather*} N=mg, F=F_text{тр} end{gather*} Работа силы тяги begin{gather*} A=Fs=Fcdot vtRightarrow F=frac{A}{vt} end{gather*} Сила трения begin{gather*} F_text{тр}=mu N=mu mg end{gather*} Получаем begin{gather*} frac{A}{Vt}=mu mgRightarrow mu=frac{A}{vtcdot mg} end{gather*} Подставляем begin{gather*} mu=frac{3,6cdot 10^6}{2cdot 3600cdot 250cdot 10}=0,2 end{gather*} Ответ: 0,2

Задача 6*. Какую работу совершает сила давления газов при выталкивании ядра из пушки, если длина ствола 1,6 м, радиус ядра 10 см, а среднее давление в стволе во время выстрела в 2000 раз превышает атмосферное давление? Ответ округлите до десятых долей мегаджоуля.

Дано:
(s=1,6 text{м})
(R=10 text{см}=0,1 text{м})
(p=2000p_0)
(p_0=101300 text{Па})
__________________
(A-?)

Задача 6*
Сила давления газов равна begin{gather*} F=pS, end{gather*} где (S) — площадь поперечного сечения ядра (S=pi R^2).
Работа газов begin{gather*} A=Fs=pcdot pi R^2cdot s end{gather*} Получаем begin{gather*} A=2000cdot 101300cdot picdot 0,1^2cdot 1,6approx 10183786 text{Дж}approx 10,2 text{МДж} end{gather*} Ответ: ≈10,2 МДж

Понравилась статья? Поделить с друзьями:
  • Совет как составить завещание
  • Как найти штатное расписание компании
  • Как мне найти песню по отрывку песни
  • Как найти конусность если есть угол
  • Как найти киви кошелек по никнейму