Как найти sполн правильной треугольной призмы

В данной публикации мы рассмотрим, как можно вычислить площадь поверхности правильной призмы разных видов (треугольной, четырехугольной и шестиугольной), а также, разберем примеры решения задач для закрепления материала.

Правильная призма – это прямая призма, основанием которой является правильный многоугольник. А прямой фигура является в том случае, если ее боковые грани перпендикулярны основаниям.

  • Формула площади правильной призмы

    • 1. Общая формула

    • 2. Площадь правильной треугольной призмы

    • 3. Площадь правильной четырехугольной призмы

    • 4. Площадь правильной шестиугольной призмы

  • Примеры задач

Формула площади правильной призмы

1. Общая формула

Площадь (S) полной поверхности призмы равна сумме площади ее боковой поверхности и двух площадей основания.

Sполн. = Sбок. + 2Sосн.

Площадь боковой поверхности прямой призмы равняется произведению периметра ее основания на высоту.

Sбок. = Pосн. ⋅ h

Формула периметра и площади основания правильной призмы зависит от вида многогранника. Ниже мы рассмотрим самые популярные виды.

2. Площадь правильной треугольной призмы

Площадь поверхности правильной треугольной призмы

Основание: равносторонний треугольник.

Площадь Формула
основание Нахождение площади правильной призмы: формула и задачи
боковая поверхность Sбок. = 3ah
полная Нахождение площади правильной призмы: формула и задачи

microexcel.ru

3. Площадь правильной четырехугольной призмы

Площадь поверхности правильной четырехугольной призмы

Основание: квадрат.

Площадь Формула
основание Sосн. = a2
боковая поверхность Sбок. = 4ah
полная Sполн. = 2a2 + 4ah

microexcel.ru

Примечание: Если высота правильной четырехугольной призмы равняется длине стороны ее основания, значит мы имеем дело с кубом, площадь одной грани которого равна a2. А так как все шесть граней куба равны, то полная площадь его поверхности равняется 6a2.

4. Площадь правильной шестиугольной призмы

Площадь поверхности правильной шестиугольной призмы

Основание: правильный шестиугольник

Площадь Формула
основание Нахождение площади правильной призмы: формула и задачи
боковая поверхность Sбок. = 6ah
полная Нахождение площади правильной призмы: формула и задачи

microexcel.ru

Примеры задач

Задание 1:
Сторона правильной треугольной призмы равна 6 см, а ее высота – 8 см. Найдите полную площадь поверхности фигуры.

Решение:
Воспользуемся подходящей формулой, подставив в нее известные нам значения:
Вычисление полной площади правильной треугольной призмы

Задание 2:
Площадь полной поверхности правильной шестиугольной призмы составляет 400 см2. Найдите ее высоту, если известно, что сторона основания равна 5 см.

Решение:
Выведем выражение для нахождения высоты призмы из формулы ее полной площади:
Вычисление высоты правильной шестиугольной призмы

На чтение 4 мин Просмотров 66.2к. Опубликовано 13 февраля, 2019

Здесь вы найдёте: Объем правильной треугольной призмы понятие, Объем призмы треугольной формула нахождения, Площадь треугольной призмы

Треугольная призма — это трехмерное тело, образованное соединением прямоугольников и треугольников. В этом уроке вы узнаете, как найти размер внутри (объем) и снаружи (площадь поверхности) треугольной призмы.

Содержание

  1. Призма треугольная — определение
  2. Элементы треугольной призмы
  3. Виды треугольных призм
  4. Прямая треугольная призма
  5. Наклонная треугольная призма
  6. Основные формулы для расчета треугольной призмы
  7. Объем треугольной призмы
  8. Площадь боковой поверхности призмы
  9. Площадь полной поверхности призмы
  10. Правильная призма — прямая призма, основанием которой является правильный многоугольник.
  11. Пример призмы
  12. Задачи на расчет треугольной призмы

Призма треугольная — определение

Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.

Призма треугольная

Элементы треугольной призмы

Треугольники ABC и A1B1C1 являются основаниями призмы.

Четырехугольники A1B1BA, B1BCC1 и A1C1CA являются боковыми гранями призмы.

Стороны граней являются ребрами призмы (A1B1, A1C1, C1B1, AA1, CC1, BB1, AB, BC, AC), всего у треугольной призмы 9 граней.

Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).

Треугольная призма - высота и сечение

Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.

Площадь основания — это площадь треугольной грани призмы.

Площадь боковой поверхности призмы — это сумма площадей четырехугольных граней призмы.

Виды треугольных призм

Треугольная призма бывает двух видов: прямая и наклонная.

У прямой призмы боковые грани прямоугольники, а у наклонной боковые грани — параллелограммы (см. рис.)

Прямая треугольная призма

Прямая треугольная призма

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой.

Наклонная треугольная призма

Наклонная треугольная призма

Призма, боковые ребра которой являются наклонными к плоскостям оснований, называется наклонной.

Основные формулы для расчета треугольной призмы

Объем треугольной призмы

Чтобы найти объем треугольной призмы, надо площадь ее основания умножить на высоту призмы.

 Объем призмы = площадь основания х высота

или

V=Sосн . h

Площадь боковой поверхности призмы

Чтобы найти площадь боковой поверхности треугольной призмы, надо периметр ее основания умножить на высоту.

Площадь боковой поверхности треугольной призмы = периметр основания х высота

или

Sбок=Pосн.

Площадь полной поверхности призмы

Чтобы найти площадь полной поверхности призмы, надо сложить ее площади оснований и площадь боковой поверхности.

формула определения полной поверхности призмы

так как Sбок=Pосн.h, то получим:

Sполн.пов.=Pосн.h+2Sосн

Правильная призма — прямая призма, основанием которой является правильный многоугольник.

Свойства призмы:

Верхнее и нижнее основания призмы – это равные многоугольники.
Боковые грани призмы имеют вид параллелограмма.
Боковые ребра призмы параллельные и равны.

Совет: при расчете треугольной призмы вы должны обратить внимание на используемые единицы. Например, если площадь основания указана в см2, то высота должна быть выражена в сантиметрах, а объем — в см3 . Если площадь основания в мм2, то высота должна быть выражена в мм, а объем в мм3 и т. д.

Пример призмы

Прямая треугольная призма

В этом примере:
— ABC и DEF составляют треугольные основания призмы
— ABED, BCFE и ACFD являются прямоугольными боковыми гранями
— Боковые края DA, EB и FC соответствуют высоте призмы.
— Точки A, B, C, D, E, F являются вершинами призмы.

Задачи на расчет треугольной призмы

Задача 1. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S — площадь основания, а h — боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:

V = 1/2  · 6 · 8 · 5 = 120.

Задача 2.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.

Наклонная треугольная призма с сечением

Решение: 

Объём призмы равен произведению площади основания на высоту: V = Sосн ·h.

Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S2 = S1k2 = S122 = 4S1.

Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.

Таким образом, искомый объём равен 20.

Объем призмы и другие ее характеристики

Перед вами иллюстрированный гид о призме.

В картинках. С пояснениями к формулам. С примерами.

Определение, виды призм, высота, площадь, объем призмы — все, все, все!

Читайте и делитесь впечатлениями в комментариях!

Призма — коротко о главном

Определение призмы:

Призма – это многогранник, две грани которого (основания) – равные многоугольники, лежащие в параллельных плоскостях, а боковые грани – параллелограммы.

Определение призмы

Высота призмы – перпендикуляр, опущенный из одной из вершин призмы на плоскость противоположного основания.

Виды призм:

Параллелепипед — это призма, основанием которой является параллелограмм.

Прямая призма – это призма, у которой боковые ребра перпендикулярны плоскости основания. Другие призмы называются наклонными.

Правильная призма – это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы – равные прямоугольники.

Объем призмы

Главная формула объема призмы:
( displaystyle V=S{{ }_{основания}}cdot text{H}),
где ( {{text{S}}_{основания}}) – площадь основания,
( H) – высота.

Необычная формула объема призмы:
( text{V}={{text{S}}_{bot }}cdot l),
где ( {{text{S}}_{bot }}) – площадь сечения, перпендикулярного боковому ребру,
( l) – длина бокового ребра.

Площадь призмы

Площадь полной поверхности призмы – сумма площадей всех граней.
( displaystyle {{text{S}}_{полн. пов.}}={{text{S}}_{боков.пов.}}+2cdot {{text{S}}_{text{основания}.}})

А теперь чуть подробнее…

Что такое призма

Давай ответим сперва картинками:

Определение призмы

Смотри: у призмы сверху и снизу два одинаковых многоугольника – они называются основаниями.

Остальные грани называются боковыми.

Плоскости оснований параллельный. Боковые грани – параллелограммы.

Рисуем еще раз.

А теперь рёбра.

Смотри: бывают рёбра основания и боковые рёбра.

Важно знать, что:

Все боковые рёбра призмы равны и параллельны.

А еще:

  • Если в основании призмы лежит треугольник, то призма называется треугольной, если четырёхугольник, то четырёхугольной и т.д.;
  • Бывают и десятиугольные, и двадцатиугольные призмы, но, к счастью, не в твоих задачах;
  • А тебе будут встречаться чаще всего треугольныечетырёхугольные и шестиугольные призмы.

Думаю, теперь мы можем дать более строгое определение призмы.

Определение призмы

Призма — многогранник, две грани которого (основания) — равные многоугольники, лежащие в параллельных плоскостях, а боковые грани — параллелограммы.

Виды призм

Призма, основанием которой является параллелограмм, называется параллелепипедом.

Прямая призма – это призма, у которой боковые ребра перпендикулярны плоскости основания.

Другие призмы называются наклонными.

Высота призмы

Высота призмы – перпендикуляр, опущенный из одной из вершин призмы на плоскость противоположного основания.

И ясно, что та же самая высота получится, если опустить перпендикуляр из любой точки на верхней плоскости.

Согласен?

Объем призмы

Главная формула объема призмы

( displaystyle V=S{{ }_{основания}}cdot text{H}),где ( {{text{S}}_{основания}}) — площадь основания,
( H) — высота.

Необычная формула объема призмы

( text{V}={{text{S}}_{bot }}cdot l),
где ( {{text{S}}_{bot }}) — площадь сечения, перпендикулярного боковому ребру,
( l) — длина бокового ребра.

Площадь призмы

Площадь полной поверхности призмы – сумма площадей всех граней.
( displaystyle {{text{S}}_{полн. пов.}}={{text{S}}_{боков.пов.}}+2cdot {{text{S}}_{text{основания}.}})

Прямая призма

Если боковые рёбра призмы перпендикулярны основанию, то призма называется прямой.

Свойства прямой призмы:

  • Все боковые грани прямоугольники;
  • Все сечения, проходящие через боковые рёбра, – прямоугольники;
  • Даже сечения, проходящие только через одно боковое ребро, – прямоугольники;
  • У прямой призмы высота совпадает с боковым ребром.

Правильная призма

Если боковые рёбра призмы перпендикулярны основанию, а в основании лежит правильный многоугольник, то призма называется правильной.

То есть правильная призма – это прямая призма, у которой в основании правильный многоугольник.

Тебе, скорее всего, может встретиться:

Правильная треугольная призма – в основании правильный треугольник, боковые грани – прямоугольники.

Правильная четырёхугольная призма – это ещё и разновидность прямоугольного параллелепипеда – в основании квадрат, боковые грани – прямоугольники.

Правильная шестиугольная призма – в основании правильный шестиугольник, боковые грани – прямоугольники.

Главная формула объема призмы

( displaystyle V=S{{ }_{основания}}cdot text{H})

( {{text{S}}_{основания}}) – площадь основания

( H) – высота

Эта формула верна для любой призмы, но если призма прямая, то ( H) «превращается» в боковое ребро. И тогда

( displaystyle V=S{{ }_{основания}}cdot text{H})

– то же самое, что

( displaystyle V=S{{ }_{основания}}cdot боковое ребро)

Необычная формула объёма призмы

Представь себе, есть ещё одна, «перевёрнутая» формула для объёма призмы:

( Large text{V}={{text{S}}_{bot }}cdot l)

( {{text{S}}_{bot }}) – площадь сечения, перпендикулярного боковому ребру,

( l) – длина бокового ребра

Используется ли эта формула в задачах? Честно говоря, довольно редко, так что можешь ограничиться знанием основной формулы объёма.

Давай теперь для упражнения посчитаем объём самых популярных призм.

Объем правильной треугольной призмы

Пусть дано, что сторона основания равна ( a), а боковое ребро равно ( b).

Найдем объем:

( text{V}={{text{S}}_{Основания}}cdot text{H}={{text{S}}_{text{ABC}}}cdot text{b})

Вспомним, как находить площадь правильного треугольника:

( {{text{S}}_{text{ABC}}}=frac{1}{2}text{a}cdot text{h})

( text{h}=sqrt{{{text{a}}^{2}}-frac{{{text{a}}^{2}}}{4}}=frac{sqrt{3}}{2}text{a})

( {{text{S}}_{text{ABC}}}=frac{1}{2}text{a}cdot frac{sqrt{3}}{2}text{a}=frac{{{text{a}}^{2}}sqrt{3}}{4})

Подставляем в формулу объёма:

( text{V}={{text{S}}_{text{ABC}}}cdot text{b}=frac{{{text{a}}^{2}}text{b}sqrt{3}}{4}).

Объем правильной четырёхугольной призмы

Опять дано: сторона основания равна ( a), боковое ребро равно ( b).

( text{V}={{text{S}}_{text{основания}}}cdot text{H}={{text{S}}_{text{ABC}}}cdot text{b})

Ну, площадь квадрата долго искать не надо:

( displaystyle {{text{S}}_{text{ABCD}}}={{text{a}}^{2}})

Значит, ( displaystyle text{V}={{text{S}}_{text{ABCD}}}cdot text{b}={{text{a}}^{2}}text{b}).

Объем правильной шестиугольной призмы

Площадь поверхности призмы

Площадь боковой поверхности призмы – сумма площадей всех боковых граней.

Есть ли общая формула?

Нет, в общем случае нет. Просто нужно искать площади боковых граней и суммировать их.

Площадь полной поверхности призмы – сумма площадей всех граней.

( displaystyle {{text{S}}_{полн. пов.}}={{text{S}}_{боков.пов.}}+2cdot {{text{S}}_{text{основания}.}})

Формулу можно написать для прямой призмы:

( displaystyle {{text{S}}_{боков.}}=text{H}cdot text{P}), где ( displaystyle P) – периметр основания.

( displaystyle {{text{S}}_{text{полной}}}=text{H}cdot text{P}+2{{text{S}}_{основания}}).

Но всё-таки гораздо проще в каждом конкретном случае сложить все площади, чем запоминать дополнительные формулы.

Для примера посчитаем полную поверхность правильной шестиугольной призмы

Пусть сторона основания равна ( displaystyle a), а боковое ребро равно ( displaystyle b).

Самые бюджетные курсы по подготовке к ЕГЭ на 90+

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

В пространственной геометрии при решении задач с призмами часто возникает проблема с расчетом площади сторон или граней, которые образуют эти объемные фигуры. Данная статья посвящена вопросу определения площади основания призмы и ее боковой поверхности.

Перед тем как переходить к рассмотрению формул для площади основания и поверхности призмы того или иного вида, следует разобраться, о какой фигуре идет речь.

Поверхность призмы. Площадь основания и боковой поверхности. Площадь основания треугольной призмы

Формулы площади поверхности, основания, сечения призмы

Фигура призма

Призма в геометрии представляет собой пространственную фигуру, состоящую из двух параллельных многоугольников, которые равны между собой, и нескольких четырехугольников или параллелограммов.

Количество последних всегда равно числу вершин одного многоугольника. Например, если фигура образована двумя параллельными n-угольниками, тогда количество параллелограммов будет равно n.

Соединяющие n-угольники параллелограммы называются боковыми сторонами призмы, а их суммарная площадь — это площадь боковой поверхности фигуры. Сами же n-угольники называются основаниями.

Выше рисунок демонстрирует пример призмы, изготовленной из бумаги. Желтый прямоугольник является ее верхним основанием. На втором таком же основании фигура стоит. Красный и зеленый прямоугольники — это боковые грани.

Какие призмы бывают?

Существует несколько типов призм. Все они отличаются друг от друга всего двумя параметрами:

  • видом n-угольника, образующего основания;
  • углом между n-угольником и боковыми гранями.

Например, если основания являются треугольниками, тогда и призма называется треугольной, если четырехугольниками, как на предыдущем рисунке, тогда фигура называется четырехугольной призмой, и так далее. Кроме этого, n-угольник может быть выпуклым или вогнутым, тогда к названию призмы тоже добавляется это свойство.

Угол между боковыми гранями и основанием может быть либо прямой, либо острый или тупой. В первом случае говорят о прямоугольной призме, во втором — о наклонной или косоугольной.

В особый тип фигур выделяют правильные призмы. Они обладают самой высокой симметрией среди остальных призм. Правильной она будет только в том случае, если является прямоугольной и ее основание — это правильный n-угольник. Рисунок ниже демонстрирует набор правильных призм, у которых число сторон n-угольника изменяется от трех до восьми.

Формулы площади поверхности, основания, сечения призмы

Поверхность призмы

Под поверхностью рассматриваемой фигуры произвольного типа понимают совокупность всех точек, которые принадлежат граням призмы. Поверхность призмы удобно изучать, рассматривая ее развертку. Ниже дан пример такой развертки для треугольной призмы.

Формулы площади поверхности, основания, сечения призмы

  • Видно, что вся поверхность образована двумя треугольниками и тремя прямоугольниками.
  • В случае призмы общего типа ее поверхность будет состоять из двух n-угольных оснований и n четырехугольников.
  • Рассмотрим подробнее вопрос вычисления площади поверхности призм разных типов.

Площадь основания призмы правильной

Пожалуй, самой простой задачей при работе с призмами является проблема нахождения площади основания правильной фигуры. Поскольку оно образовано n-угольником, у которого все углы и длины сторон являются одинаковыми, то всегда можно разделить его на одинаковые треугольники, у которых известны углы и стороны. Суммарная площадь треугольников будет площадью n-угольника.

Еще один способ определить часть площади поверхности призмы (основание) заключается в использовании известной формулы. Она имеет следующий вид:

Sn = n/4*a2*ctg(pi/n)

То есть площадь Sn n-угольника однозначно определяется исходя из знания длины его стороны a. Некоторую сложность при расчете по формуле может составить вычисление котангенса, особенно когда n>4 (для n≤4 значения котангенса — это табличные данные). Для определения этой тригонометрической функции рекомендуется воспользоваться калькулятором.

При постановке геометрической задачи следует быть внимательным, поскольку может потребоваться найти площадь оснований призмы. Тогда полученное по формуле значение следует умножить на два.

Площадь основания треугольной призмы

На примере треугольной призмы рассмотрим, как можно найти площадь основания этой фигуры.

Сначала рассмотрим простой случай — правильную призму. Площадь основания вычисляется по приведенной в пункте выше формуле, нужно подставить в нее n=3. Получаем:

S3 = 3/4*a2*ctg(pi/3) = 3/4*a2*1/√3 = √3/4*a2

Остается подставить в выражение конкретные значения длины стороны a равностороннего треугольника, чтобы получить площадь одного основания.

Теперь предположим, что имеется призма, основание которой представляет собой произвольный треугольник. Известны две его стороны a и b и угол между ними α. Эта фигура изображена ниже.

Как в этом случае найти площадь основания призмы треугольной? Необходимо вспомнить, что площадь любого треугольника равна половине произведения стороны и высоты, опущенной на эту сторону. На рисунке проведена высота h к стороне b. Длина h соответствует произведению синуса угла альфа на длину стороны a. Тогда площадь всего треугольника равна:

S = 1/2*b*h = 1/2*b*a*sin(α)

Это и есть площадь основания изображенной треугольной призмы.

Боковая поверхность

Мы разобрали, как найти площадь основания призмы. Боковая поверхность этой фигуры всегда состоит из параллелограммов. Для прямых призм параллелограммы становятся прямоугольниками, поэтому суммарную их площадь вычислить легко:

S = ∑i=1n(ai*b)

Здесь b — длина бокового ребра, ai — длина стороны i-го прямоугольника, которая совпадает с длиной стороны n-угольника. В случае правильной n-угольной призмы получаем простое выражение:

S = n*a*b

Если призма является наклонной, тогда для определения площади ее боковой поверхности следует сделать перпендикулярный срез, рассчитать его периметр Psr и умножить его на длину бокового ребра.

Формулы площади поверхности, основания, сечения призмы

Рисунок выше показывает, как следует делать этот срез для наклонной пятиугольной призмы.

Источник: https://www.syl.ru/article/438746/poverhnost-prizmyi-ploschad-osnovaniya-i-bokovoy-poverhnosti-ploschad-osnovaniya-treugolnoy-prizmyi

Формулы для объема, площади боковой поверхности и площади полной поверхности призмы

Призма Рисунок Формулы для объема, площади боковой и полной поверхности
Куб Формулы площади поверхности, основания, сечения призмы
  • V = a3,
  • Sбок = 4a2,
  • Sполн = 6a2,
  • где  a – длина ребра куба.
Прямоугольный параллелепипед Формулы площади поверхности, основания, сечения призмы
  1. V = abc,
  2. Sбок = 2ac + 2bc,
  3. Sполн = 2ac + 2bc +2ab,
  4. где a, b  – длины ребер основания параллелепипеда,c — высота параллелепипеда.
Прямой параллелепипед,в основании которого лежит параллелограмм со сторонами   a, b и углом φ Формулы площади поверхности, основания, сечения призмы
  • Sосн = ab sin φ,
  • V = Sосн h = abh sin φ,
  • Sбок = 2ah + 2bh,
  • Sполн = 2ab sin φ + 2ah +2bh,
  • где a, b – длины ребер основания параллелепипеда,φ – угол между ребрами основания параллелепипеда,h — высота параллелепипеда.
Произвольный параллелепипед Формулы площади поверхности, основания, сечения призмы
  1. Sосн = ab sin φ,
  2. V = Sосн h = abh sin φ,
  3. V = Sперп с,
  4. Sбок = Pперп с,
  5. Sполн = 2ab sin φ + Pперп с,
  6. где a, b – длины ребер основания параллелепипеда,φ – угол между ребрами основания параллелепипеда,c – длина бокового ребра параллелепипеда,h — высота параллелепипеда.
Прямая призма Формулы площади поверхности, основания, сечения призмы
  • V = Sосн h,
  • Sбок = Pосн h,
  • Sполн = 2Sосн + Sбок,
  • где h — высота прямой призмы.
Правильнаяn – угольная призма Формулы площади поверхности, основания, сечения призмы Формулы площади поверхности, основания, сечения призмы

  1. V = Sосн h,
  2. Sбок = Pосн h = anh,
  3. Sполн = 2Sосн + Sбок,

Формулы площади поверхности, основания, сечения призмыгде a – длина ребра основания правильной призмы,h — высота правильной призмы.

Произвольная призма
  • V = Sосн h,
  • V = Sперп l,
  • Sбок = Pперп l,
  • Sполн = 2Sосн + Sбок,
  • где l – длина бокового ребра призмы,h — высота призмы.
Куб
Формулы для объема, площади боковой и полной поверхности:

  1. V = a3,
  2. Sбок = 4a2,
  3. Sполн = 6a2,
  4. где  a  – длина ребра куба.
Прямоугольный параллелепипед
Формулы для объема, площади боковой и полной поверхности:

  • V = abc,
  • Sбок = 2ac + 2bc,
  • Sполн = 2ac + 2bc +2ab,
  • где a, b  – длины ребер основания параллелепипеда,c — высота параллелепипеда.
Прямой параллелепипед, в основании которого лежит параллелограмм со сторонами   a, b и углом φ
Формулы для объема, площади боковой и полной поверхности:

  1. Sосн = ab sin φ,
  2. V = Sосн h = abh sin φ,
  3. Sбок = 2ah + 2bh,
  4. Sполн == 2ab sin φ + 2ah + 2bh,
  5. где a, b – длины ребер основания параллелепипеда,φ – угол между ребрами основания параллелепипеда,h — высота параллелепипеда.
Произвольный параллелепипед
Формулы для объема, площади боковой и полной поверхности:

  • Sосн = ab sin φ,
  • V = Sосн h = abh sin φ,
  • V = Sперп с,
  • Sбок = Pперп с,
  • Sполн == 2ab sin φ + Pперп с,
  • где a, b – длины ребер основания параллелепипеда,φ – угол между ребрами основания параллелепипеда,c – длина бокового ребра параллелепипеда,h — высота параллелепипеда.
Прямая призма
Формулы для объема, площади боковой и полной поверхности:

  1. V = Sосн h,
  2. Sбок = Pосн h,
  3. Sполн = 2Sосн + Sбок,
  4. где h — высота прямой призмы.
Правильная n – угольная призма
Формулы для объема, площади боковой и полной поверхности:

  • (см. раздел «правильные многоугольники»),
  • V = Sосн h,
  • Sбок = Pосн h = anh,
  • Sполн = 2Sосн + Sбок,
  • где a – длина ребра основания правильной призмы,h — высота правильной призмы.
Произвольная призма
  1. Формулы для объема, площади боковой и полной поверхности:
  2. V = Sосн h,
  3. V = Sперп l,
  4. Sбок = Pперп l,
  5. Sполн = 2Sосн + Sбок,
  6. гдеl – длина бокового ребра призмы,h — высота призмы.

Источник: https://www.resolventa.ru/uslugi/uslugischoolbab.htm

Правильная треугольная призма — призма, в основаниях которой лежат два правильных треугольника, а все боковые грани строго перпендикулярны этим основаниям.

Обозначения

  • $ABCA_1B_1C_1$ — правильная треугольная призма
  • $a$ — длина стороны основания призмы
  • $h$ — длина бокового ребра призмы
  • $S_{text{осн.}}$ — площадь основания призмы
  • $V_{text{призмы}}$ — объем призмы

Площадь оснований призмы

В основании правильной треугольной призмы лежит правильный треугольник со стороной $a$. По свойствам правильного треугольника $$ S_{text{осн.}}=frac{sqrt{3}}{4}cdot a^2 $$ Таким образом, получается, что $S_{ABC}=S_{A_1B_1C_1}=frac{sqrt{3}}{4}cdot a^2$.

Объем призмы

Объем призмы вычисляется как произведение площади ее основания на ее высоту. Высотой правильной призмы является любое из ее боковых ребер, например, ребро $AA_1$. В основании правильной треугольной призмы находится правильный треугольник, площадь которого нам известна. Получаем $$ V_{text{призмы}}=S_{text{осн.}}cdot AA_1=frac{sqrt{3}}{4}cdot a^2 cdot h $$

Находим BD

BD является высотой правильного треугольника со стороной $a$, лежащего в основании призмы. По свойствам правильного треугольника $$ BD=frac{sqrt{3}}{2}cdot a $$ Аналогичным образом, приходим к заключению, что длины всех остальных диагоналей оснований призмы равны $frac{sqrt{3}}{2}cdot a$.

Находим $BD_1$

В треугольнике $DBD_1$:

  • $DB=frac{sqrt{3}}{2}cdot a$ — как мы только что выяснили
  • $DD_1=h$
  • $angle BDD_1=90^{circ}$ — потому что прямая $DD_1$ перпендикулярна плоскости $ABC$

Таким образом, получается, что треугольник $DBD_1$ прямоугольный. По свойствам прямоугольного треугольника $$ BD_1=sqrt{h^2+frac{3}{4}cdot a^2} $$ Если $h=a$, то тогда $$ BD_1=frac{sqrt{7}}{2}cdot a $$

Находим $BC_1$

В треугольнике $CBC_1$:

  • $CB=a$
  • $CC_1=h$
  • $angle BCC_1=90^{circ}$ — потому что прямая $CC_1$ перпендикулярна плоскости $ABC$

Таким образом, получается, что треугольник $CBC_1$ прямоугольный. По свойствам прямоугольного треугольника $$ BC_1=sqrt{h^2+a^2} $$ Если $h=a$, то тогда $$ BC_1=sqrt{2}cdot a $$ Аналогичным образом, приходим к заключению, что длины всех остальных диагоналей боковых граней призмы равны $sqrt{h^2+a^2}$.

Понравилась статья? Поделить с друзьями:
  • Как найти документ word который не сохранился
  • Как найти кварц в камне
  • Как найти дознавателя по фамилии
  • Как найти магазин для сотрудничества
  • Как найти авто по неполному номеру авто