Как найти среднее номинальное напряжение

ОНЛАЙН ЭЛЕКТРИК > БАЗА ДАННЫХ > Шкала номинальных и средних напряжений трехфазных электрических сетей переменного тока

Найдено 21 из 21 записей.
Страница: 1

Страница: 1

Источник информации [3], [32].

Описание справочника:
В базе данных отражена таблица в которой содержится информация о шкале номинальных и средних напряжений трехфазных электрических сетей переменного тока.

Ключевые слова:

Шкала номинальных и средних напряжений, электрических сетей переменного тока,
Шкала номинальных и средних напряжений, электрических сетей переменного тока,
Шкала средних напряжений электрических сетей, переменного тока,
Шкала стандартных и средних напряжений электрических сетей переменного тока,
Стандартные напряжения,
шала номинальных напряжений,
шкала средних номинальных напряжений,
назвать шкалу номинальных напряжений

Библиографическая ссылка на ресурс «Онлайн Электрик»:

Алюнов, А.Н. Онлайн Электрик : Интерактивные расчеты систем электроснабжения / А. Н. Алюнов. – Москва : Всероссийский научно-технический информационный центр, 2010. – EDN XXFLYN.

Среднее номинальное напряжение

Cтраница 3

Приняв для каждой электрической ступени среднее номинальное напряжение, считают, что номинальные напряжения всех элементов, включенных на данной ступени, равны ее среднему номинальному напряжению. Это допущение для некоторых элементов установки может не соответствовать действительности, так как их действительные номинальные напряжения могут несколько отличаться от указанных средних значений. Однако ошибка в вычислении токов короткого замыкания получается незначительной.
 [31]

Расчет ведется в системе относительных единиц, поэтому надо дринять базовые условия: за базовую мощность принимаем номинальную мощность системы, аа базовое напряжение — среднее номинальное напряжение ступени к.
 [32]

Из данных табл. 4.17 следует, что при деструктирующем действии среды ( бутилкаучук — HNO3), не вызывающем образования трещин, разрушение происходит под действием среднего номинального напряжения и расчетные данные совпадают с экспериментальными.
 [34]

SH — номинальная мощность генератора, трансформатора МВ-А; SQ — базисная мощность, МВ-А; 1 — базисный ток при Sg, кА; t / cp — среднее номинальное напряжение, кВ; / н — номинальный ток реактора или ветви сдвоенного реактора, кА; х — удельное сопротивление линии, Ом / км; I — длина линии, км.
 [35]

Очевидно, что парные промежуточные пластины имеют бесконечно большое множество сочетаний величин зазоров Z — и Zy. Поэтому при подсчете средних номинальных напряжений был выбран наиболее неблагоприятный случай, когда Z; 0, a Z / — var.
 [37]

Предизбиратель в этом случае обычно называется реверсором. Главная часть обмотки рассчитывается на среднее номинальное напряжение, а регулировочная — на половину диапазона регулирования.
 [38]

Наиболее удаленную от расчетной точки КЗ часть ЭЭС обычно представляют в виде одного источника энергии с неизменной по амплитуде ЭДС и результирующим эквивалентным сопротивлением. ЭДС этого источника принимают равной среднему номинальному напряжению сети, связывающей удаленную и остальную части ЭЭС, а его результирующее эквивалентное сопротивление определяют, исходя из известного тока от эквиваленти-руемой части системы при КЗ в какой-нибудь узловой точке указанной сети; при отсутствии данных о таком токе результирующее эквивалентное сопротивление оценивают, исходя из параметров выключателей, установленных на какой-нибудь узловой подстанции упомянутой сети.
 [39]

При динамической нагрузке периодически изменяющимися силами или моментами проверяется прочность вала в опасных сечениях ( ослабленных конструктивными надрезами) с учетом усталости. По значениям моментов М и Мк определяется среднее номинальное напряжение на изгиб ацт и на кручение ткт и амплитуды этих напряжений аца и гка.
 [40]

При динамической нагрузке периодически изменяющимися силами или моментами проверяется прочность вала в опасных сечениях ( ослабленных конструктивными надрезами) с учетом усталости. По значениям моментов М и Мк определяется среднее номинальное напряжение на изгиб аит и на кручение ткт и амплитуды этих напряжений аиа и тка.
 [41]

Реактивное сопротивление обратной последовательности обобщенной нагрузки зависит от ее характера. Это сопротивление отнесено к полной рабочей мощности нагрузки и среднему номинальному напряжению той ступени, к которой она присоединена. Сопротивление нулевой последовательности обобщенной нагрузки определяется схемой соединения и трансформаторами, входящими в ее состав. Это сопротивление может быть получено только эквивалентированием распределительной сети нагрузки.
 [43]

Для каждой ступени напряжений расчетной схемы надлежит принимать следующие величины средних номинальных линейных напряжений: 230; 115; 37; 20; 10 5; 6 3; 3 15; 0 69; 0 525; 0 4 кв, приближенно считая, что все элементы расчетной схемы, кроме реакторов, имеют соответствующие номинальные напряжения по указанной шкале. Таким образом, линейные коэффициенты трансформации трансформаторов определяются как соотношения средних номинальных напряжений соответствующих ступеней.
 [44]

Дуга образуется в большом объеме масла, в котором она может свободно развиваться. Этот способ применяется в выключателях с простым разрывом дуги под маслом для средних номинальных напряжений и малых мощностей отключения.
 [45]

Страницы:  

   1

   2

   3

   4

Что такое номинальное напряжение и как его найти

Содержание

  • 1 О терминологии
  • 2 Как определяется НП
  • 3 Примеры расчётов
    • 3.1 Пример 1
    • 3.2 Пример 2
    • 3.3 Пример 3
  • 4 Видео по теме

Непосредственное применение закона Ома для вычисления напряжения U возможно только для простой электрической сети (преимущественно постоянного тока). В большинстве прочих ситуаций перед расчётом необходимо уточнить, о каком именно U пойдёт речь, каков тип потребителя и в какой сети он функционирует. Особенно много путаницы возникает с терминами «среднее номинальное напряжение» и «номинальное допускаемое напряжение».

Схема типовой электросети переменного тока

О терминологии

Базу энергетической системы составляют трехфазные сети, в которых используются 2 типа напряжений:

  • Линейное, присутствующее между двумя жилами электрического кабеля.
  • Фазное напряжение проявляется в ходе измерений потенциала между нулевым проводом и находящимся под током.

Если подключение к электросети происходит по схеме «треугольник», то линейные и фазные напряжения имеют одинаковые значения. Если же подсоединение производится с помощью «звезды», количественные показатели линейного напряжения становятся выше фазного в 1.733. Значение напряжения, присутствующего в трехфазной сети, записывают в виде дроби, например, 220/380. Числитель обозначает фазную, а знаменатель линейную величину.

Соединения в трехфазных сетях

В электротехнике часто приходится иметь дело со следующими тремя обозначениями, связанными с электрооборудованием и системой питания:

  • Номинальное (линейное) напряжение сети или системы электрического питания.
  • Номинальное напряжение отдельной единицы оборудования.
  • Рабочее или допустимое напряжение.

Первое для сети переменного тока определяется как предельное значение данного параметра, присвоенное электрической цепи или системе для обозначения её класса. Такую характеристику часто обозначают как системное напряжение Uc.  Например, для России действует следующий ряд Uc, соответствующий нормам ГОСТ Р 57382–2017:                                      110→330→500→750 кВ. При этом минимальное значение Uc не может быть меньше 6 кВ (ГОСТ 721–77).

Принятое в конкретном регионе значение номинального напряжения системы определяется пиковой потребляемой мощностью и протяжённостью линий электропередачи. При проектировании любого электрооборудования разработчик в первую очередь учитывает условия той системы, в которой будет работать это оборудование.

Производители электрооборудования в обязательном порядке указывают на своих устройствах главные характеристики: силу тока в А, мощность в Вт, а также номинальное фазное напряжение, являющееся базисным в стандартизованном ряду потенциалов. Для зон безопасности обычно принимается допуск ± 10 % или выше.

Информация, указываемая на шильдике электрооборудования

Однако номинальное напряжение не является точным рабочим показателем для работающего оборудования. Оно представляет собой значение параметра, по которому электрическое устройство названо или упоминается. Таким образом, фактическое напряжение, при котором работает устройство, может отличаться от номинального в пределах диапазона, обеспечивающего удовлетворительную работу оборудования.

Поэтому на практике рассматриваемый параметр чаще используется в качестве эталона для описания фактических возможностей электрических устройств и систем. Он характеризует возможности той сети, к которой может быть подключено устройство с сохранением условий для его безопасной и надёжной работы. Следовательно, допустимо рассматривать данный показатель лишь как приблизительную оценку уровня работы конкретной электрической системы. Предельные значения выбираются таким образом, чтобы они находились в границах диапазона номинального напряжения.

Шкала номинальных напряжений

Следует отметить, что реальная разница между входным и номинальным Uc всегда присутствует, но она не должна превышать допуск безопасности. С другой стороны, расхождение между этими параметрами должно быть достаточно большим, чтобы можно было легко подкорректировать изменение номинального напряжения в линии электропередачи.

Рабочее напряжение — это фактическое значение характеристик питания, которое подаётся на клеммы оборудования. Параметр измеряется при помощи таких приборов как вольтметры, мультиметры. Если разница показателей, измеренных в ходе тестирования, выходит за пределы заявленного диапазона, то работоспособность этой единицы оборудования не будет обеспечена.

Измерение с помощью мультиметра

Как определяется НП

Проще всего дело обстоит с выяснением данного номинала применительно к электрооборудованию. Например, для однофазного асинхронного двигателя на паспортной табличке указано, что значение данного показателя составляет 240 В ± 10 %. Это означает, что двигатель может безопасно работать в диапазоне от 216 В до 264 В. Учитывается, что паспортная мощность двигателя и прочие проектные характеристики соответствуют нормам стандарта.

Чтобы рассчитать номинальные напряжения сложных или составных электрических сетей, поступают иначе. Например, если нужно выяснить указанный параметр для региональной сети электропотребления, каждая из составляющих которой рассчитана на собственные, различающиеся от ветви к ветви параметры, используют следующую последовательность действий:

  1. Пользуясь законом Ома для составной цепи, определяем значение номинального напряжения на выходе.Определение номинального напряжения
  1. Если мощность потребителей неизвестна, но зато есть фактическое значение Uф, то искомый параметр для каждого i-того потребителя определяется по формуле:Определение мощности
  1. Полученные значения Рi складываются.Схема распределительной электросети с пятью потребителями с разными показателями номинального напряжения

При проведении таких расчётов необходимо различать номинал на каждом i-том элементе. Первый из параметров является предельным значением, которое может непрерывно подаваться к потребителю. Он применяется только к тем характеристикам сопротивления, которые лежат в области выше допустимой.

При вычислении номинального напряжения с помощью формулы Ома следует принимать во внимание то, что конечный результат может оказаться слишком высоким. Это может привести к выходу из строя элемента при длительном воздействии на него повышенной разности потенциалов. Поэтому итог расчётов сравнивается с максимальным (критическим) значением сопротивления, которое разрешено для данного элемента. Меньшее значение и будет действительным, указываемым отдельно для каждой серии и типоразмера изделия.

Примеры расчётов

Рассмотрим несколько примеров расчета номинального напряжения

Пример 1

Для номинальной мощности энергопотребителя в 1 Вт и его сопротивлении 100 кОм нужно определить номинал Uном, приняв, что верхняя граница параметра (Umax) равна 200 В.

Воспользовавшись формулой закона Ома для участка цепи, получим:

Значение номинального напряжения

Однако максимально допустимое Umax на элементе только 200 В, поэтому подавать на элемент 316 В нельзя. Отсюда следует, что Uном = 200 В.

Пример 2

В стабильном режиме эксплуатации энергосистема выдаёт 11 кВ с допустимым колебанием ± 10 %. Какими будут наибольшие колебания, при которых такая система ещё сохранит свою работоспособность?

С учётом ранее указанного допуска безопасности 11 кВ ± 10 % данные значения будут составлять от 9.9 кВ до 12.1 кВ.

Пример 3

Автоматический выключатель, установленный для обслуживания энергосистемы 132 кВ, должен сохранять свою работоспособность в диапазоне Uном ±10 %. Следовательно, потенциал, подаваемый на автоматический выключатель,  может находиться в пределах, не превышающих 118.8 … 145.2 кВ.

Образец более сложного расчёта

Определить номинальный ток генератора мощностью 48000 Вт при напряжении 110 В, учитывая, что Uном = 220 В, угол сдвига между фазами cosφ = 0.85. Обмотки трёхфазной схемы генератора соединены звездой. Расстояние между смежными пазами в статоре соответствует паспортной мощности двигателя.

Сначала находим фазное напряжение при соединении в звезду:

Значение UФ при соединении в звезду

Определяем значение полной номинальной мощности генератора:

Определение мощности генератора

Искомое значение номинального тока генератора:

Номинальный ток генератора

Поскольку расчётное фазное напряжение больше фактического, то длительная работоспособность генератора полностью обеспечится. Все прочие параметры системы следует рассчитывать с учетом тока Iн не менее 150 А.

Трёхфазный генератор тепловой электростанции

Описанная методика действий с определёнными эксплуатационными факторами электрооборудования и энергосистем позволяет уточнять условия надёжной работы устройств, не допускать перегрузки их отдельных элементов, осуществлять более точный подбор типоразмеров трансформаторов, генераторов, электродвигателей и прочего электрооборудования.

Видео по теме

Существует шкала средних номинальных
напряжений, которая используется в расчетах эл.м.п.п. (как среднее
арифметическое напряжение у источника и у потребителя )

Шкала

750; 515; 340; 230; 154;
115; 37; 24; 20; 18; 15,75; 13,8; 10,5; 6,3; 6,15кВ.

Под средними
коэффициентами трансформации понимают отношение средних номинальных напряжений
ступеней, которые связывают трансформатор.

Если базисное U выбрано
на основной ступени, то эта ступень называется базисной. При составлении
упрощенных схем замещения за базисное принимается среднее номинальное
напряжение основной ступени Uб=UIIIIср.

Задаем Sб и Uб.

а) исходные величины заданы в именованых
единицах:

б) исходные величины
заданы в относительных единицах приведенных к номинальным условиям:

Также условно принимают,
что Uн всех элементов (кроме реактора), находящиеся на одной
ступени, одинаковые и равны соответствующим значениям средних номинальных
напряжений ( по указанной шкале).

Формулы
приближенного приведения

Использование формул
приближенного приведения вносит некоторую погрешность »±5%.  При наличии трансформаторов и
автотрансформаторов с широким регулированием напряжения в пределах ±20% от Uном или других устройств для регулирования напряжения
погрешность может быть ±30%
и поэтому необходим точный расчет.

Если элементы схемы
замещения выражены в именованных единицах, то найденные в ней токи и напряжения
являются реальными только для основной ступени и по мере перехода от основной
ступени напряжения к другим более удаленным, погрешность в величине ТКЗ обычно
возрастает при расчете по формулам приближенного приведения.

После расчета по формулам
приближенного или точного приведения получаем значения токов и напряжений в
относительных единицах, для того, чтобы найти эти значения в именованных
единицах необходимо их умножить на базисные единицы данной ступени
трансформации:

            

Магнитная связь возможна
даже при отсутствии трансформаторов и автотрансформаторов, следствие наличие
взаимоиндукции. В этом случае испытывают схемы замещения, которые позволяют
заменить магнитосвязанную цепь эквивалентной электрической схемой. Могут быть
трансформаторы с расщепленными обмотками, сдвоенные реакторы, взаимное влияние
ЛЭП и т.д.

Параметры элементов расчетной схемы

Параметры
элементов схемы, используемые в расчетах.

1. Синхронные генераторы

Необходимы Sн,
Uн, расчетная реактивность. В качестве последнего чаще всего
используются сверхпереходная x//d или переходная x/d реактивности.

При внезапном нарушении
режима СГ с демпферными обмотками характеризуется Eq// и x//d

При отсутствии необходимых данных
можно воспользоваться средними относительными значениями:

 ,  — для генераторов мощностью до 100мВТ

, для генераторов мощностью после 100мВТ

2. Трансформаторы.

Необходимо знать Sн,
Uнв, Uнн, Uк%

Определяют Uк
опытным путем Uк идет на покрытие падение напряжения в самом
трансформаторе. Uк% — это Z трансформатора в %

Uк%=Zк%»Xтр%

У трансформатора
напряжение задается в %.

3. Трехобмоточные
трансформаторы и автотрансформаторы.

Sн, Uнв,
Uнс, Uнн, U кв-с%, Uкв-н%,
Uкс-н%

Подпись:

Uкв-с%= Uкв%+Uкс%

Uкв-н%= Uкв%+Uкн%

Uкс-н%= Uкс%+Uкн%

Совместное решение этих трех
уравнений дает (1+3)-2 :

Если UK какой-либо обмотки получается равным нулю или отрицательное, то
сопротивление этой обмотки принимается равной нулю.

4. Реакторы.

Для реакторов нельзя
принять Uном=Uср.ном. т.к. реакторы имеют свою
шкалу напряжений 6, либо 10кВ и обладают значительным сопротивлением, которое
надо учитывать с большей точностью.

Приближенное приведение
для реактора:

               

Задаются:

IбР
базисный ток рассчитывается, где установлен реактор.

5. ЛЭП

Задается, (удельное сопротивление на 1км длины)

Для ВЛ       6÷220КВ                         Худ=0,4
Ом/км

330 кВ                             Худ=0,33Ом/км

500 кВ                             Худ=0,3Ом/км

Для кабельных линии.

35 кВ                               Худ=0,12
Ом/км

6÷10кВ                            Худ=0,08
Ом/км

3кВ                                  Худ=0,07
Ом/км.

6.Нагрузка

Задается SН, Uн, L

Приближенно характеризуют следующими
величинами.

Для переходного
режима:                 Для установившегося режима:

ЕH=0,85                                                            ЕH=0  
  

XH=0.35                                       
XH=1,2

Для асинхронных двигателей,
синхронных компенсаторов расчетные формулы и исходные данные аналогичны, только
меняются их значения, которые можно получить из таблиц справочников.

*

Уважаемый посетитель!

Чтобы распечатать файл, скачайте его (в формате Word).

Ссылка на скачивание — внизу страницы.

Номинальные напряжения электрических сетей и области их применения

Номинальным напряжением U н источников и приемников электроэнергии (генераторов, трансформаторов) называется такое напряжение, на которое они рассчитаны в условиях нормальной работы.

Номинальные напряжения электрических сетей и присоединяемых к ним источников и приемников электрической энергии устанавливаются ГОСТом.

Шкала номинальных напряжений для сетей переменного тока частотой 50 Гц междуфазное напряжение должно быть 12, 24, 36, 42, 127, 220, 380 В; 3, 6, 10, 20, 35, 110, 150, 220, 330, 500, 750, 1150 кВ, для сетей постоянного тока -12, 24, 36, 48, 60, 110, 220, 440, 660, 3000 В.

Для электрических сетей трехфазного переменного тока напряжением до 1 кВ и присоединенным к ним источников и приемников электроэнергии ГОСТ 721-78 устанавливает следующие значения номинальных напряжений:

Сети и приемники — 380/220 В; 660/380 В

Источники — 400/230 В; 690/400 В.

Номинальное напряжение генераторов с целью компенсации потери напряжения в питаемой ими сети принимается на 5% больше номинального напряжения этой сети (см. табл. 1).

Номинальные напряжения первичных обмоток, повышающих трансформаторов, присоединяемых к генераторам, приняты также на 5% больше номинальных напряжений подключаемых к ним линий.

Первичные обмотки понижающих трансформаторов имеют номинальные напряжения, равные номинальным напряжениям питающих их линий.

В табл. 1. приведены номинальные и наибольшие рабочие напряжения электрических сетей, генераторов и трансформаторов напряжением выше 1 кВ, принятые ГОСТ 721 — 78.

Таблица 1.1. Номинальные напряжения трехфазного тока, кВ

Сети и приемники Трансформаторы и автотрансформаторы Наибольшее рабочее напряжение
без РПН c РПН
первичные обмотки вторичные обмотки первичные обмотки вторичные обмотки
6 6 и 6,3 6,3 и 6,6 6 и 6,3 6,3 и 6,6 7,2
10 10 и 10,5 10,5 и 11 10 и 10,5 10,5 и 11 12,0
20 20 22 20 и 21,0 22,0 24,0
35 35 38,5 35 и 36,5 38,5 40,5
110 121 110 и 115 115 и 121 126
220 242 220 и 230 230 и 242 252
330 330 347 330 330 363
500 500 525 500 525
750 750 787 750 787

Питание цепей управления, сигнализации и автоматизации электроустановок, а также электрифицированного инструмента и местного освещения в производственных цехах осуществляется на постоянном токе напряжениями 12, 24, 36, 48 и 60 В и на переменном однофазном токе 12, 24 и 36 В. Электроприемники постоянного тока питаются на напряжениях 110; 220 и 440 В. Напряжения генераторов постоянного тока 115; 230 и 460 В.

Электрифицированный транспорт и ряд технологических установок (электролиз, электропечи, некоторые виды сварки) получают питание на напряжениях, отличных от приведенных выше.

У повышающих силовых трансформаторов номинальное напряжение первичной обмотки совпадает с номинальным напряжением трехфазных генераторов. У понижающих трансформаторов первичная обмотка является приемником электроэнергии, и ее номинальное напряжение равно напряжению сети.

Номинальные напряжения вторичных обмоток трансформаторов, питающих электрические сети, на 5 или 10 % выше номинальных напряжений сети, что дает возможность компенсировать потери напряжения в линиях: 230, 400, 690 В и 3,15 (или 3,3); 6,3 (или 6,6); 10,5 (или 11); 21 (или 22); 38,5; 121; 165; 242; 347; 525; 787 кВ.

Напряжение 660 В рекомендуется для питания силовых электроприемников. По сравнению с напряжением 380 В оно имеет ряд преимуществ: меньшие потери энергии и расход проводникового материала, возможность применения более мощных электродвигателей, меньшее количество цеховых ТП. Однако для питания мелких двигателей, цепей управления электроприводом и сетей электроосвещения необходимо устанавливать дополнительный трансформатор на 380 В.

Напряжение 3 кВ используется только для питания электроприемников, работающих на этом напряжении.

Электроснабжение предприятий, внутризаводское распределение энергии и питание отдельных электроприемников выполняются на напряжениях свыше 1000 В.

Напряжения 500 и 330 кВ применяются для питания особенно крупных предприятий от сетей энергосистемы. На напряжениях 220 и 110 кВ осуществляется питание крупных предприятий от энергосистемы и распределение энергии на первой ступени электроснабжения.

На напряжении 35 кВ питаются предприятия средней мощности, удаленные электропотребители, крупные электроприемники и распределяется энергия по системе глубоких вводов.

Напряжения 6 и 10 кВ используются для питания предприятий малой мощности и в распределительных сетях внутреннего электроснабжения. Напряжение 10 кВ целесообразнее, если источник питания работает на этом напряжении, а число электроприемников на 6 кВ невелико.

Напряжения 20 и 150 кВ широкого применения на промышленных предприятиях не находят из-за использования их только в некоторых энергосистемах и отсутствия соответствующего электрооборудования.

Выбор напряжения сети производится одновременно с выбором схемы электроснабжения, а в некоторых случаях — на основе технико-экономического сравнения вариантов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Расчет токов короткого замыкания

Расчет токов короткого замыкания (КЗ) необходим для выбора аппаратуры и проверки элементов электроустановок (шин, изоляторов, кабелей и т. д.) на электродинамическую и термическую устойчивость, а также уставок срабатывания защит и проверки их на чувствительность срабатывания. Расчетным видом КЗ для выбора или проверки параметров электрооборудования обычно считают трехфазное КЗ. Однако для выбора и проверки уставок релейной защиты и автоматики требуется определение и несимметричных токов КЗ.

Расчет токов КЗ с учетом действительных характеристик и действительных режимов работы всех элементов системы электроснабжения сложен.

Поэтому для решения большинства практических задач вводят допущения, которые не дают существенных погрешностей:

— трехфазная сеть принимается симметричной;

— не учитываются токи нагрузки;

— не учитываются емкости, а следовательно, и емкостные токи в воздушной и кабельной сетях;

— не учитывается насыщение магнитных систем, что позволяет считать постоянными и не зависящими от тока индуктивные сопротивления всех элементов короткозамкнутой цепи;

— не учитываются токи намагничивания трансформаторов.

В зависимости от назначения расчета токов КЗ выбирают расчетную схему сети, определяют вид КЗ, местоположение точек КЗ на схеме и сопротивления элементов схемы замещения. Расчет токов КЗ в сетях напряжением до 1000 В и выше имеет ряд особенностей, которые рассматриваются ниже.

При определении токов КЗ используют, как правило, один из двух методов:

— метод именованных единиц – в этом случае параметры схемы выражают в именованных единицах (омах, амперах, вольтах и т. д.);

— метод относительных единиц – в этом случае параметры схемы выражают
в долях или процентах от величины, принятой в качестве основной (базисной).

Метод именованных единиц применяют при расчетах токов КЗ сравнительно простых электрических схем с небольшим числом ступеней трансформации.

Метод относительных единиц используют при расчете токов КЗ
в сложных электрических сетях с несколькими ступенями трансформации, присоединенных к районным энергосистемам.

Если расчет выполняют в именованных единицах, то для определения токов КЗ необходимо привести все электрические величины к напряжению ступени, на которой имеет место КЗ.

При расчете в относительных единицах все величины сравнивают с базисными, в качестве которых принимают базисную мощность одного трансформатора ГПП или условную единицу мощности, например 100 или 1000 МВА.

В качестве базисного напряжения принимают среднее напряжение той ступени, на которой произошло КЗ (Uср = 6,3; 10,5; 21; 37; 115; 230 кВ). Сопротивления элементов системы электроснабжения приводят к базисным условиям в соответствии с табл. 3.1.

Средние удельные значения индуктивных сопротивлений воздушных и кабельных линий электропередачи

Линия электропередачи xуд, Ом/км
Одноцепная воздушная линия, кВ:
6−220 0,4
220−330 (при расщеплении на два провода в фазе) 0,325
400−500 (при расщеплении на три провода в фазе) 0,307
750 (при расщеплении на четыре провода в фазе) 0,28
Трехжильный кабель, кВ:
6−10 0,08
0,12
Одножильный маслонаполненный кабель 110−220 кВ 0,16

Расчет токов КЗ начинают с составления расчетной схемы электроустановки. На расчетной схеме указываются все параметры, влияющие на величину тока КЗ (мощности источников питания, средне номинальные значения ступеней напряжения, паспортные данные электрооборудования), и расчетные точки, в которых необходимо определить токи КЗ. Как правило, это сборные шины ГПП, РУ, РП или начало питающих линий. Точки КЗ нумеруют в порядке их рассмотрения начиная с высших ступеней.

По расчетной схеме составляется электрическая схема замещения. Схемой замещения называется схема, соответствующая по своим параметрам расчетной схеме, в которой все электромагнитные (трансформаторные) связи заменены электрическими. На рис. 3.1 приведен пример расчетной схемы, а на рис. 3.2 – соответствующая ему схема замещения.

При составлении схемы замещения для электроустановок выше 1000 В учитывают индуктивные сопротивления электрических машин, силовых трансформаторов и автотрансформаторов, реакторов, воздушных и кабельных линий. Средние удельные значения индуктивных сопротивлений воздушных и кабельных линий электропередачи приведены в табл. 3.2. Активные сопротивления учитывают только для воздушных линий с проводами небольшого сечения и со стальными проводами, а также для протяженных кабельных линий с небольшим сечением.

Активное сопротивление трансформаторов учитывают в случае, когда среднее номинальное напряжение ступени, где находится точка короткого замыкания, В и мощность трансформатора кВА или питающая и отходящая линии выполнены из стальных проводов.

После составления схемы замещения необходимо определить ее параметры. Параметры схемы замещения определяются в зависимости от выбранного метода расчета токов КЗ в именованных или относительных единицах. Формулы для определения параметров схемы замещения приведены в табл. 3.2.

Далее схему замещения путем постепенного преобразования (последовательное и параллельное сложение, преобразование треугольника в звезду и др.) приводят к простейшему виду так, чтобы источник питания был связан с точкой КЗ одним результирующим сопротивлением. Преобразования схемы замещения производятся для каждой точки КЗ отдельно.

Расчетные выражения для определения приведенных значений сопротивлений

Элемент электроустановки Исходный параметр Именованные единицы, Ом Относительные единицы, о. е.
Генератор (G) ; , МВ?А
, %; , МВ?А
Энергосистема (С) Sк, МВ?А
Iоткл.ном, кА
; , МВ?А
Трансформатор (Т) uк, % Sном. т, МВ?А
Автотрансформатор и трехобмоточный трансформатор (Т) (схема замещения – звезда) uк,В−С, %; uк,В−Н, %; uк,С−Н, %; , МВ?А ; ; ; ;
2
Трансформатор с расщепленной обмоткой низшего напряжения (Т) Uк,В−Н, %; Sном. т, МВ?А ; ;
Синхронные и асинхронные электродвигатели, компенсаторы (М) ; Sном. М, МВ?А
Реактор (LR) xном.LR, Ом
Линия электропередачи (W) xуд, Ом/км; l, км
Примечание: Sном – номинальные мощности элементов (генератора, трансформатора, энергосистемы), МВ?А; Sб – базисная мощность, МВ?А; Sк – мощность КЗ энергосистемы, МВ?А; Iоткл. ном – номинальный ток отключения выключателя, кА; х*ном. С − относительное номинальное сопротивление энергосистемы; uк % − напряжение КЗ трансформатора; Iб – базисный ток, кА; Uср – среднее напряжение в месте установки данного элемента, кВ; xуд – индуктивное сопротивление линии на 1 км длины, Ом/км; l – длина линии, км

Зная результирующее сопротивление до точки КЗ, по закону Ома определяют токи КЗ [8].

При расчете в именованных единицах:

, (3.1)

где − ток КЗ, приведенный к базисной ступени напряжения; Uб – напряжение базисной ступени напряжения; Zрез – полное сопротивление (если учитываются индуктивные и активные сопротивления) от источника питания до точки КЗ.

Если напряжение ступени КЗ отличается от напряжения, принятого при расчете за базисное напряжение, полученный ток КЗ необходимо привести к реальному напряжению ступени КЗ по выражению:

, (3.2)

где Uсрн – напряжение ступени КЗ.

При расчете в относительных единицах:

; (3.3)

, (3.4)

где – базисный ток той ступени, на которой определяют ток КЗ; Zрез – полное приведенное сопротивление от источника питания до точки КЗ; Sб – базисная мощность.

При расчете токов КЗ в большинстве случаев требуется знать следующие значения:

– начальное действующее значение периодической составляющей тока КЗ (сверхпереходной ток);

Iу – действующее значение полного тока КЗ за первый период;

I − ток установившегося режима;

Iпt – периодическая составляющая тока КЗ в момент времени t = τ.

Источник

Понравилась статья? Поделить с друзьями:
  • Как найти неисправность радио
  • Как найти фамилию по гос номеру
  • Как составить визитку района
  • Glow storm gta 5 как исправить
  • Как найти иголки в доме что делать