– Паша, привет. Чем занимаешься?
– Привет, Саша. Да вот читаю журнал.
Представляешь, в России за год каждый человек съедает по 4,3 килограмма шоколада.
Это же сколько шоколадок получается?
– Интересно, а как считали? Вот, например, я
очень люблю шоколад и могу съесть много, а мой сосед Ваня вообще не ест
шоколад, у него аллергия. И как тогда получили столько шоколада? Это что, у
каждого жителя России спрашивали, сколько шоколада он ест? У меня никто не
спрашивал. Какое-то это неправильное число, и вообще непонятно, откуда его
взяли.
– Может, сходим к Электроше
и у него узнаем, как получили это число?
– Пойдём.
– Электроша,
привет.
– Мы к тебе с новым вопросом. Вот смотри, в
журнале мы прочитали, что каждый житель России за год съедает 4,3 килограмма
шоколада. И нам интересно, а как это считают? Ведь если, например, Ваня не
может есть шоколад из-за аллергии, то за год он никак не съест так много.
– Сейчас я вам всё объясню. Но сначала
давайте порешаем устно.
Вернёмся к вашей задаче.
В таких случаях речь идёт о среднем
количестве шоколада, который съедают жители России. Получают это число так:
общее количество всего шоколада, который съели за год, делят на общее
количество людей, которые живут в России.
Аналогичным способом можно посчитать,
например, средний возраст ребят вашего класса.
Или, например, таким же способом можно узнать
среднюю скорость набора текста на компьютере.
В масштабах страны среднее арифметическое
используют тогда, когда говорят, например, о том, что пшеницы собрано
пятнадцать тонн с гектара или о среднем размере пенсии.
Для таких задач ввели специальную величину – среднее
арифметическое.
Дадим определение. Средним
арифметическим нескольких чисел называют частное от деления суммы этих
чисел на количество слагаемых.
Попробуем найти среднее арифметическое чисел: .
Сложим их, разделим на 3 и получим, что
среднее арифметическое равно 17,5.
Вам всё понятно?
– Да.
– Тогда, Саша, задание для тебя.
Найдите среднее арифметическое чисел: .
Сложим все числа. Так как всего чисел 3,
значит, и делить будем на 3. Получим, что среднее арифметическое чисел равно 24.
Очень часто, когда мы слышим, что автомобиль
ехал со средней скоростью 90 километров в час, речь идёт именно о среднем арифметическом скоростей.
Давайте попробуем найти среднюю температуру
за 3 жарких летних дня. По показаниям синоптиков, температура в первый день
поднималась до 25 градусов выше нуля, во второй – до 23, а в третий – до 27
градусов выше нуля. Чтобы найти среднюю температуру, нам надо найти среднее
арифметическое трёх чисел. Сложим их и разделим на 3. Получим, что средняя
температура за 3 дня составляла 25 градусов выше нуля.
Давайте решим вот такую задачу.
Автомобиль 3 часа ехал со скоростью 56
километров в час. Затем 2 часа – со скоростью 57 километров в час. Определите
среднюю скорость движения автомобиля.
– Ой, Электроша, а
мы не знаем, как такое решать. Ты можешь помочь?
– Конечно. Давайте вспомним формулу, по
которой мы можем найти скорость. Паша, ты помнишь?
– Скорость равна отношению длины всего
пути ко времени, потраченному на этот путь .
– Правильно. Давайте посчитаем, чему равно
общее расстояние, которое проехал автомобиль.
– Паша, посчитай.
– Хорошо. Перемножим 3 и 56, получим, что со
скоростью 56 километров в час автомобиль проехал 168 километров. Со скоростью
57 километров в час автомобиль проехал 114 километров. То есть всего автомобиль
проехал 282 километра.
А время, которое автомобиль был в пути, найти
несложно. Оно равно 5.
– Остаётся только поделить путь на время, и
получим, что средняя скорость автомобиля равна 56,4 километра в час.
– Вам стало понятно, ребята?
– Да, Электроша.
– Тогда вот для вас ещё одно задание. Среднее
арифметическое пяти чисел равно 25,7. Первые четыре числа равны 13,9; 7,2;
20,4; 9,5. Найдите пятое число.
– Саша, это задание для тебя.
Обозначим пятое число за х.
– У нас известно среднее арифметическое пяти
чисел.
Тогда мы можем определить сумму этих чисел.
Зная сумму и первые четыре числа, пятое определить несложно. Получим, что пятое
число равно 77,5.
– Молодец.
Вот вам ещё одно задание. Одно число больше
второго в 5 раз. Среднее арифметическое чисел равно 6. Найдите эти числа.
– Паша, это задание для тебя.
Обозначим одно число за х, получим,
что второе число равно 5х.
Раз среднее арифметическое двух чисел равно
6, значит, сумма искомых чисел равна 12. Получаем уравнение: 6х = 12.
Отсюда х = 2. Это первое число, и второе число равно 10.
– Молодец, Паша.
Загрузить PDF
Загрузить PDF
Среднее значение, медиана и мода — значения, которые часто используются в статистике и математике. Эти значения найти довольно легко, но их легко и перепутать. Мы расскажем, что они из себя представляют и как их найти.
-
1
Сложите все числа, которые вам даны. Допустим, вам даны числа 2, 3 и 4. Сложим их: 2 + 3 + 4 = 9.
-
2
Сосчитайте количество чисел. У нас есть три цифры.
-
3
Разделите сумму чисел на их количество. Берем 9, делим на 3. 9/3 = 3. Среднее значение в данном случае равно 3. Помните, что не всегда получается целое число.
Реклама
-
1
Запишите все числа, которые вам даны, в порядке возрастания. Например, нам даны числа: 4, 2, 8, 1, 15. Запишите их от меньшего к большему, вот так: 1, 2, 4, 8, 15.
-
2
Найдите два средних числа. Мы расскажем, как это сделать, если у вас имеется четное количество чисел, и как это сделать, если количество чисел нечетное:
- Если у вас нечетное количество чисел, вычеркните левое крайнее число, затем правое крайнее число и так далее. Один оставшийся номер и будет искомой медианой. Если вам дан ряд чисел 4, 7, 8, 11, 21, тогда 8 — медиана, так как 8 стоит посередине.
- Если у вас четное количество чисел, вычеркните по одному числу с каждой стороны, пока у вас не останется два числа посередине. Сложите их и разделите на два. Это и есть значение медианы. Если вам дан ряд чисел 1, 2, 5, 3, 7, 10, то два средних числа — это 5 и 3. Сложим 5 и 3, получим 8, разделим на два, получим 4. Это и есть медиана.
Реклама
-
1
Запишите все числа в ряд. Например, вам даны числа 2, 4, 5, 5, 4 и 5. Запишите их в порядке возрастания.
-
2
Найдите число, которое чаще всего встречается. В данном случае это 5. Если два числа встречаются одинаково часто, то этот ряд двухвершинный или бимодальный, а если больше — то мультимодальный.
Реклама
Советы
- Вам будет легче найти моду и медиану, если вы запишете числа в порядке возрастания.
Реклама
Об этой статье
Эту страницу просматривали 355 996 раз.
Была ли эта статья полезной?
Download Article
Download Article
In mathematics, the «mean» is a kind of average found by dividing the sum of a set of numbers by the count of numbers in the set.[1]
While it isn’t the only kind of average, the mean is the one most people think of when speaking about an average. You can use means for all kinds of useful purposes in your daily life, from calculating the time it takes you to get home from work, to working out how much money you spend in an average week.[2]
Steps
-
1
Determine the set of values you want to average. These numbers can be big or small, and there can be as many of them as you want.[3]
Just make sure you are using real numbers and not variables.- Example: 2, 3, 4, 5, 6.
-
2
Add your values together to find the sum. You can use a calculator, by hand, or a spreadsheet application to do so.[4]
- Example:
Advertisement
-
3
Count the number of values in your group. Count all of the numbers added up. Identical values should still be counted, meaning if you have values that repeat in your set, each one still counts in determining your total. Do not include the sum (answer) of all the numbers added up when counting the quantity of the values.[5]
- Example: 2, 3, 4, 5, and 6 make for a total of five values.
-
4
Divide the sum of the set by the number of values. The result is the mean (a type of average) of your set. This implies that if each number in your set was the mean, they would add up to the same total.[6]
Advertisement
Calculator, Practice Problems, and Answers
Add New Question
-
Question
What do I do if my mean/average has a remainder?
Convert the remainder to a decimal or fraction. For example: the average of 5, 12, and 17 is 34 ÷ 3, which is 11 with a remainder of 1. Convert the remainder to the fraction 1/3 or the decimal .33. Thus, the average is 11-1/3 or 11.33.
-
Question
How do I calculate the mode?
It is the number in a set which appears most often.
In the set {1 7 9 0 4 5 4}, 4 is the mode.
-
Question
How do I find the range?
The range of a data set is the difference between the largest number and the smallest number in the set.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Video
-
Other kinds of averages include the median and mode.[7]
The mode is the value repeated most often in any set. The median is the number in a set with an equal quantity of values in the set greater and smaller than it. These averages will often produce different results than the mean from the same set of numbers.[8]
Thanks for submitting a tip for review!
Advertisement
About This Article
Article SummaryX
To calculate the mean of a set of numbers, start by adding up all of the values together to find the sum. Then, count all of the numbers that you added up. Finally, divide the sum of the set by the number of values to get the mean. If you want to learn what to do if the mean has a remainder, keep reading the article!
Did this summary help you?
Thanks to all authors for creating a page that has been read 356,077 times.
Did this article help you?
Как найти среднее арифметическое
Это пригодится не только для решения школьных задачек, но и при различных подсчётах в обычной жизни.
Что такое среднее арифметическое
Среднее арифметическое — это сумма всех чисел в ряду, разделённая на количество слагаемых.
Как найти среднее арифметическое
Например, перед вами ряд чисел «1, 2, 3, 4, 5, 6». Как следует из определения, чтобы узнать среднее арифметическое, нужно сложить все данные вам числа, а потом разделить получившийся результат на количество этих чисел. В приведённом примере — на шесть. Вот как это выражается формулой:
Допустим, вам нужно определить среднее арифметическое для чисел 4, 5 и 6. Складываем 4 + 5 + 6 = 15. Теперь делим 15 на 3 и получаем 5. Это и будет среднее арифметическое.
Таким же образом оно подсчитывается для десятичных и обыкновенных дробей.
Пример расчёта среднего арифметического для обыкновенных дробей будет выглядеть так:
А это пример, как найти среднее арифметическое для десятичных дробей:
Как это пригодится в жизни
Среднее арифметическое помогает описать множество цифровых значений всего одним числом. Например, по выше представленной формуле можно подсчитать усреднённую цену на товар или среднюю зарплату сотрудников в одной организации, среднюю посещаемость заведения. Это полезно для ведения статистики и в случаях, когда нужно сжато изложить информацию.
Читайте также 🧐
- 7 причин полюбить математику
- 7 способов найти площадь прямоугольника
- 6 способов посчитать проценты от суммы с калькулятором и без
- Как освоить устный счёт школьникам и взрослым
- 10 увлекательных задач от советского математика
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Среднее арифметическое — очень важное понятие из мира математики, используемое во многих других дисциплинах. Например, среднее арифметическое используют для того чтобы найти какое-то усреднённое значение. В частности, в экономических дисциплинах можно воспользоваться этим понятием для расчёта среднего дохода в месяц и других показателей.
Часто понятием среднего арифметического пользуются и учёные: химики с помощью него могут посчитать, сколько в среднем получается необходимого вещества при повторных проведениях опыта, а специалисты агропромышленности — среднюю урожайность яблок или другой сельскохозяйственной культуры.
Что такое среднеарифметическое значение
Определение 1
Средним арифметическим называют сумму всех чисел (например, полученных при повторном проведении одного и того же опыта), поделённых на количество этих чисел.
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
Замечание 1
Важно! Нельзя складывать и искать среднее арифметическое между величинами с разными единицами измерения и разной размерностью.
Примерами величин, которые нельзя складывать так как они имеют разную размерность, являются масса и расстояние. Масса измеряется в килограммах или граммах, а расстояние измеряется в сантиметрах, метрах и других единицах измерения.
Если значения какой-либо величины заданы с помощью разных единиц измерения, то в таком виде их также нельзя складывать и, соответственно, искать среднее арифметическое между ними.
Если же привести их к одинаковой единице измерения, то можно сложить их между собой.
В качестве примера можно привести длину двух некоторых объектов. Для одного объекта длина равна $70$ см, а для второго — $0, 9$ м. Чтобы найти среднее арифметическое, необходимо перевести один из них в единицу измерения второго, например, метры в сантиметры или наоборот.
«Среднее арифметическое» 👇
Как посчитать среднее арифметическое
Чтобы посчитать среднее арифметическое, нужно сложить все имеющиеся значения какой-либо величины и разделить на количество этих значений. Для четырёх значений $a, b, c, d$ среднее арифметическое равно
$frac{a+b+c+d}{4}$.
Если же $a, b, c$ и $d$ заданы не в одной единице измерения, а, например, в метрах и сантиметрах, то сначала нужно выбрать общую единицу измерения и привести все значения к ней.
Пример 1
Эдуард прыгнул в длину $5$ раз. Первый раз он прыгнул на расстояние $173$ см, второй раз на $169$ см, третий раз на $1,7$ м, а четвёртый и пятый соответственно — на $168$ и $175$ см. Посчитайте, на какую длину в среднем прыгает Эдуард.
Решение:
Длина третьего прыжка Эдуарда дана в метрах, а остальные его результаты — в сантиметрах. Поэтому переведём длину третьего результата также в сантиметры. Для этого умножим метры на $100$, так как в одном метре содержится 100 сантиметров:
$l_3=1,7 м = 1,7 cdot 100 см= 170$ см.
Теперь мы можем найти среднюю длину его прыжка:
$l_{ср.}=frac{173+169+170+168+175}{5}=171$ см.
Ответ: В среднем Эдуард прыгает на длину в 171 см.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме