Как найти среднеквадратичную погрешность времени

Федеральное государственное бюджетное образовательное учреждение высшего образования

«ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА АЛЕКСАНДРА I»

Кафедра «Физика»

Лабораторная работа № 100

Измерение электронным секундомером интервалов времени, задаваемых по механическому секундомеру с секундной стрелкой

Выполнил: Рубцов Иван

Учебный шифр: 726-19-АТ-з

Цель работы

Освоение алгоритма обработки результатов прямых многократных прямых измерений, построение гистограммы экспериментальных значений определяемой величины и оценка параметров распределения Гаусса из кривой закона распределения.

Теоретическая часть

Основная задача любого физического эксперимента состоит в измерении физических величин. Измерения не могут быть абсолютно точными. Никакие измерения не дают возможности получить истинное значение измеряемой величины, это объясняется ограниченной точностью приборов и природой самих измеряемых объектов. Всегда имеется некоторая неопределенность в значении определяемой величины. Эта неопределенность характеризуется погрешностью – отклонением измеренного значения величины от её истинного значения.

Многократно измеряя любую физическую величину, можно получить какие угодно результаты, в том числе и ошибочные. Однако наличие ошибочных результатов подчеркивает то обстоятельство, что принципиально и результат измерений и его погрешность могут быть любыми, поэтому оценивать точность измерения указанием его результата и его погрешности, неверно – они могут принимать любые значения.

Для правильной характеристики точности результата необходимо указывать помимо величины погрешности, но и соответствующее ей значение вероятности.

При измерении физических величин в лабораторных условиях из систематических погрешностей во внимание принимаются, как правило, только приборные как легко учитываемые. В таком случае, в погрешность определяемой величины входят две составляющие: случайная (статистическая) и систематическая (приборная), – предполагая, что промахи отсутствуют.

Если приборная погрешность значительно больше случайной, то при многократных измерениях практически получается один и тот же результат. Этот недостаток присущ, в основном, стрелочным приборам, такие приборы принято называть грубыми.

Точный прибор характеризуется меньшей систематической (приборной) погрешностью по сравнению со случайной, и поэтому на распределение полученных с его помощью результатов измерений сказывается случайный разброс. Точными приборами являются цифровые вольтметры, электронные секундомеры и весы, измерители сопротивлений, емкостей и индуктивностей и т.д. Полученные с их помощью значений одной и той же измеряемой физической величины при неизменных контролируемых условиях следует обрабатывать как результаты прямых многократных измерений.

Если измерения проводят с помощью грубого и точного приборов, то необходимо исключить просчёты (промахи), связанные с отсутствием навыков измерения. Особое значение это имеет для уменьшения различия в показаниях

2

механического и электронного секундомеров. Просчётов на механическом секундомере в силу его большей приборной погрешности избежать значительно легче.

Перед проведением статистического анализа целесообразно проверить, не изменяются ли измеренные значения регулярным образом со временем. Такое изменение называется дрейфом. Для выяснения этого вопроса необходимо построить график зависимости результатов измерения от времени.

При наличии дрейфа следует установить, связан ли он с неисправностью прибора (тогда необходимо устранить её или заменить прибор) или с закономерным изменением определяемой величины (здесь необходимо специальное исследование). При отсутствии дрейфа нужно построить экспериментальную гистограмму, показывающую, как часто получаются те или иные значения. Если n – число измерений, попадающих в любой из одинаковых интервалов (ячейка гистограммы), на которые разбивается весь диапазон значений определяемой

величины, то величина

n

является оценкой вероятности того, что величина

n

находится в пределах ячейки.

Кривая, наилучшим образом описывающая экспериментальное распределение вероятности, называется законом распределения. В случае нормального распределения в качестве оценки средней квадратической ошибки σ берут среднее квадратическое отклонение отдельного измерения S(xi). Относительная погрешность такой оценки зависит от числа измерений и при небольшом n она велика. При 50 измерениях относительная погрешность составляет приблизительно 22%, поэтому достаточно сделать 40–50 измерений. Оценить величину σ можно, используя кривую закона распределения: величина параметра σ равна полуширине кривой на высоте, равной 0,6 от её максимального значения.

Ответы на контрольные вопросы

1.Какие измерения называются прямыми? косвенными?

Прямые и косвенные измерения различают в зависимости от способа получения результата измерений.

Прямое измерение – значение физической величины находят непосредственным отсчётом по шкале прибора (измерения температуры – термометром, силы тока – амперметром и т.п.). Эти измерения могут быть однократными и многократными (повторение экспериментальной операции).

Косвенное измерение – результат определяется по формулам на основе результатов прямых измерений других величин (например: определение электрического сопротивления образца по измеренным силе тока и напряжению).

2.Как рассчитывается доверительная погрешность при прямых многократных измерениях?

3

xСЛ tn,p

Для расчёта доверительной погрешности при прямых многократных измерениях:

по результатам измерений находится среднее значение x ;

рассчитывается среднеквадратическая

погрешность отдельного результата

n

измерений по формуле: S xi

1

xi x 2 ;

n 1

i 1

рассчитывается среднеквадратическая погрешность среднего арифметического

результата измерений по формуле: S x S xi ;

n

по значению числа измерений n и доверительной вероятности P из справочной таблицы определяется коэффициент Стьюдента tn,P;

вычисляется собственно случайная (доверительная) погрешность по формуле:

S x .

3.Почему при записи окончательного результата необходимо указывать доверительную вероятность?

Так как при данных условиях эксперимента доверия заслуживают только результаты измерений, лежащие внутри доверительного интервала Δx, то абсолютная погрешность (отклонение от истинного значения) этих значений измеряемой физической величины ограничена длиной доверительного интервала Δx. То есть длина доверительного интервала Δx является характеристикой погрешности серии проводимых экспериментальных измерений (погрешности многократных измерений).

Таким образом, при записи окончательных результатов необходимо указывать доверительную вероятность для того, чтобы можно было определить, какое количество результатов попало внутрь доверительного интервала.

4.Доверительная вероятность результата P 0.68 . Что это означает?

Доверительная вероятность результата P 0.68 означает, что 68% всех результатов равноточных измерений попадёт в доверительный интервал.

5. Какие погрешности называются систематическими? случайными? приборными? Систематические погрешности – погрешности, изменяющиеся во времени по определённому закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т. п.), неучтёнными экспериментатором. При этом предполагается, что систематические погрешности представляют собой определенную функцию неслучайных факторов, состав которых зависит от физических, конструкционных и технологических особенностей средств измерений, условий их применения, а также индивидуальных

качеств наблюдателя.

4

Случайные погрешности обусловливаются большим количеством трудно учитываемых факторов, влияющих как на измерительные устройства, исследуемый физический объект или процесс, так и на самого экспериментатора. В результате, при многократном измерении одного и того же значения результат не остаётся постоянным. Исключить случайные погрешности отдельных измерений невозможно, но величину таких погрешностей можно оценить, проводя повторные (многократные) измерения.

Приборные погрешности – погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия или неточностью градуировки шкалы прибора.

6.Какая кривая называется гистограммой? законом распределения?

Гистограмма – столбиковая диаграмма, показывающая, как часто получаются те или иные значения измеряемой величины. Гистограмма позволяет оценить распределение статистических данных (результатов измерений), сгруппированных по частоте попадания данных в определенный (заранее заданный) интервал.

Закон распределения – кривая, наилучшим образом описывающая экспериментальное распределение вероятности того, что измеренная величина находится в пределах одного интервала гистограммы. Закон распределения случайной величины показывает соответствие между значением величины, которое она приняла в результате испытаний, и вероятностью появления этого значения.

Таблица приборов

Номер

Название прибора

Диапазон

Цена

Погрешность

измерения

деления

прибора

1

Механический

0 – 3600 с

0.2

0.1 с

секундомер

2

Электрический

0 – 9999.999

с

0.001

0.001 с

секундомер

5

Таблица измерений

Иван Рубцов

i

Алфавит

ti , c

t

t

t

, c

2

2

, c

2

Номер

t

i

i

ti

ti

интервала

1

А

2

Б

3

В

4

Г

2,860

-0,0057

0,000032

4

5

Д

2,798

-0,0677

0,004577

3

6

Е

2,839

-0,0267

0,000710

4

7

Ё

2,836

-0,0297

0,000879

3

8

Ж

3,034

0,1683

0,028341

6

9

З

2,673

-0,1927

0,037115

2

10

И

11

Й

3,011

0,1453

0,021126

5

12

К

2,837

-0,0287

0,000821

3

13

Л

2,917

0,0513

0,002637

4

14

М

2,723

-0,1427

0,020350

2

15

Н

16

О

17

П

2,945

0,0793

0,006296

5

18

Р

19

С

3,062

0,1963

0,038552

6

20

Т

2,659

-0,2067

0,042705

2

21

У

22

Ф

2,841

-0,0247

0,000608

4

23

Х

2,796

-0,0697

0,004852

3

24

Ц

25

Ч

2,889

0,0233

0,000545

4

26

Ш

2,945

0,0793

0,006296

5

27

Щ

2,850

-0,0157

0,000245

4

28

Ъ

2,752

-0,1137

0,012917

3

29

Ы

2,931

0,0653

0,004270

4

30

Ь

2,714

-0,1517

0,022999

2

31

Э

2,852

-0,0137

0,000186

4

32

Ю

3,043

0,1773

0,031452

6

33

Я

2,556

-0,3097

0,095885

1

34

А

35

Б

36

В

37

Г

2,806

-0,0597

0,003558

3

38

Д

2,895

0,0293

0,000861

4

39

Е

2,819

-0,0467

0,002176

3

6

40

Ё

2,822

-0,0437

0,001906

3

41

Ж

2,939

0,0733

0,005380

5

42

З

2,925

0,0593

0,003522

4

43

И

44

Й

2,807

-0,0587

0,003440

3

45

К

3,047

0,1813

0,032887

6

46

Л

2,832

-0,0337

0,001133

3

47

М

2,996

0,1303

0,016990

5

48

Н

49

О

50

П

2,980

0,1143

0,013075

5

51

Р

52

С

2,992

0,1263

0,015964

5

53

Т

2,981

0,1153

0,013305

5

54

У

55

Ф

2,972

0,1063

0,011310

5

56

Х

2,990

0,1243

0,015462

5

57

Ц

58

Ч

3,120

0,2543

0,064693

6

59

Ш

3,008

0,1423

0,020263

5

60

Щ

2,970

0,1043

0,010888

5

61

Ъ

2,704

-0,1617

0,026132

2

62

Ы

2,856

-0,0097

0,000093

4

63

Ь

2,907

0,0413

0,001710

4

64

Э

2,877

0,0113

0,000129

4

65

Ю

2,875

0,0093

0,000087

4

66

Я

2,896

0,0303

0,000921

4

67

А

68

Б

69

В

70

Г

2,913

0,0473

0,002242

4

71

Д

2,969

0,1033

0,010681

5

72

Е

2,666

-0,1997

0,039861

2

73

Ё

2,798

-0,0677

0,004577

3

74

Ж

2,961

0,0953

0,009091

5

75

З

2,682

-0,1837

0,033728

2

76

И

77

Й

2,884

0,0183

0,000337

4

78

К

2,681

-0,1847

0,034097

2

79

Л

2,781

-0,0847

0,007166

3

80

М

2,837

-0,0287

0,000821

3

81

Н

7

82

О

83

П

2,790

-0,0757

0,005723

3

84

Р

85

С

2,812

-0,0537

0,002879

3

86

Т

2,864

-0,0017

0,000003

4

87

У

88

Ф

2,770

-0,0957

0,009149

3

89

Х

2,960

0,0943

0,008901

5

90

Ц

91

Ч

2,837

-0,0287

0,000821

3

92

Ш

2,759

-0,1067

0,011375

3

93

Щ

3,046

0,1803

0,032525

6

94

Ъ

2,753

-0,1127

0,012691

3

95

Ы

2,889

0,0233

0,000545

4

96

Ь

2,819

-0,0467

0,002176

3

97

Э

2,727

-0,1387

0,019225

2

98

Ю

2,902

0,0363

0,001321

4

99

Я

2,848

-0,0177

0,000312

4

100

А

n

n

n

n =

ti

ti

ti 2

i 1

i 1

i 1

72

206,327

0,0000

0,900526

8

Обработка результатов измерений

Задание 1. Исследование дрейфа

Для исследования дрейфа по данным таблицы построим график зависимости

результата наблюдений от времени.

3,5

3,0

2,5

2,0

1,5

1,0

0,5

0,0

0

20

40

60

80

100

Дрейф отсутствует.

Задание 2. Статистический анализ выборки.

2.1. Определяем выборочное среднее:

1

n

t

1

t

2

t

3

… t

n

206.327

t

ti

2.8657

с.

n

n

72

i 1

2.2. Определяем отклонения отдельных результатов наблюдений от среднего:

ti ti t .

t4 t4 t 2.860 2.8657 0.0057 с,

t5 t5 t 2.798 2.8657 0.0677 с,

t99 t99 t 2.848 2.8657 0.0177 с.

9

Полученные

значения

заносим

в

таблицу

измерений

и

убеждаемся в

n

выполнении равенства ti

0 :

i 1

n

ti t4 t5

… t99

i 1

0.0057 0.0677 … 0.0177 0 .

2 ti

2

n

ti 2 ,

2.3.

Вычисляем

значения

ti

t

и сумму

заносим

i 1

результаты в таблицу:

t4 2

0.0057 2

0.000032 с2,

t5 2

0.0677 2

0.004577 с2,

t99 2

0.0177 2 0.000312 с2,

n

ti 2 0.900526 с2.

i 1

2.4. Рассчитываем среднеквадратичную погрешность S ti отдельного

результата измерения:

1

n

1

S t

t

t 2

0.900526 0.1126 с.

i

i

n 1

i 1

72 1

2.5.

Определяем

среднеквадратичную

погрешность

S

среднего

t

арифметического результата измерения по формуле

S

S

ti

0.1126

0.01327 .

t

n

72

2.6. Для заданных значений числа измерений n=72 и доверительной

вероятности

P 0.90

коэффициент

Стьюдента равен tn,P

1.667 (значение

определяем по справочной таблице) и вычисляем случайную погрешность:

tn,p S t 1.667 0.01327 0.0221 с.

tСЛ tn,p

1

ti 2

n

n n 1

i 1

2.7. Оцениваем приборную погрешность электронного секундомера по

формуле

tПРИБ

1

k , где

k t

1.64

– коэффициент Стьюдента при

3

,P

P 0.90 , а значение предельной погрешности δ определяется либо по классу точности, либо берется равным цене деления или половине цены деления прибора.

10

Соседние файлы в папке Лабы

  • #
  • #
  • #
  • #

    11.07.20209.33 Кб32Vychislenia_po_labe_100_obschee_1.xlsx

  • #

    11.07.202014.57 Кб25Данные к лабе 100.xlsx

  • #


Загрузить PDF


Загрузить PDF

После сбора данных их нужно проанализировать. Обычно нужно найти среднее значение, квадратичное отклонение и погрешность. Мы расскажем вам, как это сделать.

  1. Изображение с названием Calculate Mean, Standard Deviation, and Standard Error Step 1

    1

    Запишите числовые значения, которые вы собираетесь анализировать. Мы проанализируем случайно подобранные числовые значения в качестве примера.

    • Например, 5 школьникам был предложен письменный тест. Их результаты (в баллах по 100 бальной системе): 12, 55, 74, 79 и 90 баллов.

    Реклама

  1. Изображение с названием Calculate Mean, Standard Deviation, and Standard Error Step 2

    1

    Для того чтобы посчитать среднее значение, нужно сложить все имеющиеся числовые значения и разделить получившееся число на их количество.

    • Среднее значение (μ) = Σ/N, где Σ сумма всех числовых значений, а N количество значений.
    • То есть, в нашем случае μ равно (12+55+74+79+90)/5 = 62.
  1. Изображение с названием Calculate Mean, Standard Deviation, and Standard Error Step 3

    1

    Мы будем считать среднее отклонение. Среднее отклонение = σ = квадратный корень из [(Σ((X-μ)^2))/(N)].

    • Для вышеуказанного примера это квадратный корень из [((12-62)^2 + (55-62)^2 + (74-62)^2 + (79-62)^2 + (90-62)^2)/(5)] = 27,4. (Обратите внимание, что если это выборочное среднеквадратическое отклонение, то делить нужно на N-1, где N количество значений.)

    Реклама

  1. Изображение с названием Calculate Mean, Standard Deviation, and Standard Error Step 4

    1

    Считаем среднюю погрешность (среднего значения). Это оценка того, насколько сильно округляется общее среднее значение. Чем больше числовых значений, тем меньше средняя погрешность, тем точнее среднее значение. Для расчета погрешности надо разделить среднее отклонение на корень квадратный от N. Стандартная погрешность = σ/кв.корень(n).

    • Если в нашем примере 5 школьников, а всего в классе 50 школьников, и среднее отклонение, посчитанное для 50 школьников равно 17 (σ = 21), средняя погрешность = 17/кв. корень(5) = 7.6.

Советы

  • Расчеты среднего значения, среднего отклонения и погрешности годятся для анализа равномерно распределенных данных. Среднее отклонение математического среднего значения распределения относится приблизительно к 68% данных, 2 средних отклонения – к 95% данных, а 3 – к 99.7% данных. Стандартная погрешность же уменьшается при увеличении количества значений.
  • Простой в использовании калькулятор для расчета среднего отклонения.

Реклама

Предупреждения

  • Считайте дважды. Все делают ошибки.

Реклама

Об этой статье

Эту страницу просматривали 66 357 раз.

Была ли эта статья полезной?

Результат любого измерения не определён однозначно и имеет случайную составляющую.
Поэтому адекватным языком для описания погрешностей является язык вероятностей.
Тот факт, что значение некоторой величины «случайно», не означает, что
она может принимать совершенно произвольные значения. Ясно, что частоты, с которыми
возникает те или иные значения, различны. Вероятностные законы, которым
подчиняются случайные величины, называют распределениями.

2.1 Случайная величина

Случайной будем называть величину, значение которой не может быть достоверно определено экспериментатором. Чаще всего подразумевается, что случайная величина будет изменяться при многократном повторении одного и того же эксперимента. При интерпретации результатов измерений в физических экспериментах, обычно случайными также считаются величины, значение которых является фиксированным, но не известно экспериментатору. Например смещение нуля шкалы прибора. Для формализации работы со случайными величинами используют понятие вероятности. Численное значение вероятности того, что какая-то величина примет то или иное значение определяется либо как относительная частота наблюдения того или иного значения при повторении опыта большое количество раз, либо как оценка на основе данных других экспериментов.

Замечание. 
Хотя понятия вероятности и случайной величины являются основополагающими, в литературе нет единства в их определении. Обсуждение формальных тонкостей или построение строгой теории лежит за пределами данного пособия. Поэтому на начальном этапе лучше использовать «интуитивное» понимание этих сущностей. Заинтересованным читателям рекомендуем обратиться к специальной литературе: [5].

Рассмотрим случайную физическую величину x, которая при измерениях может
принимать непрерывный набор значений. Пусть
P[x0,x0+δ⁢x] — вероятность того, что результат окажется вблизи
некоторой точки x0 в пределах интервала δ⁢x: x∈[x0,x0+δ⁢x].
Устремим интервал
δ⁢x к нулю. Нетрудно понять, что вероятность попасть в этот интервал
также будет стремиться к нулю. Однако отношение
w⁢(x0)=P[x0,x0+δ⁢x]δ⁢x будет оставаться конечным.
Функцию w⁢(x) называют плотностью распределения вероятности или кратко
распределением непрерывной случайной величины x.

Замечание. В математической литературе распределением часто называют не функцию
w⁢(x), а её интеграл W⁢(x)=∫w⁢(x)⁢𝑑x. Такую функцию в физике принято
называть интегральным или кумулятивным распределением. В англоязычной литературе
для этих функций принято использовать сокращения:
pdf (probability distribution function) и
cdf (cumulative distribution function)
соответственно.

Гистограммы.

Проиллюстрируем наглядно понятие плотности распределения. Результат
большого числа измерений случайной величины удобно представить с помощью
специального типа графика — гистограммы.
Для этого область значений x, размещённую на оси абсцисс, разобьём на
равные малые интервалы — «корзины» или «бины» (англ. bins)
некоторого размера h. По оси ординат будем откладывать долю измерений w,
результаты которых попадают в соответствующую корзину. А именно,
пусть k — номер корзины; nk — число измерений, попавших
в диапазон x∈[k⁢h,(k+1)⁢h]. Тогда на графике изобразим «столбик»
шириной h и высотой wk=nk/n.
В результате получим картину, подобную изображённой на рис. 2.1.

Рис. 2.1: Пример гистограммы для нормального распределения (x¯=10,
σ=1,0, h=0,1, n=104)

Высоты построенных столбиков будут приближённо соответствовать значению
плотности распределения w⁢(x) вблизи соответствующей точки x.
Если устремить число измерений к бесконечности (n→∞), а ширину корзин
к нулю (h→0), то огибающая гистограммы будет стремиться к некоторой
непрерывной функции w⁢(x).

Самые высокие столбики гистограммы будут группироваться вблизи максимума
функции w⁢(x) — это наиболее вероятное значение случайной величины.
Если отклонения в положительную и отрицательную стороны равновероятны,
то гистограмма будет симметрична — в таком случае среднее значение ⟨x⟩
также будет лежать вблизи этого максимума. Ширина гистограммы будет характеризовать разброс
значений случайной величины — по порядку величины
она, как правило, близка к среднеквадратичному отклонению sx.

Свойства распределений.

Из определения функции w⁢(x) следует, что вероятность получить в результате
эксперимента величину x в диапазоне от a до b
можно найти, вычислив интеграл:

Px∈[a,b]=∫abw⁢(x)⁢𝑑x. (2.1)

Согласно определению вероятности, сумма вероятностей для всех возможных случаев
всегда равна единице. Поэтому интеграл распределения w⁢(x) по всей области
значений x (то есть суммарная площадь под графиком w⁢(x)) равен единице:

Это соотношение называют условием нормировки.

Среднее и дисперсия.

Вычислим среднее по построенной гистограмме. Если размер корзин
h достаточно мал, все измерения в пределах одной корзины можно считать примерно
одинаковыми. Тогда среднее арифметическое всех результатов можно вычислить как

Переходя к пределу, получим следующее определение среднего значения
случайной величины:

где интегрирование ведётся по всей области значений x.
В теории вероятностей x¯ также называют математическим ожиданием
распределения.
Величину

σ2=(x-x¯)2¯=∫(x-x¯)2⁢w⁢𝑑x (2.3)

называют дисперсией распределения. Значение σ есть
срекднеквадратичное отклонение в пределе n→∞. Оно имеет ту
же размерность, что и сама величина x и характеризует разброс распределения.
Именно эту величину, как правило, приводят как характеристику погрешности
измерения x.

Доверительный интервал.

Обозначим как P|Δ⁢x|<δ вероятность
того, что отклонение от среднего Δ⁢x=x-x¯ составит величину,
не превосходящую по модулю значение δ:

P|Δ⁢x|<δ=∫x¯-δx¯+δw⁢(x)⁢𝑑x. (2.4)

Эту величину называют доверительной вероятностью для
доверительного интервала |x-x¯|≤δ.

2.2 Нормальное распределение

Одним из наиболее примечательных результатов теории вероятностей является
так называемая центральная предельная теорема. Она утверждает,
что сумма большого количества независимых случайных слагаемых, каждое
из которых вносит в эту сумму относительно малый вклад, подчиняется
универсальному закону, не зависимо от того, каким вероятностным законам
подчиняются её составляющие, — так называемому нормальному
распределению
(или распределению Гаусса).

Доказательство теоремы довольно громоздко и мы его не приводим (его можно найти
в любом учебнике по теории вероятностей). Остановимся
кратко на том, что такое нормальное распределение и его основных свойствах.

Плотность нормального распределения выражается следующей формулой:

w𝒩⁢(x)=12⁢π⁢σ⁢e-(x-x¯)22⁢σ2. (2.5)

Здесь x¯ и σ
— параметры нормального распределения: x¯ равно
среднему значению x, a σ —
среднеквадратичному отклонению, вычисленным в пределе n→∞.

Как видно из рис. 2.1, распределение представляет собой
симметричный
«колокол», положение вершины которого
соответствует x¯ (ввиду симметрии оно же
совпадает с наиболее вероятным значением — максимумом
функции w𝒩⁢(x)).

При значительном отклонении x от среднего величина
w𝒩⁢(x)
очень быстро убывает. Это означает, что вероятность встретить отклонения,
существенно большие, чем σ, оказывается пренебрежимо
мала
. Ширина «колокола» по порядку величины
равна σ — она характеризует «разброс»
экспериментальных данных относительно среднего значения.

Замечание. Точки x=x¯±σ являются точками
перегиба графика w⁢(x) (в них вторая производная по x
обращается в нуль, w′′=0), а их положение по высоте составляет
w⁢(x¯±σ)/w⁢(x¯)=e-1/2≈0,61
от высоты вершины.

Универсальный характер центральной предельной теоремы позволяет широко
применять на практике нормальное (гауссово) распределение для обработки
результатов измерений, поскольку часто случайные погрешности складываются из
множества случайных независимых факторов. Заметим, что на практике
для приближённой оценки параметров нормального распределения
случайной величины используются выборочные значения среднего
и дисперсии: x¯≈⟨x⟩, sx≈σx.

x-x0σ2=2w⁢(x)σ1=1

Рис. 2.2: Плотность нормального распределения

Доверительные вероятности.

Вычислим некоторые доверительные вероятности (2.4) для нормально
распределённых случайных величин.

Замечание. Значение интеграла вида ∫e-x2/2⁢𝑑x
(его называют интегралом ошибок) в элементарных функциях не выражается,
но легко находится численно.

Вероятность того, что результат отдельного измерения x окажется
в пределах x¯±σ оказывается равна

P|Δ⁢x|<σ=∫x¯-σx¯+σw𝒩⁢𝑑x≈0,68.

Вероятность отклонения в пределах x¯±2⁢σ:

а в пределах x¯±3⁢σ:

Иными словами, при большом числе измерений нормально распределённой
величины можно ожидать, что лишь треть измерений выпадут за пределы интервала
[x¯-σ,x¯+σ]. При этом около 5%
измерений выпадут за пределы [x¯-2⁢σ;x¯+2⁢σ],
и лишь 0,27% окажутся за пределами
[x¯-3⁢σ;x¯+3⁢σ].

Пример. В сообщениях об открытии бозона Хиггса на Большом адронном коллайдере
говорилось о том, что исследователи ждали подтверждение результатов
с точностью «5 сигма». Используя нормальное распределение (2.5)
нетрудно посчитать, что они использовали доверительную вероятность
P≈1-5,7⋅10-7=0,99999943. Такую точность можно назвать фантастической.

Полученные значения доверительных вероятностей используются при
стандартной записи результатов измерений. В физических измерениях
(в частности, в учебной лаборатории), как правило, используется P=0,68,
то есть, запись

означает, что измеренное значение лежит в диапазоне (доверительном
интервале) x∈[x¯-δ⁢x;x¯+δ⁢x] с
вероятностью 68%. Таким образом погрешность ±δ⁢x считается
равной одному среднеквадратичному отклонению: δ⁢x=σ.
В технических измерениях чаще используется P=0,95, то есть под
абсолютной погрешностью имеется в виду удвоенное среднеквадратичное
отклонение, δ⁢x=2⁢σ. Во избежание разночтений доверительную
вероятность следует указывать отдельно.

Замечание. Хотя нормальный закон распределения встречается на практике довольно
часто, стоит помнить, что он реализуется далеко не всегда.
Полученные выше соотношения для вероятностей попадания значений в
доверительные интервалы можно использовать в качестве простейшего
признака нормальности распределения: в частности, если количество попадающих
в интервал ±σ результатов существенно отличается от 2/3 — это повод
для более детального исследования закона распределения ошибок.

Сравнение результатов измерений.

Теперь мы можем дать количественный критерий для сравнения двух измеренных
величин или двух результатов измерения одной и той же величины.

Пусть x1 и x2 (x1≠x2) измерены с
погрешностями σ1 и σ2 соответственно.
Ясно, что если различие результатов |x2-x1| невелико,
его можно объяснить просто случайными отклонениями.
Если же теория предсказывает, что вероятность обнаружить такое отклонение
слишком мала, различие результатов следует признать значимым.
Предварительно необходимо договориться о соответствующем граничном значении
вероятности. Универсального значения здесь быть не может,
поэтому приходится полагаться на субъективный выбор исследователя. Часто
в качестве «разумной» границы выбирают вероятность 5%,
что, как видно из изложенного выше, для нормального распределения
соответствует отклонению более, чем на 2⁢σ.

Допустим, одна из величин известна с существенно большей точностью:
σ2≪σ1 (например, x1 — результат, полученный
студентом в лаборатории, x2 — справочное значение).
Поскольку σ2 мало, x2 можно принять за «истинное»:
x2≈x¯. Предполагая, что погрешность измерения
x1 подчиняется нормальному закону с и дисперсией σ12,
можно утверждать, что
различие считают будет значимы, если

Пусть погрешности измерений сравнимы по порядку величины:
σ1∼σ2. В теории вероятностей показывается, что
линейная комбинация нормально распределённых величин также имеет нормальное
распределение с дисперсией σ2=σ12+σ22
(см. также правила сложения погрешностей (2.7)). Тогда
для проверки гипотезы о том, что x1 и x2 являются измерениями
одной и той же величины, нужно вычислить, является ли значимым отклонение
|x1-x2| от нуля при σ=σ12+σ22.


Пример. Два студента получили следующие значения для теплоты испарения
некоторой жидкости: x1=40,3±0,2 кДж/моль и
x2=41,0±0,3 кДж/моль, где погрешность соответствует
одному стандартному отклонению. Можно ли утверждать, что они исследовали
одну и ту же жидкость?

Имеем наблюдаемую разность |x1-x2|=0,7 кДж/моль,
среднеквадратичное отклонение для разности
σ=0,22+0,32=0,36 кДж/моль.
Их отношение |x2-x1|σ≈2. Из
свойств нормального распределения находим вероятность того, что измерялась
одна и та же величина, а различия в ответах возникли из-за случайных
ошибок: P≈5%. Ответ на вопрос, «достаточно»
ли мала или велика эта вероятность, остаётся на усмотрение исследователя.

Замечание. Изложенные здесь соображения применимы, только если x¯ и
его стандартное отклонение σ получены на основании достаточно
большой выборки n≫1 (или заданы точно). При небольшом числе измерений
(n≲10) выборочные средние ⟨x⟩ и среднеквадратичное отклонение
sx сами имеют довольно большую ошибку, а
их распределение будет описываться не нормальным законом, а так
называемым t-распределением Стъюдента. В частности, в зависимости от
значения n интервал ⟨x⟩±sx будет соответствовать несколько
меньшей доверительной вероятности, чем P=0,68. Особенно резко различия
проявляются при высоких уровнях доверительных вероятностей P→1.

2.3 Независимые величины

Величины x и y называют независимыми если результат измерения одной
из них никак не влияет на результат измерения другой. Для таких величин вероятность того, что x окажется в некоторой области X, и одновременно y — в области Y,
равна произведению соответствующих вероятностей:

Обозначим отклонения величин от их средних как Δ⁢x=x-x¯ и
Δ⁢y=y-y¯.
Средние значения этих отклонений равны, очевидно, нулю: Δ⁢x¯=x¯-x¯=0,
Δ⁢y¯=0. Из независимости величин x и y следует,
что среднее значение от произведения Δ⁢x⋅Δ⁢y¯
равно произведению средних Δ⁢x¯⋅Δ⁢y¯
и, следовательно, равно нулю:

Δ⁢x⋅Δ⁢y¯=Δ⁢x¯⋅Δ⁢y¯=0. (2.6)

Пусть измеряемая величина z=x+y складывается из двух независимых
случайных слагаемых x и y, для которых известны средние
x¯ и y¯, и их среднеквадратичные погрешности
σx и σy. Непосредственно из определения (1.1)
следует, что среднее суммы равно сумме средних:

Найдём дисперсию σz2. В силу независимости имеем

Δ⁢z2¯=Δ⁢x2¯+Δ⁢y2¯+2⁢Δ⁢x⋅Δ⁢y¯≈Δ⁢x2¯+Δ⁢y2¯,

то есть:

Таким образом, при сложении независимых величин их погрешности
складываются среднеквадратичным образом.

Подчеркнём, что для справедливости соотношения (2.7)
величины x и y не обязаны быть нормально распределёнными —
достаточно существования конечных значений их дисперсий. Однако можно
показать, что если x и y распределены нормально, нормальным
будет и распределение их суммы
.

Замечание. Требование независимости
слагаемых является принципиальным. Например, положим y=x. Тогда
z=2⁢x. Здесь y и x, очевидно, зависят друг от друга. Используя
(2.7), находим σ2⁢x=2⁢σx,
что, конечно, неверно — непосредственно из определения
следует, что σ2⁢x=2⁢σx.

Отдельно стоит обсудить математическую структуру формулы (2.7).
Если одна из погрешностей много больше другой, например,
σx≫σy,
то меньшей погрешностью можно пренебречь, σx+y≈σx.
С другой стороны, если два источника погрешностей имеют один порядок
σx∼σy, то и σx+y∼σx∼σy.

Эти обстоятельства важны при планирования эксперимента: как правило,
величина, измеренная наименее точно, вносит наибольший вклад в погрешность
конечного результата. При этом, пока не устранены наиболее существенные
ошибки, бессмысленно гнаться за повышением точности измерения остальных
величин.

Пример. Пусть σy=σx/3,
тогда σz=σx⁢1+19≈1,05⁢σx,
то есть при различии двух погрешностей более, чем в 3 раза, поправка
к погрешности составляет менее 5%, и уже нет особого смысла в учёте
меньшей погрешности: σz≈σx. Это утверждение
касается сложения любых независимых источников погрешностей в эксперименте.

2.4 Погрешность среднего

Выборочное среднее арифметическое значение ⟨x⟩, найденное
по результатам n измерений, само является случайной величиной.
Действительно, если поставить серию одинаковых опытов по n измерений,
то в каждом опыте получится своё среднее значение, отличающееся от
предельного среднего x¯.

Вычислим среднеквадратичную погрешность среднего арифметического
σ⟨x⟩.
Рассмотрим вспомогательную сумму n слагаемых

Если {xi} есть набор независимых измерений
одной и той же физической величины, то мы можем, применяя результат
(2.7) предыдущего параграфа, записать

σZ=σx12+σx22+…+σxn2=n⁢σx,

поскольку под корнем находится n одинаковых слагаемых. Отсюда с
учётом ⟨x⟩=Z/n получаем

Таким образом, погрешность среднего значения x по результатам
n независимых измерений оказывается в n раз меньше погрешности
отдельного измерения
. Это один из важнейших результатов, позволяющий
уменьшать случайные погрешности эксперимента за счёт многократного
повторения измерений.

Подчеркнём отличия между σx и σ⟨x⟩:

величина σx — погрешность отдельного
измерения
— является характеристикой разброса значений
в совокупности измерений {xi}, i=1..n. При
нормальном законе распределения примерно 68% измерений попадают в
интервал ⟨x⟩±σx;

величина σ⟨x⟩ — погрешность
среднего
— характеризует точность, с которой определено
среднее значение измеряемой физической величины ⟨x⟩ относительно
предельного («истинного») среднего x¯;
при этом с доверительной вероятностью P=68% искомая величина x¯
лежит в интервале
⟨x⟩-σ⟨x⟩<x¯<⟨x⟩+σ⟨x⟩.

2.5 Результирующая погрешность опыта

Пусть для некоторого результата измерения известна оценка его максимальной
систематической погрешности Δсист и случайная
среднеквадратичная
погрешность σслуч. Какова «полная»
погрешность измерения?

Предположим для простоты, что измеряемая величина в принципе
может быть определена сколь угодно точно, так что можно говорить о
некотором её «истинном» значении xист
(иными словами, погрешность результата связана в основном именно с
процессом измерения). Назовём полной погрешностью измерения
среднеквадратичное значения отклонения от результата измерения от
«истинного»:

Отклонение x-xист можно представить как сумму случайного
отклонения от среднего δ⁢xслуч=x-x¯
и постоянной (но, вообще говоря, неизвестной) систематической составляющей
δ⁢xсист=x¯-xист=const:

Причём случайную составляющую можно считать независимой от систематической.
В таком случае из (2.7) находим:

σполн2=⟨δ⁢xсист2⟩+⟨δ⁢xслуч2⟩≤Δсист2+σслуч2. (2.9)

Таким образом, для получения максимального значения полной
погрешности некоторого измерения нужно квадратично сложить максимальную
систематическую и случайную погрешности.

Если измерения проводятся многократно, то согласно (2.8)
случайная составляющая погрешности может быть уменьшена, а систематическая
составляющая при этом остаётся неизменной:

Отсюда следует важное практическое правило
(см. также обсуждение в п. 2.3): если случайная погрешность измерений
в 2–3 раза меньше предполагаемой систематической, то
нет смысла проводить многократные измерения в попытке уменьшить погрешность
всего эксперимента. В такой ситуации измерения достаточно повторить
2–3 раза — чтобы убедиться в повторяемости результата, исключить промахи
и проверить, что случайная ошибка действительно мала.
В противном случае повторение измерений может иметь смысл до
тех пор, пока погрешность среднего
σ⟨x⟩=σxn
не станет меньше систематической.


Замечание. Поскольку конкретная
величина систематической погрешности, как правило, не известна, её
можно в некотором смысле рассматривать наравне со случайной —
предположить, что её величина была определена по некоторому случайному
закону перед началом измерений (например, при изготовлении линейки
на заводе произошло некоторое случайное искажение шкалы). При такой
трактовке формулу (2.9) можно рассматривать просто
как частный случай формулы сложения погрешностей независимых величин
(2.7).

Подчеркнем, что вероятностный закон, которому подчиняется
систематическая ошибка, зачастую неизвестен. Поэтому неизвестно и
распределение итогового результата. Из этого, в частности, следует,
что мы не можем приписать интервалу x±Δсист какую-либо
определённую доверительную вероятность — она равна 0,68
только если систематическая ошибка имеет нормальное распределение.
Можно, конечно, предположить,
— и так часто делают — что, к примеру, ошибки
при изготовлении линеек на заводе имеют гауссов характер. Также часто
предполагают, что систематическая ошибка имеет равномерное
распределение (то есть «истинное» значение может с равной вероятностью
принять любое значение в пределах интервала ±Δсист).
Строго говоря, для этих предположений нет достаточных оснований.


Пример. В результате измерения диаметра проволоки микрометрическим винтом,
имеющим цену деления h=0,01 мм, получен следующий набор из n=8 значений:

Вычисляем среднее значение: ⟨d⟩≈386,3 мкм.
Среднеквадратичное отклонение:
σd≈9,2 мкм. Случайная погрешность среднего согласно
(2.8):
σ⟨d⟩=σd8≈3,2
мкм. Все результаты лежат в пределах ±2⁢σd, поэтому нет
причин сомневаться в нормальности распределения. Максимальную погрешность
микрометра оценим как половину цены деления, Δ=h2=5 мкм.
Результирующая полная погрешность
σ≤Δ2+σd28≈6,0 мкм.
Видно, что σслуч≈Δсист и проводить дополнительные измерения
особого смысла нет. Окончательно результат измерений может быть представлен
в виде (см. также правила округления
результатов измерений в п. 4.3.2)



d=386±6⁢мкм,εd=1,5%.


Заметим, что поскольку случайная погрешность и погрешность
прибора здесь имеют один порядок величины, наблюдаемый случайный разброс
данных может быть связан как с неоднородностью сечения проволоки,
так и с дефектами микрометра (например, с неровностями зажимов, люфтом
винта, сухим трением, деформацией проволоки под действием микрометра
и т. п.). Для ответа на вопрос, что именно вызвало разброс, требуются
дополнительные исследования, желательно с использованием более точных
приборов.


Пример. Измерение скорости
полёта пули было осуществлено с погрешностью δ⁢v=±1 м/c.
Результаты измерений для n=6 выстрелов представлены в таблице:

Усреднённый результат ⟨v⟩=162,0⁢м/с,
среднеквадратичное отклонение σv=13,8⁢м/c, случайная
ошибка для средней скорости
σv¯=σv/6=5,6⁢м/с.
Поскольку разброс экспериментальных данных существенно превышает погрешность
каждого измерения, σv≫δ⁢v, он почти наверняка связан
с реальным различием скоростей пули в разных выстрелах, а не с ошибками
измерений. В качестве результата эксперимента представляют интерес
как среднее значение скоростей ⟨v⟩=162±6⁢м/с
(ε≈4%), так и значение σv≈14⁢м/с,
характеризующее разброс значений скоростей от выстрела к выстрелу.
Малая инструментальная погрешность в принципе позволяет более точно
измерить среднее и дисперсию, и исследовать закон распределения выстрелов
по скоростям более детально — для этого требуется набрать
бо́льшую статистику по выстрелам.


Пример. Измерение скорости
полёта пули было осуществлено с погрешностью δ⁢v=10 м/c. Результаты
измерений для n=6 выстрелов представлены в таблице:

Усреднённый результат ⟨v⟩=163,3⁢м/с,
σv=12,1⁢м/c, σ⟨v⟩=5⁢м/с,
σполн≈11,2⁢м/с. Инструментальная
погрешность каждого измерения превышает разброс данных, поэтому в
этом опыте затруднительно сделать вывод о различии скоростей от выстрела
к выстрелу. Результат измерений скорости пули:
⟨v⟩=163±11⁢м/с,
ε≈7%. Проводить дополнительные выстрелы при такой
большой инструментальной погрешности особого смысла нет —
лучше поработать над точностью приборов и методикой измерений.

2.6 Обработка косвенных измерений

Косвенными называют измерения, полученные в результате расчётов,
использующих результаты прямых (то есть «непосредственных»)
измерений физических величин. Сформулируем основные правила пересчёта
погрешностей при косвенных измерениях.

2.6.1 Случай одной переменной

Пусть в эксперименте измеряется величина x, а её «наилучшее»
(в некотором смысле) значение равно x⋆ и оно известно с
погрешностью σx. После чего с помощью известной функции
вычисляется величина y=f⁢(x).

В качестве «наилучшего» приближения для y используем значение функции
при «наилучшем» x:

Найдём величину погрешности σy. Обозначая отклонение измеряемой
величины как Δ⁢x=x-x⋆, и пользуясь определением производной,
при условии, что функция y⁢(x) — гладкая
вблизи x≈x⋆, запишем

где f′≡d⁢yd⁢x — производная фукнции f⁢(x), взятая в точке
x⋆. Возведём полученное в квадрат, проведём усреднение
(σy2=⟨Δ⁢y2⟩,
σx2=⟨Δ⁢x2⟩), и затем снова извлечём
корень. В результате получим


Пример. Для степенной функции
y=A⁢xn имеем σy=n⁢A⁢xn-1⁢σx, откуда



σyy=n⁢σxx,или  εy=n⁢εx,


то есть относительная погрешность степенной функции возрастает пропорционально
показателю степени n.

Пример. Для y=1/x имеем ε1/x=εx
— при обращении величины сохраняется её относительная
погрешность.

Упражнение. Найдите погрешность логарифма y=ln⁡x, если известны x
и σx.

Упражнение. Найдите погрешность показательной функции y=ax,
если известны x и σx. Коэффициент a задан точно.

2.6.2 Случай многих переменных

Пусть величина u вычисляется по измеренным значениям нескольких
различных независимых физических величин x, y, …
на основе известного закона u=f⁢(x,y,…). В качестве
наилучшего значения можно по-прежнему взять значение функции f
при наилучших значениях измеряемых параметров:

Для нахождения погрешности σu воспользуемся свойством,
известным из математического анализа, — малые приращения гладких
функции многих переменных складываются линейно, то есть справедлив
принцип суперпозиции малых приращений:

где символом fx′≡∂⁡f∂⁡x обозначена
частная производная функции f по переменной x —
то есть обычная производная f по x, взятая при условии, что
все остальные аргументы (кроме x) считаются постоянными параметрами.
Тогда пользуясь формулой для нахождения дисперсии суммы независимых
величин (2.7), получим соотношение, позволяющее вычислять
погрешности косвенных измерений для произвольной функции
u=f⁢(x,y,…):

σu2=fx′⁣2⁢σx2+fy′⁣2⁢σy2+… (2.11)

Это и есть искомая общая формула пересчёта погрешностей при косвенных
измерениях.

Отметим, что формулы (2.10) и (2.11) применимы
только если относительные отклонения всех величин малы
(εx,εy,…≪1),
а измерения проводятся вдали от особых точек функции f (производные
fx′, fy′ … не должны обращаться в бесконечность).
Также подчеркнём, что все полученные здесь формулы справедливы только
для независимых переменных x, y, …

Остановимся на некоторых важных частных случаях формулы
(2.11).


Пример. Для суммы (или разности) u=∑i=1nai⁢xi имеем



σu2=∑i=1nai2⁢σxi2.

(2.12)



Пример. Найдём погрешность степенной функции:
u=xα⋅yβ⋅…. Тогда нетрудно получить,
что



σu2u2=α2⁢σx2x2+β2⁢σy2y2+…


или через относительные погрешности



εu2=α2⁢εx2+β2⁢εy2+…

(2.13)



Пример. Вычислим погрешность произведения и частного: u=x⁢y или u=x/y.
Тогда в обоих случаях имеем



εu2=εx2+εy2,

(2.14)


то есть при умножении или делении относительные погрешности складываются
квадратично.


Пример. Рассмотрим несколько более сложный случай: нахождение угла по его тангенсу



u=arctgyx.


В таком случае, пользуясь тем, что (arctgz)′=11+z2,
где z=y/x, и используя производную сложной функции, находим
ux′=uz′⁢zx′=-yx2+y2,
uy′=uz′⁢zy′=xx2+y2, и наконец



σu2=y2⁢σx2+x2⁢σy2(x2+y2)2.


Упражнение. Найти погрешность вычисления гипотенузы z=x2+y2
прямоугольного треугольника по измеренным катетам x и y.

По итогам данного раздела можно дать следующие практические рекомендации.

  • Как правило, нет смысла увеличивать точность измерения какой-то одной
    величины, если другие величины, используемые в расчётах, остаются
    измеренными относительно грубо — всё равно итоговая погрешность
    скорее всего будет определяться самым неточным измерением. Поэтому
    все измерения имеет смысл проводить примерно с одной и той же
    относительной погрешностью
    .

  • При этом, как следует из (2.13), особое внимание
    следует уделять измерению величин, возводимых при расчётах в степени
    с большими показателями. А при сложных функциональных зависимостях
    имеет смысл детально проанализировать структуру формулы
    (2.11):
    если вклад от некоторой величины в общую погрешность мал, нет смысла
    гнаться за высокой точностью её измерения, и наоборот, точность некоторых
    измерений может оказаться критически важной.

  • Следует избегать измерения малых величин как разности двух близких
    значений (например, толщины стенки цилиндра как разности внутреннего
    и внешнего радиусов): если u=x-y, то абсолютная погрешность
    σu=σx2+σy2
    меняется мало, однако относительная погрешность
    εu=σux-y
    может оказаться неприемлемо большой, если x≈y.

Содержание

        • 0.0.0.1 Таблица 2
        • 0.0.0.2 Таблица 3
        • 0.0.0.3 Таблица 4
  • 1 Погрешность измерений
  • 2 Случайные и систематичес­кие погрешности
      • 2.0.1 Расчет погрешностей непосредственных измерений.
      • 2.0.2 Измерения
  • 3 Измерения
  • 4 Импортировать данные Ошибка импорта

Для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. В результате проведенных измерений мы получили значений величины :

Этот ряд значений величины x получил название выборки. Имея такую выборку, мы можем дать оценку результата измерений. Величину, которая будет являться такой оценкой, мы обозначим . Но так как это значение оценки результатов измерений не будет представлять собой истинного значения измеряемой величины, необходимо оценить его ошибку. Предположим, что мы сумеем определить оценку ошибки Δx . В таком случае мы можем записать результат измерений в виде

Так как оценочные значения результата измерений и ошибки Δx не являются точными, запись (3) результата измерений должна сопровождаться указанием его надежности P. Под надежностью или доверительной вероятностью понимают вероятность того, что истинное значение измеряемой величины заключено в интервале, указанном записью (3). Сам этот интервал называется доверительным интервалом.

Например, измеряя длину некоторого отрезка, окончательный результат мы записали в виде

Это означает, что из 100 шансов – 95 за то, что истинное значение длины отрезка заключается в интервале от 8.32 до 8.36 мм .

Таким образом, задача заключается в том, чтобы, имея выборку (2), найти оценку результата измерений , его ошибку Δx и надежность P.

Эта задача может быть решена с помощью теории вероятностей и математической статистики.

В большинстве случаев случайные ошибки подчиняются нормальному закону распределения, установленного Гауссом. Нормальный закон распределения ошибок выражается формулой

где Δx – отклонение от величины истинного значения;

σ – истинная среднеквадратичная ошибка;

σ 2 – дисперсия, величина которой характеризует разброс случайных величин.

Как видно из (4) функция имеет максимальное значение при x = 0 , кроме того, она является четной.

На рис.16 показан график этой функции. Смысл функции (4) заключается в том, что площадь фигуры, заключенной между кривой, осью Δx и двумя ординатами из точек Δx1 и Δx2 (заштрихованная площадь на рис.16) численно равна вероятности, с которой любой отсчет попадет в интервал (Δx1,Δx2) .

Поскольку кривая распределена симметрично относительно оси ординат, можно утверждать, что равные по величине, но противоположные по знаку ошибки равновероятны. А это дает возможность в качестве оценки результатов измерений взять среднее значение всех элементов выборки (2)

где – n число измерений.

Итак, если в одних и тех же условиях проделано n измерений, то наиболее вероятным значением измеряемой величины будет ее среднее значение (арифметическое). Величина стремится к истинному значению μ измеряемой величины при n → ∞.

Средней квадратичной ошибкой отдельного результата измерения называется величина

Она характеризует ошибку каждого отдельного измерения. При n → ∞ S стремится к постоянному пределу σ

С увеличением σ увеличивается разброс отсчетов, т.е. становится ниже точность измерений.

Среднеквадратичной ошибкой среднего арифметического называется величина

Это фундаментальный закон возрастания точности при росте числа измерений.

Ошибка характеризует точность, с которой получено среднее значение измеренной величины . Результат записывается в виде:

Эта методика расчета ошибок дает хорошие результаты (с надежностью 0.68) только в том случае, когда одна и та же величина измерялась не менее 30 – 50 раз.

В 1908 году Стьюдент показал, что статистических подход справедлив и при малом числе измерений. Распределение Стьюдента при числе измерений n → ∞ переходит в распределение Гаусса, а при малом числе отличается от него.

Для расчета абсолютной ошибки при малом количестве измерений вводится специальный коэффициент, зависящий от надежности P и числа измерений n, называемый коэффициентом
Стьюдента t.

Опуская теоретические обоснования его введения, заметим, что

где Δx – абсолютная ошибка для данной доверительной вероятности;
– среднеквадратичная ошибка среднего арифметического.

Для этого удобнее воспользоваться таблицей 3, в которой интервалы заданы в долях величины σ, являющейся мерой точности данного опыта по отношению к случайным ошибкам.

Таблица 2

Коэффициенты Стьюдента

n Значения Р
0.6 0.8 0.95 0.99 0.999
2 1.376 3.078 12.706 63.657 636.61
3 1.061 1.886 4.303 9.925 31.598
4 0.978 1.638 3.182 5.841 12.941
5 0.941 1.533 2.776 4.604 8.610
6 0.920 1.476 2.571 4.032 6.859
7 0.906 1.440 2.447 3.707 5.959
8 0.896 1.415 2.365 3.499 5.405
9 0.889 1.397 2.306 3.355 5.041
10 0.883 1.383 2.262 3.250 4.781
11 0.879 1.372 2.228 3.169 4.587
12 0.876 1.363 2.201 3.106 4.437
13 0.873 1.356 2.179 3.055 4.318
14 0.870 1.350 2.160 3.012 4.221
15 0.868 1.345 2.145 2.977 4.140
16 0.866 1.341 2.131 2.947 4.073
17 0.865 1.337 2.120 2.921 4.015
18 0.863 1.333 2.110 2.898 3.965
19 0.862 1.330 2.101 2.878 3.922
20 0.861 1.328 2.093 2.861 3.883
21 0.860 1.325 2.086 2.845 3.850
22 0.859 1.323 2.080 2.831 3.819
23 0.858 1.321 2.074 2.819 3.792
24 0.858 1.319 2.069 2.807 3.767
25 0.857 1.318 2.064 2.797 3.745
26 0.856 1.316 2.060 2.787 3.725
27 0.856 1.315 2.056 2.779 3.707
28 0.855 1.314 2.052 2.771 3.690
29 0.855 1.313 2.048 2.763 3.674
30 0.854 1.311 2.045 2.756 3.659
31 0.854 1.310 2.042 2.750 3.646
40 0.851 1.303 2.021 2.704 3.551
60 0.848 1.296 2.000 2.660 3.460
120 0.845 1.289 1.980 2.617 3.373
0.842 1.282 1.960 2.576 3.291
Таблица 3

Необходимое число измерений для получения ошибки Δ с надежностью Р

&#916 = Δx/σ Значения Р
0.5 0.7 0.9 0.95 0.99 0.999
1.0 2 3 5 7 11 17
0.5 3 6 13 18 31 50
0.4 4 8 19 27 46 74
0.3 6 13 32 46 78 127
0.2 13 29 70 99 171 277
0.1 47 169 273 387 668 1089

При обработке результатов прямых измерений предлагается следующий порядок операций:

  1. Результат каждого измерения запишите в таблицу.
  2. Вычислите среднее значение из n измерений

Рассмотрим на числовом примере применение приведенных выше формул.

Пример. Измерялся микрометром диаметр d стержня (систематическая ошибка измерения равна 0.005 мм ). Результаты измерений заносим во вторую графу таблицы, находим и в третью графу этой таблицы записываем разности , а в четвертую – их квадраты (таблица 4).

Таблица 4
n d, мм
1 4.02 + 0.01 0.0001
2 3.98 — 0.03 0.0009
3 3.97 — 0.04 0.0016
4 4.01 + 0 .00 0.0000
5 4.05 + 0.04 0.0016
6 4.03 + 0.02 0.0004
Σ 24.06 – 0.0046

Задавшись надежностью P = 0.95, по таблице коэффициентов Стьюдента для шести измерений найдем t = 2.57. Абсолютная ошибка найдется по формуле (10).

Сравним случайную и систематическую ошибки:

следовательно, δ = 0.005 мм можно отбросить.

Среднее арифметическое из случайных погрешностей не может объективно характеризовать точность измерений, так как на его величину оказывают влияние знаки случайных ошибок (происходит компенсация) и кроме того она не отражает влияние отдельных больших по абсолютной величине ошибок. Поэтому для оценки точности ряда равноточных измерений l1; l2; … ln одной и той же величины Х, сопровождающейся случайными погрешностями ∆1, ∆2, , , , , , ∆n, пользуется средней квадратичной ошибкой m, равной:

Пример: дан ряд случайных ошибок измерений некоторой величины: +4, — 2, 0, -4, +3.

Предельной погрешностью называют такое наибольшее по абсолютной величине значение случайной ошибки, которой она может достигнуть при данных условиях измерений. Установлено, что случайная ошибка может достигать удвоенной средней квадратической ошибки в пяти случаях из ста, утроенной – в трех из тысячи. Поэтому за предельную ∆пр. принимают утроенную среднюю квадратическую ошибку ∆пр. = 3m.

Относительной ошибкой называют отношение абсолютной ошибки к измеренной величине. Она выражается простой дробью, числитель которой равен единице. Обычно относительной ошибкой характеризуют линейные измерения.

Например, измерена линия длиной l=221,16 с абсолютной ошибкой ∆=0,11 м.

Средняя квадратическая погрешность арифметической средины.

Арифметическая средина является наиболее надежным результатом из многократных измерений. Ее точность характеризуется ошибкой, величина которой должна быть меньше заданной величины, чем количество измерений.

Средняя квадратическая погрешность арифметической средины определяется по формуле

Оценка точности по вероятнейшей погрешности.

В большинстве случаев истинное значение измеряемой величины не известно, поэтому для вычисления средней квадратической ошибки используют отклонения результатов измерений от их среднего арифметического. Эти отклонения называют вероятнейшими погрешностями.

Для вычисления средней квадратической погрешности по вероятнейшим вычисляют разности между каждым результатом измерения и арифметической срединой Х0, эти разности возводят в квадрат и получают среднюю квадратическую погрешность по формуле Бесселя

, где n — число измерений

[l] – nХ0 = [V], Суммарное уравнение,

Откуда [l] /n -Х0 = [V] /n т.к. [l] /n = Х0, то [V] /n = 0;

Но n ≠ 0, следовательно [V] = 0.

Среднюю квадратическую погрешность арифметической средины по вероятнейшим ошибкам определяют по формуле

,

Среднюю квадратичную ошибку результата по разностям двойных измерений вычисляют по формуле:

, где n – число двойных измерений.

Неравноточные измерения.

Измерения могут быть равноточные и неравноточные. Неравноточными называются измерения одной и той же величины, которые выполняют разными приборами или исполнителями. По разным технологиям или в различных условиях. Неравноточные измерения имеют разный вес, тогда как равноточные измерения имеют одинаковый вес, т.е.степень доверия к результату.

Весом Р называют отношение целого числа С к квадрату средней квадратической погрешности

Из полученных неравноточных измерений, зная их вес, получают общую арифметическую средину или весовое среднее L0 по формуле

,

где l1, l2 , … l n являются средними арифметическими из рядов равноточных измерений.

Пример 1. Линия измерена два раза и получили первый раз среднее арифметическое l1 = 212,45 с весом Р = 2.

Вторично эту же линию измеряли четыре раза и нашли среднее арифметическое l2 = 212,38 с весом Р = 4, тогда

с весом Р = 6.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Вычисляет погрешность прямых измерений для заданной выборки и доверительного интервала.

Измеряя линей­ные размеры предметов измерительными инстру­ментами : линейкой, штангенциркулем, микрометром, проводя измерения времени секундомером или силы электрического тока или величины напряжения соответствующими электроизмерительными приборами Вы проводите прямые измерения.

Погрешность измерений

Любое измерение проводится с определенной точностью, при этом измеренное значение всегда отличается от истинного, так как инструменты измерения, методики и органы чувств человека несовершенны. Поэтому важную роль играет оценка погрешности измерений, результат измерений с учетом погрешности записывается в виде: X ± ΔX, где ΔX — абсолютная погрешность измерений.

Случайные и систематичес­кие погрешности

Погрешности подразделяются на случайные и систематичес­кие.
Систематические погрешности остаются постоянными или закономерно меняются в процессе измерения. Например неточность прибора, неправильная его регулировка ведет к систематической погрешности. Если причина систематической погрешности известна, то чаще всего такую погрешность можно исключить.
Случайные погрешности вызваны различными случайными факторами, влияющими на точность измерений. Например, при измерении секундомером отрезков времени, случайные погрешности связаны с различным (случайным) временем реакции экспериментатора на события запускающие и останавливающие секундомер. Чтобы уменьшить влияние случайной погрешности необходимо проводить многократное измерение физической величины.
Калькулятор ниже вычисляет случайную погрешность выборки прямых измерений для заданного доверительного интервала. Немного теории можно найти сразу за калькулятором.

Расчет погрешностей непосредственных измерений.

Измерения

arrow_upward arrow_downwardЗначение

mode_edit

Размер страницы:

Измерения

Импортировать данные Ошибка импорта

В большинстве случаев результат измерения подчиняется нормальному закону распределения, поэтому истинное значение измерения будет равно пределу:

В случае ограниченного количества измерений, наиболее близким к истинному будет среднее арифметическое:

Согласно элементарной теории ошибок Гаусса случайную погрешность отдельного измерения характеризует так называемое среднеквадратическое отклонение:
, квадрат этой величины называется дисперсией. При увеличении этой величины возрастает разброс результатов измерений, т. е. увеличивается погрешность.

Для оценки погрешности всей серии измерений, вместо отдельного измерения надо найти среднюю квадратичную погрешность среднего арифметического, характеризующую отклонение от истинного значения искомой величины .
По закону сложения ошибок среднее арифметическое имеет меньшую ошибку, чем результат каждого отдельного измерения. Cред­няя квадратичная погрешность среднего арифметического равна:

Стандартная случайная погрешность Δх равна:
, где — коэффициент Стьюдента для заданной доверительной вероятности и числа степеней свободы k = n-1.
Коэффициент Стьюдента можно получить по таблице или воспользоваться нашим калькулятором для вычисления квантилей распределения Стьюдента: Квантильная функция распределения Стьюдента. Следует иметь в виду, что квантильная функция выдает значения одностороннего критерия Стьюдента. Значение двустороннего квантиля для заданной доверительно вероятности соответствует значению одностороннего квантиля для вероятности:


Измерительные каналы систем автоматизации могут включать в себя несколько средств измерений различных типов, например датчики, измерительные преобразователи, модули аналогового и частотного ввода и вывода [1]. Погрешность такой системы желательно определять экспериментальным путём [2], однако это не всегда возможно или целесообразно. В таких случаях используют расчётный метод.

Исходные данные для расчёта

Исходными данными для расчёта погрешности измерительных каналов являются [3]:

  • метрологические характеристики средств измерений;

  • погрешность метода измерений (методическая погрешность);

  • характеристики влияющих величин (например, окружающая температура, влажность);

  • характеристики измеряемого сигнала.

ГОСТ 8.009-84 [4] для всех типов средств измерений устанавливает следующий комплекс метрологических характеристик, который указывается в эксплуатационной документации на средства измерений:

  • систематическая составляющая основной погрешности;

  • среднеквадратическое отклонение случайной составляющей основной погрешности;

  • дополнительная погрешность для каждой из влияющих величин;

  • динамическая погрешность.

Некоторые средства измерений обладают гистерезисом – для них, кроме перечисленных погрешностей, указывается случайная составляющая основной погрешности, вызванной гистерезисом.

Основная погрешность может быть указана без разделения её на части (на систематическую, случайную и погрешность от гистерезиса), и этот вариант является наиболее распространённым. Случайную составляющую указывают в случае, когда она больше 10% от систематической [4].

Дополнительная погрешность указывается в виде функции влияния внешнего фактора на основную погрешность или её составляющие: систематическую и случайную. Обычно эта функция представляет собой линейную зависимость, и тогда указывается только коэффициент влияния, например 0,05%/°С.

Динамическая погрешность указывается с помощью одной из следующих характеристик: импульсная, переходная, амплитудно-частотная и фазочастотная, амплитудно-фазовая характеристика, передаточная функция. Для минимально-фазовых цепей указывается только амплитудно-частотная характеристика, поскольку фазочастотная однозначно может быть получена из амплитудно-частотной характеристики.

Для расчёта методической погрешности могут быть указаны сопротивления проводов, среднеквадратическое значение или спектральная плотность помех в них, ёмкость, индуктивность и сопротивление источника сигнала, а также другие факторы, которые возникают при создании системы, включающей средства и объект измерений.

Характеристики измеряемого сигнала задаются в виде функции от времени или функции спектральной плотности. Для случайного входного сигнала задаётся спектральная плотность мощности или автокорреляционная функция. Во многих случаях для оценки погрешности бывает достаточно знания скорости нарастания входного сигнала.

Коэффициент корреляции

При расчёте погрешности измерительного канала возникает задача суммирования погрешностей средств измерений, которые являются случайными величинами. Способ суммирования будет различным в зависимости от того, являются ли случайные величины статистически зависимыми. Понятие статистической зависимости иллюстрирует рис. 1: если с ростом одной случайной величины X в среднем увеличивается (или уменьшается) и вторая (Y), то между этими величинами имеется статистическая зависимость. Для её количественного описания используются понятия ковариации или коэффициента корреляции.

Рассмотрим суммирование двух случайных погрешностей X и Y с нулевым математическим ожиданием (то есть центрированных случайных величин). Дисперсия суммы двух случайных величин по определению равна математическому ожиданию квадрата их суммы:

 

где D[•] и M[•] – операторы дисперсии и математического ожидания; σx, σy – среднеквадратические отклонения случайных величин X и Y. Величина

называется ковариацией («совместной вариацией») случайных величин X и Y.

Ковариацию дискретных случайных величин можно оценить по их дискретным значениям X = {x1,…xN} и Y = {y1,…yN} с помощью формулы среднего арифметического:

Коэффициентом корреляции Rxy называют отношение ковариации к произведению среднеквадратических отклонений σx и σy случайных величин X и Y:

Когда случайные величины независимы, их коэффициент корреляции равен нулю (Rxy = 0), и такие величины называются некоррелированными. Если коэффициент корреляции равен единице (Rxy = 1), то между величинами X и Y имеется не статистическая, а функциональная зависимость.

Используя понятие среднеквадратического отклонения σx = √D[X], уравнение (1) можно записать в виде:

Здесь знак минус используется, когда случайные величины вычитаются, например, если находится разность напряжений двух измерительных каналов. При этом наличие корреляции между каналами частично уменьшает погрешность разности.

В случае когда случайные величины статистически независимы (Rxy = 0), выражение (5) упрощается:

Такое суммирование называют геометрическим, поскольку оно выполняется аналогично нахождению гипотенузы прямоугольного треугольника.

Если коэффициент корреляции Rxy = +1, то

Если коэффициент корреляции равен Rxy = –1, то

это означает, что при нахождении суммы случайных величин отрицательный коэффициент корреляции уменьшает итоговую погрешность, а при нахождении разности – увеличивает.

Если случайные величины не центрированы и имеют математические ожидания mx и my, то коэффициент корреляции можно оценить как

На рис. 1 показаны примеры статистической зависимости между случайными величинами при сильной (а) и слабой (б) корреляции. Точки на графике (значения случайной величины) могут группироваться очень близко к прямой линии, которая аппроксимирует эту зависимость, и тогда статистиче­ская зависимость приближается к детерминированной. Степень отличия статистической зависимости от детерминированной характеризуют коэффициентом корреляции Rxy.

Прямая линия, проведённая таким образом, что сумма квадратов отклонений значений случайной величины от этой линии минимальна, называется линией среднеквадратической регрессии. Тангенс угла наклона этой линии называется коэффициентом регрессии. Уравнение линии регрессии можно получить методом наименьших квадратов; оно имеет вид [1]:

y = A(x – mx) + my,                                                                      

где A – коэффициент регрессии. Коэффициент регрессии вычисляется через коэффициент корреляции Rxy и среднеквадратические отклонения σy и σx как

Коэффициент корреляции приобретает ясный физический смысл, если статистические переменные центрировать (вычесть математическое ожидание) и нормировать на величину среднеквадратического отклонения. Поскольку среднеквадратические отклонения нормированных величин равны единице, то коэффициент корреляции (9) становится равен тангенсу наклона линии среднеквадратической регрессии.

Статистическая зависимость между погрешностями средств измерений в общем случае нелинейная, однако этой нелинейностью обычно пренебрегают.

Точечные и интервальные оценки погрешности

Погрешности средств измерений и измерительных каналов средств автоматизации могут быть выражены двумя различными способами: с помощью точечных оценок и с помощью интервальных. К точечным оценкам относятся математическое ожидание погрешности и среднеквадратическое отклонение. В качестве интервальной оценки используют интервал погрешности, который охватывает все возможные значения погрешности измерений с вероятностью P. Она называется доверительной вероятностью, или надёжностью оценки погрешности.

Предел допускаемой погрешности можно рассматривать как точечную оценку или как интервальную для доверительной вероятности, равной единице.

Интервальная оценка является более гибкой, поскольку она позволяет указать погрешность измерений в зависимости от того, какая требуется вероятность реализации этой погрешности для конкретных условий эксплуатации средства измерений.

Смысл интервальной оценки погрешности иллюстрирует рис. 2. Здесь использованы следующие обозначения: ∆ – по-грешность измерения; р(∆) – плотность распределения по-грешностей; Φ(∆) – функция распределения погрешностей,

 

Для нормального закона распределения погрешностей (закона Гаусса) плотность распределения центрированной случайной величины ∆ описывается функцией

где σ – среднеквадратическая погрешность.

Если погрешность измерения ∆ находится внутри интервала ∆1 < ∆ < ∆2, то вероятность этого события вычисляется как

В наиболее типичном случае симметричных границ (–∆0 < ∆ < ∆0) получим

Здесь использовано свойство симметрии функции распределения для закона Гаусса.

Таким образом, если задан интервал –∆0 < ∆ < ∆0, который содержит в себе погрешность измеряемого параметра ∆, то вероятность того, что погрешность ∆ не выходит за границы интервала, можно найти по формуле (12) для нормального закона распределения. Вероятность P(–∆0 < ∆ < ∆0) называют также надёжностью оценки погрешности и обозначают символом γ:

Для вычисления функции распределения удобно использовать пакеты Mathcad, MATLAB. С их помощью из формулы (13) несложно найти величину доверительного интервала [–∆0, +∆0], если задана величина надёжности γ.

Для ∆0 = σ доверительная вероятность равна γ = 68,3%, для ∆0 = 2σ она уже равна γ = 95,3%, для ∆0 = 3σ составляет γ = 99,7% и для ∆0 = 4σ достигает γ = 99,994%.

Для увеличения надёжности оценки погрешности измерений или для сужения доверительного интервала при заданной надёжности можно использовать усреднение результатов многократных измерений. Поскольку оценка среднеквадратической погрешности результата усреднения σср равна    [1], где σx – среднеквадратическая погрешность средства измерений, N – количество однократных измерений, то, подставив в (13) вместо σ величину σср, получим

Эта формула позволяет найти количество однократных измерений N, которое необходимо усреднить для получения требуемого доверительного интервала [–∆0, +∆0] при заданной надёжности γ или требуемой надёжности γ при заданном доверительном интервале [–∆0, +∆0]. Поскольку формула (14) задана в неявном виде, для нахождения требуемых неизвестных следует воспользоваться математическими пакетами для компьютерных вычислений.

Следует иметь в виду, что повышение точности путём усреднения результатов многократных измерений имеет множество ограничений [1].

Проблемой использования интервального метода оценки погрешности является необходимость знания закона распределения погрешностей.

Отметим, что доверительные интервалы, полученные из рассеяния множества измерений, никак не учитывают систематическую погрешность измерений. Интересные примеры из истории определения расстояния до Солнца, заряда электрона и др. приводятся в книге [5]. Ученые, которые делали эти выдающиеся измерения, указывали доверительные вероятности для оценки точности своих измерений. Однако ни одна из этих оценок не выдержала испытания временем: каждое новое, более точное измерение не укладывается в предсказанный ранее доверительный интервал. Это связано с тем, что систематическую погрешность или наличие ошибки в постановке эксперимента, в учёте факторов, о существовании которых мы не знаем, оценить невозможно, не имея более точного измерительного прибора.

Погрешность метода измерений

Для выполнения автоматизированных измерений используют датчики и измерительные преобразователи, измерительные модули ввода аналоговых сигналов, обработку результатов измерений на компьютере или в контроллере. При этом на погрешность результата измерений оказывают влияние следующие факторы:

  • сопротивление кабелей;

  • соотношение между входным импедансом средства измерений и выходным импедансом датчика;

  • качество экранирования и заземления, мощность источников помех;

  • погрешность метода косвенных, совместных или совокупных измерений;

  • наличие внешних влияющих факторов, если они не учтены в дополнительной погрешности средства измерений;

  • погрешность обработки результатов измерений программ­ным обеспечением.

Все погрешности, которые не могут быть учтены в процессе сертификационных испытаний и внесены в паспорт средства измерений, а появляются в конкретных условиях применения, относятся к методическим. В отличие от них, инструментальные погрешности нормируются в процессе производства измерительного прибора и заносятся в его эксплуатационную документацию. Таким образом, если в состав смонтированной автоматизированной измерительной системы входят средства измерений с нормированными погрешностями, то погрешность, вызванная ранее перечисленными факторами, является методической. Если же выполняется сертификация всей измерительной системы, то методические погрешности могут быть учтены в погрешности всей системы, и тогда они переходят в разряд инструментальных.

Для расчёта или измерения методической погрешности трудно дать общие рекомендации. Каждый конкретный случай требует отдельного рассмотрения.

Погрешность программного обеспечения

Погрешность программного обеспечения (ПО) [6, 7] оценивается как разность между результатами измерений, полученными данным ПО и эталонным ПО. Под эталонным по-нимается программное обеспечение, высокая точность которого доказана многократными испытаниями и тестированием. Понятие эталонного ПО является условным и определяется соглашением между заказчиком аттестации и исполнителем. В качестве эталонного может быть использовано ра-нее аттестованное ПО.

К основным источникам погрешностей ПО отно­сятся:

  • ошибки записи исходного текста программы и ошибки трансляции программы в объектный код;

  • ошибки в алгоритме решения измерительной задачи;

  • ошибки в таблицах для линеаризации нелинейных характеристик преобразования;

  • применение неустойчивых или медленно сходящихся алгоритмов при решении плохо обусловленных измерительных задач;

  • ошибки преобразования форматов данных;

  • ошибки округления и др.

Надёжность (достоверность) ПО обеспечивается средствами защиты от несанкционированных изменений, которые могут явиться причиной появления не учтённых при аттестации погрешностей.

Достоверность измерений

В процессе выполнения измерений могут появиться грубые ошибки (промахи), которые делают измерения недостоверными, несмотря на применение очень точных измерительных приборов. Здесь под достоверностью понимается степень доверия к полученным результатам. Достоверность может быть низкая при наличии погрешностей, о существовании которых экспериментатор не догадывается. Достоверность при использовании автоматизированных измерительных систем снижается с ростом их сложности и существенно зависит от квалификации персонала проектирующей и монтажной организаций.

Главным методом обеспечения достоверности является сопоставление результатов измерения одной и той же величины разными, не связанными друг с другом способами. На­пример, после монтажа системы измерения температуры в силосе элеватора следует сравнить показания автоматизированной системы и автономного контрольного термометра, чтобы убедиться в правильности показаний автоматизированной системы.

Приведём несколько примеров, иллюстрирующих случаи, когда, несмотря на применение точных средств измерений, получаются совершенно ошибочные данные, вводящие человека в заблуждение.

Пример 1. Для измерения температуры воздуха в теплице использован датчик температуры с погрешностью ±0,5°С. Однако датчик установлен таким образом, что в некоторые часы на него падают прямые лучи солнца, которые нагревают датчик, но не изменяют температуру воздуха. При этом погрешность измерения температуры воздуха может составить +5°С, что позволяет квалифицировать результат измерения как недостоверный.

Пример 2. Для измерения температуры в силосах элеватора установлены точные датчики и сделан тщательный монтаж, но расположенный на крыше элеватора ретранслятор сотовой связи оказался незамеченным, и не было принято достаточных мер для защиты от помех. При этом погрешность измерения температуры может составить ±10°С вслед­-ствие помех, наведённых передатчиком в сигнальных кабелях системы.

Пример 3. В автоматизированной системе для измерения па­раметров продукции использован модуль ввода с погрешностью ±0,05%, однако при наладке системы программист по ошибке установил частоту помехоподавляющего режекторного фильтра не 50, а 60 Гц. Проведённые приёмо-сдаточные испытания системы не позволили выявить эту ошибку.

В результате погрешность измерений вследствие наведённой помехи с частотой 50 Гц может повыситься до ±10% вместо ожидаемых ±0,05%.

Пример 4. Во время выполнения измерений ваш коллега разговаривал по сотовому телефону. Наводка сигнала от передатчика сотового телефона может повысить погрешность измерений в несколько раз.

Пример 5. При монтаже системы заземлили экран сигнального кабеля с двух сторон. Проведённые приёмо-сдаточные испытания не позволили выявить эту ошибку. Погрешность может увеличиться в несколько раз по сравнению с ожидаемой.

Пример 6. В процессе эксплуатации системы нарушился контакт в цепи заземления, что привело к эпизодическому повышению уровня помех в измерительной цепи. В статье [8] описан пример, когда плохо затянутый болт в цепи заземления приводил к сбоям системы автоматики, причину которых искали несколько лет.

Пример 7. При расчёте погрешности средств измерений была проигнорирована динамическая погрешность, поскольку исходные данные для её расчёта не были указаны в эксплуатационной документации на средство измерения и не были выявлены в процессе приёмо-сдаточных испытаний ввиду сложности постановки эксперимента, отсутствия времени и приборов для контроля величины погрешности. Во время эксплуатации системы фактическая погрешность в несколько раз превысила расчётную.

В приведённых примерах сложно обнаружить наличие погрешности в процессе сдачи системы в эксплуатацию, она может появляться в особых условиях эксплуатации. Это приводит к снижению достоверности измерений, несмотря на высокую инструментальную точность использованных технических средств.

Общий подход к решению проблемы заключается в применении второй, независимой системы или методики измерений для обнаружения ошибок. Можно использовать также целый комплекс мер, включая подбор персонала, соблюдение графика поверки, тщательность выполнения типовых и сертификационных испытаний системы, соблюдение методики измерений и обслуживания измерительной системы.

Термин «достоверность» иногда используется во втором его значении – для указания вероятности того, что измеренное значение находится в заданном доверительном интервале [9] при условии, что все промахи и ошибки измерительной системы и методики измерений исключены. Количественным выражением достоверности в данном случае является доверительная вероятность [1]. Следует различать эти два значения одного и того же термина.

Методы суммирования погрешностей

Перед суммированием все погрешности делятся на следующие группы:

  • систематические и случайные;

  • в группе случайных – на коррелированные и некоррелированные;

  • аддитивные и мультипликативные;

  • основные и дополнительные.

Такое деление необходимо потому, что систематические и случайные погрешности, а также коррелированные и некоррелированные суммируются по-разному, а аддитивные по-грешности нельзя складывать с мультипликативными.

Если некоторые погрешности указаны в виде доверительных интервалов, то перед суммированием их нужно представить в виде среднеквадратических отклонений [1].

Дополнительные погрешности могут складываться с основными либо перед суммированием погрешностей, либо на заключительном этапе, в зависимости от поставленной задачи. Второй вариант часто предпочтительнее, поскольку он позволяет оценивать погрешность всего измерительного канала в зависимости от величины внешних влияющих факторов в конкретных условиях эксплуатации.

При последовательном соединении нескольких средств измерений погрешности, проходя через измерительный канал с передаточной функцией (функцией преобразования) f(x), могут усиливаться или ослабляться. Для учёта этого эффекта используют коэффициенты влияния, которые определяются как .

 

Все погрешности перед суммированием приводят к выходу (или входу) измерительного канала путём умножения (деления) на коэффициент влияния. В дальнейшем будем предполагать, что такое приведение уже выполнено.

Погрешности средств измерений являются случайными величинами, поэтому при их суммировании в общем случае необходимо учитывать соответствующие законы распределения. На практике пользуются более грубыми упрощёнными методами, разработанными математической статистикой.

Математическое ожидание погрешностей средств измерений, как правило, равно нулю. Если это не так, то его (в виде поправки) складывают с систематической составляющей погрешности. В средствах автоматизации введение поправки выполняется автоматически с помощью микроконтроллера, входящего в состав средств измерений. Математическое ожидание случайной составляющей всегда равно нулю, поскольку при нормировании метрологических характеристик его относят к систематической составляющей.

Наиболее полное определение итоговой погрешности измерительного канала состояло бы в нахождении функции распределения суммы нескольких погрешностей измерения. Однако функция распределения суммы случайных величин находится с помощью операции свёртки [10], что приводит к значительным практическим трудностям. Поэтому для оценки итоговой погрешности ограничиваются только суммированием дисперсий погрешностей.

Погрешности суммируют по однородным группам, затем находят общую погрешность, используя геометрическое суммирование для случайных погрешностей и алгебраическое для детерминированных.

Существует три способа суммирования погрешностей:

  • алгебраический      (15)

    где i – номер погрешности, N – их количество;

  • геометрический

    где σi – среднеквадратическое значение i-й погрешности;

  • с учётом корреляции
     

В этой формуле j ≠ i потому, что члены с j = i уже учтены в сумме NΣi=1 σi2 , а граница j < i установлена для того, чтобы суммировать только члены, лежащие ниже диагонали корреляционной матрицы, поскольку вследствие её симметричности Rijσiσj + Rjiσjσi = 2Rijσiσj.

При Rij = +1 выражение (17) переходит в формулу алгебраического суммирования:

где σi складываются со своими знаками, то есть коррелированные погрешности с противоположными знаками частично взаимно компенсируются, если их коэффициент корреляции равен единице.

При Rij = –1 погрешности вычитают попарно в соответствии с (8):

то есть при отрицательной корреляции погрешности частично компенсируются, если они имеют один и тот же знак.

Учитывая, что получить удовлетворительные оценки коэффициентов корреляции довольно трудно, используют следующий приём: при |Rij| ≥ 0,7 считают, что |Rij| = 1, при |Rij| < 0,7 полагают |Rij| = 0 [9, 10].

Систематические погрешности

В наиболее типовом случае систематические составляющие основных погрешностей средств измерений суммируются геометрически по формуле (16), поскольку они являются случайными величинами.

Формулы геометрического суммирования были получены для среднеквадратических погрешностей [1]. Поэтому, если комплекс метрологических характеристик средств измерений включает предел допускаемых значений систематической составляющей основной погрешности ∆os без указания среднеквадратического значения (по ГОСТ 8.009-84 [4]), то соответствующее ему среднеквадратическое значение находят в соответствии с рекомендациями РД 50-453-84 [11] по формуле

Эта формула справедлива, если нет оснований полагать, что функция распределения данной погрешности является несимметричной и имеет несколько максимумов.

Метрологическая инструкция МИ 2232-2000 [12] рекомендует иную формулу – половину предела допускаемой погрешности.

Выбор способа суммирования систематических составляющих основных погрешностей не является однозначным, и это связано с отсутствием полной информации о законе распределения. Дело в том, что причиной существования основной погрешности является как технологический разброс параметров электронных компонентов, так и нескомпенсированная нелинейность. Технологический разброс обычно является случайным, и на этом основании систематическая составляющая погрешности может рассматриваться как случайная величина на множестве средств измерений одного и того же типа. Поэтому в формулах для расчёта погрешностей она учитывается геометрически. Однако нелинейность передаточной характеристики средства измерений (нелинейность АЦП, нормирующих усилителей, термопар) у всех экземпляров приборов одного типа будет иметь примерно один и тот же вид, величину и знак. Например, погрешность, вызванная нелинейностью, в начале шкалы может быть положительной, в середине шкалы – отрицательной, у верхнего предела шкалы – опять положительной, и так для всех экземпляров приборов одного типа. Поэтому погрешности, обусловленные нелинейностью, должны суммироваться алгебраически.

В современных модулях аналогового ввода используется автоматическая калибровка, позволяющая уменьшить случайную компоненту систематической погрешности, и в этом случае преобладающей является детерминированная погрешность нелинейности.

Поскольку ГОСТ 8.009-84 [4] не предусматривает нормирование таких тонких нюансов поведения погрешностей, выбор способа суммирования начинает зависеть не от технических, а от политических факторов. Если фактическая погрешность окажется выше расчётной и это повлечёт за собой угрозу жизни людей, большой экономический ущерб, техногенную катастрофу и т. п. [12], то суммирование погрешностей выполняют алгебраически, причём используют не среднеквадратические отклонения, а пределы допустимых значений погрешности.

Если известен знак систематической погрешности, то его учитывают при суммировании.

Для наиболее ответственных применений следует использовать средства измерений, для которых указана погрешность без разделения на случайную и систематическую компоненты, поскольку в этом случае погрешность указана с доверительной вероятностью, равной единице. Если же ис-пользуются средства измерений, для которых указана случайная составляющая, то для них рассчитывают величину погрешности при доверительной вероятности, равной единице. Это условие существенно завышает требования к точности средства измерений.

Алгебраическое суммирование часто даёт слишком завышенную оценку погрешности. Поэтому МИ 2232-2000 [12] предусматривает промежуточный вариант между формулами геометрического и алгебраического суммирования:

где K – поправочный коэффициент, равный 1,2 для наиболее важных параметров устройств аварийной защиты и блокировки, контроля за соблюдением требований техники безопасности и экологической безопасности, контроля характеристик готовой продукции [12].

Для конкретных экземпляров приборов могут быть указаны не номинальные характеристики (имеющие одну и ту же величину для всех приборов данного типа), а индивидуальные. В этом случае систематическая погрешность является не случайной, а детерминированной величиной, поэтому должна учитываться в итоговой погрешности измерительного канала алгебраически.

Случайные составляющие погрешностей

Случайные составляющие основной погрешности средств измерений по ГОСТ 8.009-84 [4] задаются своими среднеквадратическими отклонениями, поэтому их суммирование выполняется непосредственно по формуле геометрического суммирования (16).

Если случайная погрешность является коррелированным случайным процессом [1] и задана в виде функции автокорреляции R(t) или спектральной плотности мощности S(f), то сначала находят среднеквадратическое значение случайной составляющей погрешности. Для этого используют формулу:

где fв – верхняя граничная частота полосы пропускания всего измерительного канала или цифрового фильтра, используемого при обработке полученных данных. Если задана функция автокорреляции, то спектральную плотность мощности находят по формуле, учитывающей корреляцию [1].

Случайная составляющая погрешности может быть уменьшена в несколько раз (в зависимости от величины фликкер-шума) путём усреднения результатов многократных измерений [1].

Дополнительные погрешности

Дополнительные погрешности задаются в виде функции влияния внешних факторов (температуры, влажности, напряжения питания) на основную погрешность измерения, или, в случае линейной функции влияния, они характеризуются коэффициентом влияния. Например, может быть задано, что основная погрешность увеличивается на +0,05% при изменении напряжения питания на +20%.

Если задан диапазон изменения влияющих величин, в качестве их математического ожидания для расчётов с помощью функции влияния берут их среднее значение [11].

Среднеквадратическое отклонение дополнительной погрешности для линейной функции влияния находят по формуле [11]:

где Kξ – коэффициент влияния внешнего фактора; ξ1, ξ2 – нижняя и верхняя границы изменения влияющей величины.

Дополнительная погрешность может увеличивать как систематическую, так и случайную составляющую основной погрешности. Для этого функции влияния задаются раздельно на каждую составляющую.

Если известно, что дополнительные погрешности нескольких средств измерений коррелируют (например, синхронно возрастают при увеличении напряжения питания в сети или температуры окружающей среды), то такие погрешности суммируют как коррелированные величины с учётом коэффициента корреляции в соответствии с (17) – (19).

Дополнительные погрешности считаются несущественными, если их сумма составляет менее 17% от наибольшего возможного значения инструментальной погрешности в рабочих условиях эксплуатации [4].

Динамические погрешности

Динамическая погрешность при известном входном сигнале является детерминированной. Она обычно приводит к занижению показаний измерительного прибора. Суммирование таких погрешностей выполняется алгебраически.

Подробнее об оценке динамической погрешности см. [1, 10].

Динамическая погрешность считается несущественной, если она составляет менее 17% от наибольшего возможного значения инструментальной погрешности в рабочих условиях эксплуатации [4].

Нахождение итоговой погрешности

После суммирования погрешностей по группам, как это было описано ранее, результат измерения обычно выражают в виде:

где x0 – измеренное значение; ∆ – сумма всех погрешностей, которые складывались алгебраически, то есть детерминированных погрешностей (детерминированные погрешности могут быть прибавлены к измеренной величине в качестве поправки); σ – сумма всех случайных погрешностей, которые складывались геометрически, в том числе с учётом корреляционных связей: 

где σΣсист – сумма всех систематических погрешностей измерительного канала; σΣслуч – сумма всех случайных погрешностей; σΣдоп – сумма всех дополнительных погрешностей; σΣметод – сумма всех случайных составляющих методических погрешностей, включая погрешность программного обеспечения. Детерминированные составляющие методических погрешностей учитываются в слагаемом ∆.

Вместо среднеквадратического отклонения может быть указан предел допустимых значений. Однако должно быть явно указано, какая именно оценка погрешности использована, поскольку доверительные вероятности для предела допустимых значений (единица) и для среднеквадратического отклонения (0,68) существенно отличаются.

Случайная, систематическая и дополнительная погрешности могут быть указаны раздельно. МИ 1317-2004 [13] рекомендует «вместе с результатом измерений представлять характеристики его погрешности или их статистические оценки». Поэтому состав характеристик погрешности может быть выбран в каждом конкретном случае индивидуально, в зависимости от смысла решаемой задачи.

При выполнении многократных измерений результат должен также содержать указание на количество измерений, использованных при усреднении, и интервал времени, в течение которого были выполнены измерения [13].

Поскольку выражение для суммы дисперсий случайных величин (1) получено независимо от закона распределения, геометрическое суммирование погрешностей даёт правильное значение дисперсии независимо от законов распределения отдельных составляющих. Однако при этом ничего нельзя сказать о функции распределения суммарной погрешности, в том числе о надёжности (доверительной вероятности) полученного результата. Тем не менее, поскольку при суммировании пяти и более погрешностей закон распределения суммы близок к нормальному независимо от законов распределения отдельных слагаемых [10], то, зная среднеквадратическое отклонение итоговой погрешности, можно использовать нормальный закон распределения для указания доверительного интервала и доверительной вероятности результата измерений.

Нахождение погрешности измерительного канала в условиях недостатка исходных данных

При оценке погрешности измерительных каналов средств автоматизации следует по возможности использовать экспериментальный метод. Однако в случаях когда это невозможно или экономически нецелесообразно, делают расчёт по изложенной ранее методике. Типичной проблемой, которая при этом возникает, является отсутствие некоторых исходных данных. В этой ситуации метрологическая инструкция МИ 2232-2000 [12] рекомендует использовать следующие «значения по умолчанию»:

  • среднеквадратическое значение погрешности принимается равным половине предела допускаемых значений погрешности;

  • математическое ожидание основной и дополнительной погрешности принимается равным нулю;

  • корреляция между отдельными составляющими погрешности отсутствует;

  • случайная составляющая погрешности измерений является некоррелированной случайной величиной (белым шумом) или вырождается в систематическую погрешность;

  • функции распределения внешних влияющих величин предполагаются равномерными или нормальными;

  • считается, что инерционные свойства средств измерений не оказывают влияния на погрешность измерений. ●

Литература

  1. Денисенко В.В. Компьютерное управление технологическим процессом, экспериментом, оборудованием. – М. : Горячая линия – Телеком, 2009. – 608 с.

  2. МИ 2440-97. ГСИ. Методы экспериментального определения и контроля характеристик погрешности измерительных каналов измерительных систем и измерительных комплексов (взамен МИ 2313-94).

  3. ГОСТ 23222-88. Характеристики точности выполнения предписанной функции средств автоматизации. Требования к нормированию. Общие методы контроля.

  4. ГОСТ 8.009-84. Государственная система обеспечения единства измерений. Нормируемые метрологические характеристики средств измерений.

  5. Тутубалин В.Н. Теория вероятностей и случайных процессов. Основы математического аппарата и прикладные аспекты. – М. : Изд-во МГУ, 1992. – 400 с.

  6. МИ 2955-2005. ГСИ. Типовая методика аттестации программного обеспечения средств измерений и порядок её проведения.

  7. МИ 2891-2004. ГСИ. Общие требования к программному обеспечению средств измерений.

  8. Burleson J. Wiring and grounding to prevent power quality problems with industrial equipment // Textile, Fiber and Film Industry Technical Conference, 8–9 May 1991. – Pp. 5/1–5/6.

  9. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. – Л. : Энергоатомиздат, 1991. – 304 с.

  10. Орнатский П.П. Теоретические основы информационно-измерительной техники. – 2-е изд. – Киев : Вища школа, 1983. – 455 с.

  11. РД 50-453-84. Методические указания. Характеристики погрешности средств измерений в реальных условиях эксплуатации. Методы расчёта.

  12. МИ 2232-2000. ГСИ. Обеспечение эффективности измерений при управлении технологическими процессами. Оценивание погрешности измерений при ограниченной исходной информации.

  13. МИ 1317-2004. ГСИ. Результаты и характеристики погрешности измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроле их параметров (взамен ГОСТ 8.011-72, МИ 1317-86).

Понравилась статья? Поделить с друзьями:
  • Составьте сложный план по теме политическое лидерство как институт политической системы
  • Как найти абонента по геоданным
  • Как найти географические координаты 5 класс география
  • Как найти приблизительно корень
  • Как понять друга ищи а нашел береги