Как найти среднюю мощность цепи

Мощность переменного тока

  • Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.

  • Мощность тока через резистор

  • Мощность тока через конденсатор

  • Мощность тока через катушку

  • Мощность тока на произвольном участке

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.

Переменный ток несёт энергию. Поэтому крайне важным является вопрос о мощности в цепи переменного тока.

Пусть U и I — мгновенные значение напряжения и силы тока на данном участке цепи. Возьмём малый интервал времени dt — настолько малый, что напряжение и ток не успеют за это время сколько-нибудь измениться; иными словами, величины U и I можно считать постоянными в течение интервала dt.

Пусть за время dt через наш участок прошёл заряд dq = Idt (в соответствии с правилом выбора знака для силы тока заряд dq считается положительным, если он переносится в положительном направлении, и отрицательным в противном случае). Электрическое поле движущихся зарядов совершило при этом работу

dA = Udq = UIdt.

Мощность тока P — это отношение работы электрического поля ко времени, за которое эта работа совершена:

P= I_0 frac{displaystyle dA}{displaystyle dt vphantom{1^a}} = UI. (1)

Точно такую же формулу мы получили в своё время для постоянного тока. Но в данном случае мощность зависит от времени, совершая колебания вместе током и напряжением; поэтому величина (1) называется ещё мгновенной мощностью.

Из-за наличия сдвига фаз сила тока и напряжение на участке не обязаны совпадать по знаку (например, может случиться так, что напряжение положительно, а сила тока отрицательна, или наоборот). Соответственно, мощность может быть как положительной, так и отрицательной. Рассмотрим чуть подробнее оба этих случая.

1. Мощность положительна: P > 0. Напряжение и сила тока имеют одинаковые знаки. Это означает, что направление тока совпадает с направлением электрического поля зарядов, образующих ток. В таком случае энергия участка возрастает: она поступает на данный участок из внешней цепи (например, конденсатор заряжается).

2. Мощность отрицательна: P < 0. Напряжение и сила тока имеют разные знаки. Стало быть, ток течёт против поля движущихся зарядов, образующих этот самый ток.

Как такое может случиться? Очень просто: электрическое поле, возникающее на участке, как бы «перевешивает» поле движущихся зарядов и «продавливает» ток против этого поля. В таком случае энергия участка убывает: участок отдаёт энергию во внешнюю цепь (например, конденсатор разряжается).

Если вы не вполне поняли, о чём только что шла речь, не переживайте — дальше будут конкретные примеры, на которых вы всё и увидите.

к оглавлению ▴

Мощность тока через резистор

Пусть переменный ток I = I_0 sin omega t протекает через резистор сопротивлением R. Напряжение на резисторе, как нам известно, колеблется в фазе с током:

U = IR = I_0 R sin omega t = U_0 sin omega t.

Поэтому для мгновенной мощности получаем:

P = UI= U_0 I_0 sin^2 omega t = P_0 sin^2 omega t. (2)

График зависимости мощности (2) от времени представлен на рис. 1. Мы видим, что мощность всё время неотрицательна — резистор забирает энергию из цепи, но не возвращает её обратно в цепь.

Рис. 1. Мощность переменного тока через резистор

Максимальное значение P_0 нашей мощности связано с амплитудами тока и напряжения привычными формулами:

P_0=U_0 I_0 = I_0^2 R = frac{displaystyle U_0^2}{displaystyle R vphantom{1^a}}.

На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой 50 Гц, т. е. за секунду совершается 50 колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между 0 и P_0. Где же именно?

Посмотрите ещё раз внимательно на рис. 1. Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует «середине» нашей синусоиды и принимает поэтому значение P_0/2?

Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:

среднее значение квадрата синуса (или косинуса) за период равно 1/2.

Этот факт иллюстрируется рисунком 2.

Рис. 2. Среднее значение квадрата синуса равно 1/2

Итак, для среднего значения bar{P} мощности тока на резисторе имеем:

bar{P}= frac{displaystyle P_0}{displaystyle 2 vphantom{1^a}} = frac{displaystyle U_0 I_0}{displaystyle 2 vphantom{1^a}} = frac{displaystyle I_0^2 R}{displaystyle 2 vphantom{1^a}} = frac{displaystyle U_0^2}{displaystyle 2R vphantom{1^a}}. (3)

В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока (на самом деле это есть не что иное, как средние квадратические значения напряжения и тока. Такое у нас уже встречалось: средняя квадратическая скорость молекул идеального газа (листок «Уравнение состояния идеального газа»):

bar{U}= frac{displaystyle U_0}{displaystyle sqrt(2) vphantom{1^a}},   bar{I}= frac{displaystyle I_0}{displaystyle sqrt(2) vphantom{1^a}}. (4)

Формулы (3), записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:

bar{P}=bar{U} bar{I} = bar{I}^2 R = frac{displaystyle bar{U}^2}{displaystyle R vphantom{1^a}}.

Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения U, а затем к источнику переменного напряжения с таким же действующим значением U, то в обоих случаях лампочка будет гореть одинаково ярко.

Действующие значения (4) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения (так уж они устроены). Знайте также, что пресловутые 220 вольт из розетки — это действующее значение напряжения бытовой электросети.

к оглавлению ▴

Мощность тока через конденсатор

Пусть на конденсатор подано переменное напряжение U = U_0 sin omega t. Как мы знаем, ток через конденсатор опережает по фазе напряжение на pi:

I = I_0 sin left ( omega t + frac{displaystyle pi}{displaystyle 2 vphantom{1^a}} right ) = I_0 cos omega t.

Для мгновенной мощности получаем:

P = UI = U_0 I_0 sin omega t cos omega t = frac{displaystyle 1}{displaystyle 2 vphantom{1^a}}U_0 I_0 sin2 omega t = P_0 sin2 omega t.

График зависимости мгновенной мощности от времени представлен на рис. 3.

Рис. 3. Мощность переменного тока через конденсатор

Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.

Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний (рис. 4).

Рис. 4. Напряжение на конденсаторе и сила тока через него

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть, 0 < t < T/4. Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть, T/4 < t < T/2. Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).

3. Третья четверть, T/2 < t < 3T/4. Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть, 3T/4 < t < T. Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.

к оглавлению ▴

Мощность тока через катушку

Пусть на катушку подано переменное напряжение U = U_0 sin omega t. Ток через катушку отстаёт по фазе от напряжения на pi/2:

I = I_0 sin left ( omega t - frac{displaystyle pi}{displaystyle 2 vphantom{1^a}} right ) = -I_0 cos omega t.

Для мгновенной мощности получаем:

P = UI = -U_0 I_0 sin omega t cos omega t = -frac{displaystyle 1}{displaystyle 2 vphantom{1^a}}U_0 I_0 sin2 omega t = -P_0 sin2 omega t.

Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5).

Рис. 5. Напряжение на катушке и сила тока через неё

Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.

В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.

Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.

к оглавлению ▴

Мощность тока на произвольном участке

Теперь рассмотрим самый общий случай. Пусть имеется произвольный участок цепи — он может содержать резисторы, конденсаторы, катушки…На этот участок подано переменное напряжение U = U_0 sin omega t.

Как мы знаем из предыдущего листка «Переменный ток. 2», между напряжением и силой тока на данном участке имеется некоторый сдвиг фаз alpha. Мы записывали это так:

I = I_0 sin(omega t - alpha).

Тогда для мгновенной мощности имеем:

P = U_0 I_0 sin omega t sin(omega t - alpha). (5)

Теперь нам хотелось бы определить, чему равна средняя мощность. Для этого мы преобразуем выражение (5), используя формулу:

sin x sin y = frac{displaystyle 1}{displaystyle 2 vphantom{1^a}} (cos (x-y) - cos (x+y)).

В результате получим:

P = U_0 I_0 frac{displaystyle 1}{displaystyle 2 vphantom{1^a}} ( cos alpha - cos (2 omega t - alpha)). (6)

Но среднее значение величины cos (2 omega t - alpha) равно нулю! Поэтому средняя мощность оказывается равной:

bar{P} = U_0 I_0 frac{displaystyle 1}{displaystyle 2 vphantom{1^a}}  cos alpha. (7)

Данную формулу можно записать с помощью действующих значений (4) напряжения и силы тока:

bar{P} = bar{U} bar{I} cos alpha.

Формула (7) охватывает все три рассмотренные выше ситуации. В случае резистора имеем alpha = 0, и мы приходим к формуле (3). Для конденсатора и катушки alpha = pi/2, и средняя мощность равна нулю.

Кроме того, формула (7) даёт представление о весьма общей проблеме, связанной с передачей электроэнергии. Чрезвычайно важно, чтобы cos alpha у потребителя был как можно ближе к единице. Иначе потребитель начнёт возвращать значительную часть энергии назад в сеть (что ему совсем невыгодно), и к тому же возвращаемая энергия будет безвозвратно расходоваться на нагревание проводов и других элементов цепи.

С этой проблемой приходится сталкиваться разработчикам электрических схем, содержащих электродвигатели. Обмотки электродвигателей обладают большими индуктивностями, и возникает ситуация, близкая к «чистой» катушке. Чтобы избежать бесполезного циркулирования энергии по сети, в цепь включают дополнительные элементы, сдвигающие фазу — например, так называемые компенсирующие конденсаторы.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Мощность переменного тока» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Исследуем и рассчитываем мощность в цепи переменного тока

Содержание

  • 1 Виды тока
  • 2 Зачем нужно знать мощность электрооборудования
  • 3 Виды мощности
  • 4 Как измерить косинус «фи»
  • 5 Как узнать мощность
  • 6 Видео по теме

В процессе эксплуатации электрооборудования важную роль играет соответствие требуемой мощности и возможностей сети электропитания. Чтобы выполнить предварительные расчёты, необходимо понимать, какова природа электрической мощности и чем определяется её величина.

Определение мощности

Виды тока

Техника может работать с использованием постоянного или переменного электрического тока. В первом случае сила тока на протяжении эксплуатации не меняется. Во втором она периодически меняется по абсолютной величине и знаку.

Определение переменного тока

Наиболее часто переменный ток изменяется по синусоидальному закону, однако в некоторых случаях импульсы могут иметь другую, например, прямоугольную форму. В бытовых и производственных условиях часто для питания электроприборов требуется наличие однофазного или трехфазного переменного тока.

Графики тока и напряжения для переменного тока

На представленном выше графике сила тока для активной мощности обозначена красным цветом. Для реактивной использованы обозначения с индексами L и C. На этом графике показан сдвиг фаз. Здесь видно, что ёмкостный ток отстаёт, а индуктивный опережает активный. При проведении расчетов для выбора автотрансформатора или других электроприборов важно правильно учитывать имеющиеся смещения.

Зачем нужно знать мощность электрооборудования

Каждый подключенный электроприбор для обеспечения своей работы будет потреблять часть мощности электросети. Если их работает одновременно несколько, то мощности складываются. Важно при расчете потребляемой электроэнергии учитывать:

  • Мощность в цепи переменного тока или постоянного, которая обеспечивается поставщиком.
  • Параметры защитных приборов, с помощью которых осуществляется регулирование рабочих характеристик оборудования.
  • Конструкцию системы проводов и удлинителей.
  • Наличие автотрансформатора или аналогичных устройств.

Если подаваемая мощность недостаточна, это способствует появлению перебоев в поставке электроэнергии. Защитные приборы должны быть настроены таким образом, чтобы при возникновении аварийной ситуации прерывать поступление электричества. Для этого в них должны быть заложены данные о том, какая величина мощности в цепях переменного или постоянного тока считается нормальной, а какая свидетельствует о возникновении проблемной ситуации.

Провода, удлинители и другие элементы электропроводки рассчитаны на определённые предельные значения. При их превышении они будут плавиться или перегорать. Перед подключением автотрансформатора или других электроприборов нужно предварительно узнать, соответствует ли требуемая им мощность имеющимся возможностям электросети.

Виды мощности

Полная мощность на участке цепи определяется как работа, выполняемая в течение единицы времени. Её также можно рассматривать как отношение используемой энергии к продолжительности интервала времени, на протяжении которого это происходит.

При работе электрического прибора часть мощность частично тратится на получение полезного эффекта. Такую мощность называют активной. Электрическая энергия при этом превращается в другой вид. Например, речь может идти о том, что она выделится в виде света или тепла.

Суть разных видов электромощности

Переменный ток при наличии в схеме ёмкости и индуктивности создаёт реактивную мощность. Она не расходуется, а преобразуется из одной формы в другую. Реактивная мощность, выделяемая в конкретной цепи переменного тока, считается паразитной. Если ее величина незначительная, то вся используемая энергия является активной.

Реактивная и активная мощности — это составляющие полной электрической мощности. Сложение осуществляется по векторным правилам. Чтобы рассчитать полную мощность, следует применить теорему Пифагора.

Треугольник мощностей

На приведённом рисунке длина гипотенузы выражает полную мощность, горизонтально расположенный катет — активную составляющую, а вертикально — реактивную. Как известно, квадрат гипотенузы — это сумма квадратов катетов.

Определение полной мощности

В приведённой формуле используются следующие обозначения:

  • С левой стороны знака равенства указана полная мощность.
  • В качестве P рассматривается активная мощность.
  • С помощью Q обозначена реактивная мощность.

Соотношение активной и реактивной мощности выражается через косинус угла «фи». Этот угол представляет собой фазовый сдвиг между электротоком и электронапряжением. Чтобы оценить реальную мощность работы оборудования, косинус «фи» часто указывают в технической документации электроприбора, как коэффициент мощности. Он полезен для определения особенностей использования автотрансформатора или других приборов.

Единицей измерения активной мощности является ватт. Для реактивной применяется вольт-ампер реактивный (вар). Полная мощность измеряется вольт-амперами.

Единица мощности

Используется еще и такое понятие, как мгновенная мощность, которая постоянно меняется. Например, она может иметь нулевое значение в тех точках, где сила электротока также равняется нулю. На практике мгновенная мощность используется редко, но применяется её среднее значение за период.

Суть мгновенной мощности

Как измерить косинус «фи»

Обычно эта информация содержится в технической документации прибора. Если она не указана, то ее измеряют с помощью специального прибора — фазометра.

Так выглядит фазометр

Чем больше рассматриваемая величина, тем выше будет эффективность электрооборудования. Если косинус небольшой, то выгодно улучшить ситуацию, используя компенсацию реактивной мощности переменного тока. Чтобы понять принцип работы, следует вспомнить, что реактивная мощность возникает из-за наличия ёмкости и индуктивности в электроцепи.

Для компенсации используют регулируемый узел, действующий противоположно реактивной составляющей электромощности. Например, регулировка может осуществляться при помощи дросселя с высокой индуктивностью. Его подключают последовательно с нагрузкой.

Передача электроэнергии при отсутствии и наличии компенсатора

Как узнать мощность

Один из наиболее простых способов — измерение мощности с помощью ваттметра. Существуют различные виды таких устройств. Поскольку в быту не требуется особенно высокой точности, можно использовать довольно простые приборы.

Схема измерения мощности

Также можно провести вычисления, измерив напряжение, силу тока и сопротивление. Расчёт мощности осуществляется с помощью двух из этих трёх величин.

При использовании постоянного тока определение активной мощности выполняется с помощью следующего выражения:

Формула активной мощности постоянного тока

Если нужно определить мощность однофазного переменного тока, используется формула:

Активная мощность однофазного тока

Если ток трёхфазный, тогда мощность можно рассчитать по формуле:

Активная мощность трёхфазного тока

Указанная выше формула мощности применяется при симметричном трёхфазном распределении. Если оно является асимметричным, тогда для каждой фазы мощность переменного тока вычисляется отдельно, а затем найденные значения складываются. Средняя мощность для переменного тока определяется интегральным исчислением.

Интегральная формула

Для определения реактивной мощности используют формулу:

Определение реактивной мощности

Знание электрической мощности не только полезно само по себе, но оно помогает вычислить различные характеристики используемого электрооборудования. Обычно значение мощности и косинуса «фи» можно получить из технической документации. Например, зная напряжение, можно вычислить силу электрического тока, чтобы учесть её при подключении и обеспечении безопасности использования оборудования.

Формулы для расчётов связанных с мощностью

На представленной выше схеме во внутреннем круге указаны величины, которые требуется определить. Вдоль окружности приведены формулы, которыми следует воспользоваться для вычисления.

Сказанное можно пояснить на следующем примере. Допустим, нужно определиться с мощностью. В этом случае следует обратить внимание на левый нижний сектор чертежа. Зная две из трёх величин, через которые выражается мощность (напряжение, силу тока и сопротивление), можно подобрать подходящую формулу для вычисления.

Если требуется найти, чему равна сила тока, то это выполняется аналогичным образом. Разница состоит в том, что теперь следует работать с правым верхним сектором. Здесь потребуется знать две из следующих трёх величин: мощность, сопротивление и напряжение. Нужно подобрать подходящую формулу и выполнить соответствующие вычисления.

Видео по теме



Свободные электромагнитные колебания в контуре быстро затухают. Поэтому они практически не используются. Наиболее важное практическое значение имеют незатухающие вынужденные колебания.

Определение

Переменный ток — вынужденные электромагнитные колебания.

Ток в осветительной сети квартиры, ток, применяемый на заводах и фабриках, представляет собой переменный ток. В нем сила тока и напряжение изменяются со временем по гармоническому закону. Колебания легко обнаружить с помощью осциллографа. Если на вертикально отклоняющие пластины осциллографа подать напряжение от сети, то временная развертка на экране будет представлять сбой синусоиду:

Зная скорость движения луча в горизонтальном направлении (она определяется частотой пилообразного напряжения), можно определить частоту колебаний.

Определение

Частота переменного тока — это количество колебаний за 1 с.

Стандартная частота переменного промышленного тока составляет 50 Гц. Это значит, что на протяжении 1 секунды ток 50 раз течет в одну сторону и 50 раз — в другую. Частота 50 Гц принята для промышленного тока во многих странах мира. В США принята частота 60 Гц.

Если напряжение на концах цепи меняется по гармоническому закону, то напряженность электрического поля внутри проводника будет также меняться гармонически. Эти гармонические изменения напряженности поля вызовут гармонические колебания скорости упорядоченного движения заряженных частиц, и, следовательно, гармонические колебания силы тока.

Внимание!

При изменении напряжения на концах цепи электрическое поле не меняется мгновенно во всей цепи. Изменение поля происходит с большой скоростью, но она не бесконечно большая. Она равна скорости света (3∙108 м/с).

Переменное напряжение в гнездах розетки осветительной сети создается генераторами на электростанциях. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока (см. рисунок ниже).

Поток магнитной индукции Ф, пронизывающий проволочную рамку площадью S, пропорционален косинусу угла α между нормалью к рамке и вектором магнитной индукции.

Численно магнитный поток определяется формулой:

Φ=BScosα

При равномерном вращении рамки угол α увеличивается пропорционально времени:

α=2πnt

где n — частота вращения. Поэтому поток магнитной индукции меняется гармонически:

Φ=BScos2πnt

Здесь множитель 2πn представляет собой число колебаний магнитного потока за 2π секунд. Это не что иное, как циклическая частота колебаний:

ω=2πn

Следовательно:

Φ=BScosωt

Согласно закону электромагнитной индукции ЭДС индукции в рамке равна взятой со знаком «минус» скорости изменения потока магнитной индукции, т.е. производной потока магнитной индукции по времени:

e=Φ=BS(cosωt)=BSωsinωt=εmaxsinωt

εmax — амплитуда ЭДС индукции, равная:

εmax=BSω

Напряжение в цепи переменного тока может меняться по закону синуса или по закону косинуса:

u=Umaxsinωt

u=Umaxcosωt

где Umax — амплитуда напряжения (максимальное по модулю значение напряжения).

Сила тока меняется с той частотой, что и напряжение — ω. Но колебания тока необязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае сила тока i в любой момент времени определяется по формуле:

i=Imaxsin(ωt+φс)

где Imax — амплитуда силы тока (максимальное по модулю значение силы тока), φс — разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Пример №1. Найти напряжение в цепи переменного тока в момент времени t = π, если циклическая частота электромагнитных колебаний равна 300,25 Гц, а амплитуда напряжения составляет 12В. Считать, что напряжения меняется по закону косинуса.

u=Umaxcosωt=12cos300,25π=12228,5 (В).

Активное сопротивление в цепи переменного тока

Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (см. рисунок ниже).

Внимание! Ранее под величиной R мы понимали электрическое сопротивление. Но правильно его называть сопротивлением активным. Дело в том, что в цепи переменного тока могут быть сопротивления иного характера. Сопротивление же R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются.

Будем считать, что напряжение на зажимах цепи меняется по закону косинуса:

u=Umaxcosωt

Для нахождения мгновенного значения силы тока мы можем воспользоваться законом Ома, так как эта величина прямо пропорционально мгновенному значению напряжения:

i=uR=UmaxcosωtR=Imaxcosωt

В проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения, а амплитуда силы тока определяется равенством:

Imax=UmaxR

Мощность в цепи с резистором

В цепи переменного тока сила тока и напряжения меняются быстро, поэтому количество выделяемой энергии меняется так же быстро. Но заметить эти изменения невозможно. Чтобы найти среднюю мощность на участке цепи за много периодов, достаточно найти среднюю мощность за один период.

Определение

Средняя за период мощность переменного тока — отношение суммарной энергии, поступающей в цепь за период, к этому периоду.

Мощность постоянного тока определяется формулой:

P=I2R

Следовательно, мгновенная мощность в цепи переменного тока на участке с активным сопротивлением R равна:

p=i2R

Подставим в это выражение полученное ранее значение мгновенной силы переменного тока и получим:

p=(Imaxcosωt)2R

Вспомним из курса математики:

cos2α=1+cos2α2

Отсюда:

p=I2max2R(1+cos2ωt)=I2maxR2+I2maxR2cos2ωt

График зависимости мгновенной мощности от времени:

На протяжении первой четверти периода, когда cos2ωt>0, мощность в любой момент времени больше величины I2maxR2. На протяжении второй четверти периода, когда cos2ωt<0, мощность в любой момент времени меньше этой величины. Среднее за период значение cos2ωt=0, следовательно, средняя за период мощность равна I2maxR2.

Средняя мощность p равна:

p=I2maxR2=i2R

Пример №2. Сила переменного тока в цепи меняется по закону i=Imaxcosωt. Определить мгновенную мощность в момент времени t = 1 с, если циклическая частота колебаний ω = 100π Гц при сопротивлении R = 10 Ом. Амплитуда силы тока равна 1 А.

p=(Imaxcosωt)2R=10(1·cos(100π·1)2=10 (Дж)

Действующие значения силы тока и напряжения

Из предыдущей формулы видно, что среднее значение квадрата силы тока равно половине квадрата амплитуды силы переменного тока:

i2=I2max2

Определение

Действующее значение силы переменного тока — величина, равная квадратному корню, взятому из среднего значения квадрата тока. Обозначается как I.

I=i2=Imax2

Смысл действующего значения силы переменного тока заключается в том, что оно равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за это же время.

Аналогично определяется действующее значение напряжения U:

U=u2=Umax2

Именно действующие значения силы тока и напряжения определяют мощность P переменного тока:

P=I2R=UI

Пример №3. Найти мощность переменного тока, если амплитуда силы тока равна 2 А, а сопротивление цепи равно 5 Ом.

P=I2R

I=Imax2

P=(Imax2)2R=I2max2R=222·5=10 Дж

Задание EF22720

В идеальном колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону UC = U0cos ωt, где U0 = 5 В, ω = 1000π с1. Определите период колебаний напряжения на конденсаторе.


Алгоритм решения

1.Записать исходные данные.

2.Записать формулу Томсона.

3.Вычислить искомую величину, подставив известные данные.

Решение

Запишем исходные данные:

 Закон изменения напряжения между обкладками конденсатора: UC=U0cosωt.

 Амплитуда напряжения: U0=5 В.

 Циклическая частота колебаний: ω = 1000π с–1.

Запишем формулу Томсона:

T=2πω=2π1000π=21000=0,002 (с)

Ответ: 0,002

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18735

В электрической цепи, показанной на рисунке, ключ К длительное время замкнут, E=6 В, r = 2 Ом, L = 1 мГн. В момент t = 0 ключ К размыкают. Амплитуда напряжения на конденсаторе в ходе возникших в контуре электромагнитных колебаний равна ЭДС источника. В какой момент времени напряжение на конденсаторе в первый раз достигнет значения E? Сопротивлением проводов и активным сопротивлением катушки индуктивности пренебречь. Ответ запишите в мкс.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Описать, что происходит в момент замыкания и размыкания цепи.

3.Выполнить решение задачи в общем виде.

4.Вычислить искомую величину, подставив известные данные.

Решение

Запишем исходные данные:

 ЭДС источника тока: ε=5 В.

 Амплитуда колебаний напряжения на конденсаторе: UCmax=5 В.

 Сопротивление ЭДС источника тока: r = 2 Ом.

 Индуктивность катушки: L = 1 мГн.

1 мГн = 10–3 Гн

Перед размыканием ключа К ток через конденсатор не идет, по катушке течёт ток:

I0=εr

Напряжение на конденсаторе в начальный момент времени равно нулю, так как оно равно нулю на катушке: U0C=0 В.

После размыкания ключа К в контуре возникают гармонические колебания напряжения между обкладками конденсатора и тока в контуре. Благодаря начальному условию (U0C=0 В) потенциал верхней обкладки конденсатора относительно нижней начинает меняться по закону:

u=UCmaxsinωt

Знак «–» в формуле связан с тем, что сразу после размыкания ключа К ток приносит положительный заряд на нижнюю обкладку конденсатора.

Циклическую частоту выразим из формулы Томсона:

ω=2πT=1LC

Энергия электромагнитных колебаний в контуре сохраняется. Она определяется формулой:

W=Li22+Cu22=CU2Cmax2=LI202

Выразим максимальное напряжение на конденсаторе:

CU2Cmax=LI20

UCmax=I0LC

Учтем, что амплитуда напряжения на конденсаторе равна напряжению источника тока, а I0=εr. Тогда получим:

UCmax=ε=I0r=I0LC

Отсюда:

LC=r

C=Lr2

Период колебаний в контуре определим через формулу Томсона:

T=2πLC=2πLLr2=2πLr

Вспомним зависимость напряжения от времени:

u=UCmaxsinωt

Подставим известные данные для искомого момента времени:

5=5sinωt

Синус должен быть равен «–1» Это возможно, если с начального момента времени пройдет четверть периода:

t=T4=2π4Lr=π210327,85·106(с)=7,85 (мкс)

Ответ: 7,85

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18116

Ученик изучает зависимость периода электромагнитных колебаний в контуре от ёмкости конденсатора. Какие два контура он должен выбрать для этого исследования?


Алгоритм решения

  1. Выделить цель эксперимента.
  2. Установить, какие величины для достижения цели эксперимента должны меняться, а какие — оставаться постоянными.
  3. Выбрать верную пару контуров

Решение

Цель эксперимента — изучить зависимость периода электромагнитных колебаний в контуре от ёмкости конденсатора. Следовательно, емкости конденсатора должна быть единственной меняющейся величиной. При этом все другие величины должны оставаться постоянными. Поэтому катушки индуктивности должны быть одинаковыми, но конденсаторы — разные. Этому условию соответствует рисунок «а».

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18656

На рисунке приведён график зависимости силы тока i от времени t при свободных гармонических колебаниях в колебательном контуре. Каким станет период свободных колебаний в контуре, если конденсатор в этом контуре заменить на другой конденсатор, ёмкость которого в 4 раза меньше? Ответ запишите в мкс.


Алгоритм решения

1.Записать исходные данные (определить по графику начальный период колебаний).

2.Перевести единицы измерения величин в СИ.

3.Записать формулу Томсона.

4.Выполнить решение в общем виде.

5.Установить, каким станет период колебаний после уменьшения емкости конденсатора.

Решение

Запишем исходные данные:

 Период колебаний (определяем по графику): T = 4 мкс.

 Емкость конденсатора в первом опыте: C1 = 4C.

 Емкость конденсатора во втором опыте: C2 = C.

4 мкс = 4∙10–6 с

Запишем формулу Томсона:

T=2πLC

Применим формулу для обоих опытов и получим:

T1=2πL4C=4πLC

T2=2πLC

Поделим первый период на второй:

T1T2=4πLC2πLC=2

Отсюда:

T2=T12=4·1062=2·106 (с)=2 (мкс)

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 5.6k

Конспект урока: Мощность в цепи переменного тока

Электромагнитные колебания и волны


Мощность в цепи переменного тока

План урока

  • Вывод формулы средней мощности переменного тока за период колебаний
  • Решение задач

Цели урока

  • Уметь находить мгновенную и среднюю мощность переменного тока
  • Знать, что такое коэффициент мощности
  • Уметь решать задачи по данной теме

Разминка

  • Какой ток называют переменным?
  • Чему равна ЭДС индукции в цепи переменного тока?
  • Можно ли использовать формулы для расчета работы и мощности постоянного тока для переменного? Почему?

Вывод формулы средней мощности переменного тока за период колебаний

Рассмотрим цепь переменного тока. Пусть закон изменения напряжения между выводами источника имеет вид:

U=Um·cos(ω·t).                               (1)

В общем случае колебания напряжения между выводами источника по фазе могут не совпадать с колебаниями силы тока. Поэтому закон изменения силы тока в этой цепи может быть записан в виде:

I=Im·cos(ω·t+φ).                              (2)

Из формул (1) и (2) следует, что мгновенная мощность, потребляемая цепью, равна:

P=I·U=Im·Um·cos(ω·t)·cos(ω·t+φ).             (3)

Из формулы (3) следует, что мгновенная мощность с течением времени непрерывно изменяется. Определим среднюю мощность за период колебаний. Для этого, используя известную из тригонометрии формулу для произведения косинусов, преобразуем формулу (3) к виду:

P=Im·Um2·cos(2ω·t+φ)+cosφ.                    (4)

Поскольку среднее значение функции cos(2ω·t+φ) за период равно нулю, то средняя за период мощность P¯, потребляемая цепью, может быть рассчитана по формуле:

P¯=Im·Um2·cosφ.                      (5) 


Среднюю за период мощность P¯ можно вычислить и через действующие значения силы тока и напряжения: 

P¯=Iд·Uд·cosφ.                    (6)

Входящую в формулы (5) и (6) величину cosφ называют
коэффициентом мощности.
 


Отметим, что рассматриваемые при решении практических задач промежутки времени существенно превышают период колебаний в цепи переменного тока. Поэтому обычно среднюю за такие промежутки времени мощность считают равной средней за период мощности. При этом используют термин «средняя мощность переменного тока».

Из формул (5) и (6) следует, что средняя мощность переменного тока зависит от разности фаз колебаний напряжения и силы тока. В промышленных сетях сдвиг фаз, как правило, обусловлен включением в них устройств, имеющих большие индуктивные сопротивления. К таким устройствам относятся, например, электродвигатели и трансформаторы, работающие с неполной нагрузкой. Для уменьшения сдвига фаз, а следовательно, увеличения полезной мощности, к таким устройствам часто подключают конденсаторы. Для промышленных предприятий наименьший допустимый коэффициент мощности равен 0,85.

Решение задач


Упражнение 1

1. В результате включения в цепь переменного тока конденсатора и резистора сдвиг фаз между колебаниями напряжения и силы тока уменьшился от π3 до π6. При этом действующие значения силы тока и напряжения не изменились. Определите: а) во сколько раз изменился коэффициент мощности; б) на сколько процентов изменилась средняя потребляемая мощность.

2. В городскую сеть переменного тока с частотой 50 Гц и с амплитудным напряжением 311 В включены последовательно резистор с сопротивлением 157 Ом и катушка с индуктивностью 0,5 Гн. определите среднюю мощность, потребляемую этой цепью.


Контрольные вопросы

1. Как рассчитывают среднюю мощность переменного тока?

2. Что называют коэффициентом мощности?

3. Как можно увеличить коэффициент мощности?


Ответы

Упражнение 1

1. а) 0,577;    б) 0,732. 

2. 154 В. 


Предыдущий урок

Магнитные свойства вещества

Магнитное поле

Следующий урок

Производство, передача и потребление электрической энергии. Трансформатор

Электромагнитные колебания и волны

М

Рис. 3. 1. Графическое
изображение переменного синусоидального
тока

гновенная мощность синусоидального
тока является переменной величиной

p(t)=Ri²(t), (3.
5)

поэтому при оценке
энергии, выделяемой в нагрузке за период,
используют среднюю мощность


. (3.6)

Для расчета средней
мощности вводят понятие действующего
(эффективного) значения переменного
тока I.
Действующим называется такое значение
переменного тока, которое вызывает
выделение в активной нагрузке R
энергии, равной энергии, выделяющейся
от протекания эквивалентного постоянного
тока. То есть средняя мощность переменного
тока Рср
должна равняться мощности постоянного
тока P=RI2.
Отсюда


,


,

. (3.
7)

При вычислении
действующего значения напряжения
получается аналогичный результат:

.

3.3. Комплексное представление синусоидального тока

Д

Рис. 3. 2. Связь
между синусоидальным током и его
комплексным

представлением

ля расчета электрических цепей
синусоидального тока используется
символический метод, основанный на
комплексном представлении тока. Известно,
что синусоидальная величина может быть
представлена вектором на комплексной
плоскости (рис. 3. 2, а, б). При этом значение
синусоидальной величины в любой момент
времени может быть определено как
проекция вектора


(3.
8)

на ось мнимых
чисел. То есть действительные значения
тока получают как мнимую часть от
комплексного числа (рис. 3. 2, а):


(3.
9)

Значение

называют комплексом мгновенного значения
тока. Так как синусоидальная функция в
любой момент времени t
может быть определена по известным
параметрам Im,
ω, φ, то
все расчеты производят для момента
времени t=0.
Тогда ωt=0
и комплекс
мгновенных значений преобразуется в
комплекс амплитуды тока


,

. (3.
10)

При расчетах часто
используют комплекс действующего
значения тока. Он, как и действующее
значение (3. 7), отличается от комплекса
амплитудного значения тока в

раз (
).
Комплекс амплитуды можно представить
в алгебраической и тригонометрической
формах:


,


,


. (3.
11)

Модуль Im
и аргумент
φ комплексного числа могут быть найдены
по формулам


Рис. 3. 3. Пример
графического сложения комплексных
токов

. (3. 12)

Сложение и вычитание
комплексных чисел необходимо проводить
в алгебраической (
,

)
форме, а умножение и деление – в
показательной (
,

).

При сложении
комплексных токов одной частоты отдельно
складываются действительные и мнимые
части:


.

Сложение комплексных
значений токов может быть проведено на
комплексной плоскости (рис. 3. 3).

При умножении
(делении) комплексных токов одной частоты
амплитуды отдельных токов умножаются
(делятся), а фазы складываются (вычитаются):


.

Необходимо
отметить, что умножение комплексной
величины на мнимую единицу приводит к
повороту исходного вектора на угол 90°
против часовой стрелки на комплексной
плоскости (рис. 3. 4, а):


. (3.
13)

Д

Рис. 3. 4. Умножение
(а) и деление (б) комплексного тока

на
мнимую единицу

еление комплексной величины на
мнимую единицу приводит к повороту
исходного вектора на угол 90° по часовой
стрелке на комплексной плоскости (рис.
3. 4, б)


. (3.
14)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • C000001d как исправить
  • Как действует сода в качестве средства от изжоги составьте уравнение реакции
  • Как найти покемонов в покемон гоу
  • Найти как размещать ссылку в интернете
  • Как найти неисправность на мерседес