Как найти среднюю напряженность электрического поля

Электростатика: элементы учебной физики
Лекция 5. Напряжённость электрического поля

Продолжение. См. № 17,
18, 19, 20/07

В.В.МАЙЕР,
ГОУ ВПО ГГПИ им. В.Г.Короленко, г. Глазов,
Республика Удмуртия

varaksina_ei@list.ru

Электростатика: элементы учебной
физики

Понятие электрического поля оказалось
плодотворным потому, что удалось ввести
количественные характеристики, которые
позволяют решать конкретные физические задачи. К
ним в первую очередь относятся напряжённость и
потенциал электрического поля.

Экспериментальные исследования
учащихся должны показать, что напряжённость
реально может быть измерена и что эта величина
действительно характеризует электрическое поле.
Относительно новое для школьников – один и тот
же прибор, электростатический динамометр, при
соответствующей градуировке может быть
использован в качестве измерителя и силы, и
напряжённости. Однако это вовсе не значит, что
этим прибором можно измерить любую
электростатическую величину: ни при какой
градуировке электростатического динамометра не
удастся получить прибор, измеряющий, скажем,
потенциал электрического поля.

Принципиально важно
экспериментальное обоснование принципа
суперпозиции электрических полей. Такое
обоснование можно было бы осуществить уже при
введении понятия электрического поля, но
предпочтительнее сделать это, когда учащиеся
будут ознакомлены с понятием напряжённости.

5.1. Напряжённость электрического
поля.
Силовой характеристикой
электрического поля является вектор
напряжённости электрического поля E,
равный отношению вектора силы, действующей в
данной точке поля на пробный положительный
заряд, к величине этого заряда:


         ( 5.1)

Напряжённость в системе единиц СИ
выражается в ньютонах на кулон (Н/Кл).

5.2. Напряжённость электрического
поля точечного заряда.
Во многих задачах
электростатики размерами заряженных тел по
сравнению с расстояниями до точек наблюдения
можно пренебречь. В таких случаях говорят о
точечных зарядах. Понятно, что на самом деле
никаких точечных зарядов или заряженных точек в
природе не существует, — это просто удобная
абстракция.

Закон Кулона, как вы знаете, справедлив
именно для точечных зарядов. Непосредственно из
закона Кулона следует, что модуль вектора
напряжённости электрического поля точечного
заряда Q:


         (5.2)

где R – расстояние до точки
наблюдения, q – пробный положительный заряд.

5.3. Силовые линии
электростатического поля.
Фарадей, который
ввёл понятие электрического поля, внутренним
взором видел заряды, окружённые полями.
Изображать их он стал линиями, вдоль которых на
пробный заряд со стороны поля действуют силы. Силовые
линии
электростатического поля часто
называют линиями напряжённости, т.к. вектор
напряжённости электрического поля в любой точке
такой линии касателен к ней. Вместо пробного
заряда для построения силовых линий удобнее
использовать электрический диполь.

Введя в электрическое поле
положительный пробный заряд на нити, по его
отклонению от положения равновесия определим
направление напряжённости поля. Уберём заряд и
вместо него в ту же точку внесём диполь. При
этом обнаружим, что он повернулся своим
положительным полюсом в направлении вектора
напряжённости электрического поля. Используя
диполь, нетрудно экспериментально доказать, что
электрическое поле можно характеризовать
силовыми линиями, т.е. такими линиями, в каждой
точке которых напряжённость поля является
касательной к ним.

Для этого создадим произвольное
электрическое поле, введём в него диполь и
отметим положение его положительного и
отрицательного полюсов. Переместим диполь так,
чтобы его, например, отрицательный полюс совпал с
точкой, в которой находился положительный.
Многократно повторяя эту операцию, получим
совокупность точек. Соединив эти точки плавной
линией, получим силовую линию исследуемого
электростатического поля.

Опыт показывает, что через каждую
точку поля проходит только одна силовая линия.
Если бы было не так, то в точке пересечения двух
силовых линий одного поля на заряд действовали
бы разные силы.

Повторяя описанные выше действия,
построим семейство силовых линий так, чтобы их
начальные точки находились на поверхности
заряженного тела на равных расстояниях друг от
друга. Обнаружим, что силовые линии
располагаются с различной густотой. Внесём в
поле пробный заряд на нити в области с
максимальной и минимальной густотой силовых
линий и обнаружим, что в этих областях
напряжённость электрического поля
соответственно максимальна и минимальна.

Силовые линии сгущаются возле зарядов,
т.е. там, где модуль вектора напряжённости
электрического поля больше. Значит, густота
силовых линий определяется напряжённостью поля.
Семейство силовых линий в принципе может
полностью охарактеризовать электрическое поле.

Проделанные опыты показывают, что
силовые линии начинаются или заканчиваются на
зарядах, идут в бесконечность или выходят из неё.
В электростатическом поле замкнутых силовых
линий нет.

5.4. Принцип суперпозиции
напряжённостей электростатических полей.

Из принципа суперпозиции полей следует, что сила,
действующая на пробный заряд со стороны других
зарядов, равна геометрической сумме всех
действующих на заряд сил по отдельности. Но если
это так, то напряжённости электрических полей,
равные отношениям сил к величине пробного
заряда, складываются подобно силам.

Таким образом, для электрических полей
справедлив принцип суперпозиции в
следующей формулировке: напряжённость
результирующего электрического поля есть
геометрическая (векторная) сумма напряжённостей
полей, создаваемых отдельными зарядами:

E = E1 + E2 + E3 + …
         (5.3)

Применение принципа суперпозиции для
напряжённостей позволяет существенно облегчить
решение многих задач электростатики.

5.5. Поток вектора напряжённости
электрического поля.
Представим себе
точечный положительный заряд Q, находящийся
в центре сферической поверхности 1 радиусом r.
В точках этой поверхности напряжённость
электрического поля Так как площадь

поверхности сферы S = 4r2, то её
произведение на напряжённость электрического
поля не зависит ни от чего, кроме заряда:


         (5.4)

поэтому характеризует электрическое
поле в целом. Эта величина получила название потока
вектора напряжённости электрического поля.

Поток напряжённости через
концентрические сферические поверхности 1 и
2 одинаков. Так как он характеризует поле
заряда в целом, нужно, чтобы он оставался тем же и
для произвольной замкнутой поверхности 3. Но
для неё вектор напряжённости уже не является
нормалью к элементу поверхности. Поэтому для
определения потока вектора E через
элемент поверхности вместо площади этого
элемента следует брать площадь его проекции на
плоскость, перпендикулярную вектору E.
Условимся поток считать положительным, если
вектор напряжённости выходит из замкнутой
поверхности, и отрицательным, если он входит в
неё. Если заряд находится вне замкнутой
поверхности 4, то поток напряжённости через
неё равен нулю. Дело в том, что входящий внутрь
области поток по модулю равен выходящему.

5.6. Теорема Гаусса. Мысленно
переместим заряд из центра сферической
поверхности в любую точку внутри неё. Очевидно,
поток вектора напряжённости электрического поля
от этого не изменится, т.к., по самому определению,
он один и тот же для любой замкнутой поверхности,
окружающей заряд. Разместим внутри этой
поверхности не один, а несколько в общем случае
различных зарядов. По принципу суперпозиции
электрические поля этих зарядов не влияют друг
на друга, значит, потоки, созданные каждым
зарядом по отдельности, остаются неизменными.
Результирующий поток, очевидно, равен сумме
потоков от всех зарядов.

Это и есть теорема Гаусса: поток
вектора напряжённости через произвольную
замкнутую поверхность равен алгебраической
сумме зарядов, расположенных внутри этой
поверхности, делённой на электрическую
постоянную:


         (5.5)

Если алгебраическая сумма зарядов
внутри замкнутой поверхности равна нулю, то
поток напряжённости электрического поля через
эту поверхность также равен нулю. Это понятно,
поскольку положительные заряды внутри
поверхности создают положительный поток, а
отрицательные – равный ему по модулю
отрицательный.

5.7. Поверхностная плотность
заряда.
Если проводящему телу сообщить
заряд, то он будет распределён по его
поверхности. В общем случае на участках
поверхности одинаковой площади окажутся разные
заряды. Отношение заряда Q к площади поверхности S, на которой
он распределён, называется поверхностной
плотностью заряда

        
(5.6)

Поверхностная плотность заряда
выражается в кулонах на квадратный метр (Кл/м2).

5.8. Напряжённость электрического
поля заряженного шара.
Используя теорему
Гаусса, нетрудно определить напряжённость
электрического поля, созданного заряженным
проводящим шаром. Действительно, если на
поверхности сферы радиусом r > R, центр
которой совпадает с центром шара, равномерно
распределён заряд Q, то поток вектора E
через сферическую поверхность радиусом r,
согласно теореме Гаусса, равен:

Отсюда напряжённость электрического
поля на расстоянии r от центра заряженной сферы
равна


         (5.7)

Сравнивая (5.7) с (5.2), приходим к выводу,
что напряжённость электрического поля
заряженного шара равна напряжённости такого же
точечного заряда, расположенного в центре шара.

5.9. Напряжённость электрического поля
заряженной плоскости.
Рассмотрим
бесконечную плоскость, заряженную равномерно с
поверхностной плотностью заряда . Электрическое поле такой
поверхности однородно, причём силовые линии
перпендикулярны поверхности. Чтобы найти
напряжённость поля, воспользуемся теоремой
Гаусса. Для этого построим замкнутую
цилиндрическую поверхность, ось которой
параллельна силовым линиям поля, а основания
площадью S находятся по разные стороны от
поверхности. Поток напряжённости через боковую
поверхность цилиндра равен нулю, т.к. силовые
линии её не пересекают. Поэтому полный поток
напряжённости через выбранную поверхность равен
сумме потоков через основания цилиндра: N = 2 • ЕS.
Полный заряд внутри цилиндра равен Q = S. Согласно
теореме Гаусса,
Отсюда напряжённость электрического поля

 
         (5.8)

Итак, напряжённость электрического
поля заряженной плоскости равна поверхностной
плотности заряда, делённой на удвоенное значение
электрической постоянной.

5.10. Напряжённость электрического
поля разноимённо заряженных параллельных
плоскостей.
Пусть некоторая плоскость
заряжена равномерно с плотностью заряда . Параллельно этой
плоскости расположим вторую, с такой же
плотностью заряда противоположного знака.
Найдём напряжённость электрического поля в этом
случае.

Каждая плоскость создаёт поле
напряжённостью E’/(20).
Согласно принципу суперпозиции, напряжённость
результирующего электрического поля равна сумме
напряжённостей этих полей. Так как между
плоскостями напряжённости полей имеют
одинаковое направление, то результирующая
напряжённость Е = 2E’:

(5.9)

Следовательно, напряжённость
электрического поля между параллельными
плоскостями, несущими равные по модулю
разноимённые заряды, равна поверхностной
плотности заряда одной из плоскостей, делённой
на электрическую постоянную. Вне плоскостей
векторы напряжённостей направлены
противоположно и, поскольку их модули равны, поле
вообще отсутствует. Обратите внимание, что не
важно, проводят плоскости электричество или нет.

Исследование 5.1. Напряжённость
электрического поля

Проблема. Возможна ли в доступном
учебном эксперименте количественная оценка
напряжённости электрического поля, создаваемого
зарядами на наэлектризованных телах?

Задание. Используя
электростатический динамометр, разработайте
методику введения понятия напряжённости
электрического поля и предложите прибор для
измерения напряжённостей.

Вариант выполнения. Проводящему
шару сообщите заряд, для определённости
положительный. На пробный шарик
электростатического динамометра (см.
исследование 3.4) также нанесите некоторый заряд.
Введите динамометр в электрическое поле
заряженного шара и разверните так, чтобы его
показания стали максимальны. Это означает, что
пробный шарик электростатического динамометра
отклоняется в ту же сторону, куда направлена
сила, действующая на него со стороны
электрического поля.

Прикоснитесь к пробному шарику таким
же незаряженным шариком и уберите его: пробный
заряд уменьшится в два раза, показания
динамометра для того же расстояния до точки
наблюдения тоже уменьшаются в два раза.

Повторяя опыт с разными зарядами,
убедитесь, что отношение силы f, действующей
на пробный заряд q, к величине этого заряда в
данной точке поля остаётся постоянным, а при
переходе от одной точки к другой, вообще говоря,
меняется. Значит, это отношение может
характеризовать электрическое поле. Оно и
получило название напряжённости
электрического поля.
Шкалу
электростатического динамометра, которым вы
пользовались для измерения силы
электростатического взаимодействия, можно
отградуировать в единицах напряжённости. Тогда
допустимо считать этот прибор измерителем
напряжённости
электрического поля.
Градуировку нетрудно осуществить в единицах
Н/Кл, если предварительно измерить величину
пробного заряда (см. исследование 3.6).

Учащиеся должны понять, каким образом
один и тот же прибор превратился из измерителя
силы в измеритель напряжённости.

Исследование 5.2. Зависимость
напряжённости электрического поля от радиуса
заряженного шара

Задание. Разработайте
демонстрационный эксперимент, который может
служить обоснованием справедливости теоремы
Гаусса для электростатических полей.

Вариант выполнения.

Зарядите стоящий на диэлектрической
подставке небольшой проводящий шар. К нему
подведите измеритель напряжённости
электрического поля, пробный шарик которого
несёт такой же по знаку заряд, как заряд,
создающий исследуемое поле. Запомните
отклонение стрелки измерителя.

Первый шар с зарядом опустите в
полость второго проводящего шара значительно
большего диаметра, установленного на
диэлектрической подставке. Приближайте этот
второй шар к пробному шарику измерителя
напряжённости. Оказывается, когда центр второго
шара совпадает с точкой, в которой находился
центр первого шара, стрелка измерителя
отклоняется на первоначальное число делений.

Отсюда следует, что независимо от
радиуса заряженного шара на одном и том же
расстоянии от его центра напряжённость
электрического поля одна и та же. Тем самым
теорема Гаусса получила подтверждение в
демонстрационном эксперименте.

Понятно, что теорема Гаусса носит
общий характер и, строго говоря, не нуждается в
обоснованиях, подобных здесь рассмотренному. Но
в дидактических целях такое обоснование
совершенно необходимо, поскольку оно
способствует укреплению в сознании учащихся
неразрывной связи физической теории с
объективной реальностью.

Исследование 5.3. Суперпозиция
электрических полей

Информация. Чтобы убедиться в
справедливости принципа суперпозиции
электрических полей, нужно уметь определять не
только модули сил, действующих на заряды, но и их
направления. Делать это с помощью
электростатического динамометра неудобно. Кроме
того, он не позволяет графически изображать
векторы сил. Если на нити подвесить лёгкое
заряженное тело, то силу, действующую на него в
электрическом поле, можно оценить по отклонению
тела из положения равновесия. Но для измерения
этого отклонения воспользоваться линейкой не
удастся: приближение её к заряженному телу
вызывает изменение его положения. Чтобы
устранить эту трудность, можно спроецировать
заряженное тело на горизонтальную плоскость.

Задание. Разработайте и выполните
эксперимент, доказывающий справедливость
принципа суперпозиции электрических полей.

Вариант выполнения. К стеклянному
баллону маленькой лампочки приклейте тонкую
нить с лёгким проводящим шариком небольшого
радиуса на конце. Нанесите на шарик пробный
заряд. Лампочку закрепите над листом бумаги и
включите её. На листе бумаги цифрой 0
отметьте положение тени от шарика, находящегося
в положении равновесия. Приблизьте к пробному
заряду заряд Q1 и цифрой 1 отметьте
на листе положение тени отклонившегося шарика.
Уберите заряд Q1 и вместо него вблизи
пробного шарика расположите заряд Q2.
При этом тень от шарика займёт новое положение 2.

Верните заряд Q1 в
первоначальное положение. Теперь пробный шарик
находится в поле сразу двух зарядов и
отклоняется от положения равновесия так, что его
тень занимает положение 3. Проанализируйте
результат эксперимента. Очевидно, при смещении
шарика из положения равновесия его тень
смещается на величину, пропорциональную силе,
действующей на шарик в новом положении
равновесия (см. исследование 3.5). При малых
отклонениях пробного шарика эту силу
приближённо можно считать равной силе,
действующей на шарик в исходном положении. Длины
отрезков, соединяющих точку 0 с точками 1,
2 и 3, пропорциональны модулям
соответствующих сил. Соединив указанные точки
векторами, вы обнаружите, что вектор
результирующей силы, действующей на пробный
заряд, примерно равен сумме векторов сил,
действующих на него со стороны каждого заряда по
отдельности. Понятно, что точные измерения,
выполненные с более совершенными приборами,
вместо приближённого дадут точное равенство.

Поразительно единство природы: силы,
созданные электрическими полями, складываются
так же, как механические! Но если это так, то
напряжённости электрических полей, равные
отношениям сил к величине пробного заряда,
складываются подобно силам. Оставив шары
неподвижными, изменяйте их заряды в одинаковое
число раз (см. п. 2.6). При этом вы обнаружите, что
направление напряжённости результирующего поля
остаётся неизменным.

Таким образом, принцип суперпозиции
электростатических полей экспериментально
обоснован.

Исследование 5.4. Демонстрация
принципа суперпозиции напряжённостей

Проблема. Индивидуальный опыт,
выполненный в результате предыдущего
исследования, не позволяет убедиться в
справедливости принципа суперпозиции
напряжённостей электростатических полей всему
классу непосредственно на уроке. Как решить эту
проблему?

Задание. Учитывая возможности
кодоскопа, разработайте демонстрационный
вариант эксперимента, обосновывающего
справедливость принципа суперпозиции, и
методику проведения его на уроке.

Вариант выполнения. Из толстой
алюминиевой проволоки в изоляции выгните
специальный штатив высотой примерно 30 см и
поставьте его на конденсор кодоскопа. К верхнему
концу штатива привяжите конец тонкой нейлоновой
нити длиной примерно 20 см. На нижнем конце нити
закрепите шарик диаметром около 3 мм из тонкой
алюминиевой фольги. На конденсор кодоскопа на
стойках высотой 10 см, изготовленных из
полиэтиленовых трубок, поставьте пенопластовые
шары диаметром 15–20 мм, обёрнутые тонкой фольгой.
Основания стоек лучше сделать из прозрачного
оргстекла.

Уберите с конденсора стойки с шарами,
включите осветитель кодоскопа и на классной
доске получите изображение висящего на нити
пробного шарика. Одноимёнными зарядами зарядите
пробный шарик и два шара на стойках. На доске
мелом отметьте положение пробного шарика.
Поставьте на конденсор один из заряженных шаров,
отметьте его положение и положение пробного
шарика. Уберите первый заряженный шар и в
произвольное место поставьте второй, отметив на
доске новое положение пробного шарика. Верните в
первоначальное положение первый шар, обозначьте
результирующее положение пробного шарика, мелом
на доске нарисуйте соответствующие векторы сил и
предложите учащимся сделать вывод из
продемонстрированного опыта.

Исследование 5.5. Плотность заряда
на поверхности проводника

Задание. Докажите, что плотность
заряда на поверхности проводника, вообще говоря,
различна.

Вариант выполнения. Зарядите
расположенный на изолирующей подставке
проводник цилиндрической формы с остриём и
коническим углублением. Пробным шариком на
изолирующей ручке, предварительно заземлённым,
коснитесь цилиндрической поверхности
проводника и поместите его внутрь полого шара,
соединённого с электрометром. Если угол
отклонения стрелки мал, повторите перенос заряда
несколько раз. Запомните показания электрометра,
разрядите его и пробный шарик. Попробуйте снять
заряд из конического углубления в поверхности
проводника, и вы убедитесь, что там он
практически отсутствует. Повторите опыт, касаясь
пробным шариком теперь уже точки поверхности,
расположенной на острие проводника. В этом
случае угол отклонения стрелки электрометра
будет значительно больше, чем в первом опыте. Так
как вблизи острия пробный шарик заряжается до
большей величины, то в этой области плотность
распределения заряда по поверхности проводника
больше.

Зарядите металлический диск,
закреплённый за изолирующую ручку в штативе.
Проведя опыты, аналогичные описанным, покажите,
что плотность заряда во всех точках плоской
поверхности диска вдали от его края одинакова, а
на краю возрастает.

Исследование 5.6. Напряжённость
электрического поля вблизи заряженного
проводника

Задание. Поставьте опыт,
показывающий, что напряжённость электрического
поля вблизи заряженного проводника определяется
поверхностной плотностью заряда.

Вариант выполнения. Вблизи
проводника сложной формы расположите
электростатический динамометр и перемещайте его
так, чтобы расстояние до поверхности проводника
оставалось постоянным, а сила действовала на
шарик динамометра по нормали к поверхности. Опыт
должен показать, что там, где на поверхности
проводника плотность заряда больше, вблизи этой
поверхности больше и напряжённость
электрического поля (см. исследование 5.5).
Проанализируйте полученные результаты и
сделайте соответствующие выводы.

Исследование 5.7. Электрическое
поле вблизи заряженных плоскостей

Задание. Прямым экспериментом
подтвердите, что равномерно заряженная
плоскость даёт электрическое поле по обе стороны
от неё, а две параллельно установленные
плоскости, несущие равные заряды
противоположных знаков, создают электрическое
поле только в области между ними.

Вариант выполнения. На нитях
подвесьте два одинаковых обёрнутых алюминиевой
фольгой пенопластовых шарика так, чтобы они
касались металлического диска с противоположных
сторон. Зарядите диск от пьезоэлектрического или
иного источника. При этом шарики отойдут от диска
на равные расстояния, свидетельствуя о том, что
электрическое поле существует по обе стороны от
заряженного диска.

Точно такой же диск зарядите равным по
модулю и противоположным по знаку зарядом.
Постепенно приближайте второй диск к первому
так, чтобы они оставались параллельными. Вы
заметите, что отклонение шарика, находящегося
вне дисков, уменьшается, а находящегося между
дисками – увеличивается. Наконец, первый шарик
касается диска, показывая, что поле вне дисков
практически исчезло, а второй шарик отклоняется
на угол, примерно в два раза превышающий
первоначальный.

Исследование 5.8. Точное
подтверждение закона Кулона

Информация.

На диэлектрической стойке закрепите
металлический шар и заключите его между двумя
проводящими полусферами, одна из которых имеет
отверстие. Через отверстие проводником на
изолированной нити соедините шар с полусферами.
Зарядите полусферы. За нить удалите проводник.
Разомкнув шар и полусферы, разведите полусферы в
стороны, разрядите их, а к шару подсоедините
чувствительный электрометр: никакого заряда на
шаре вы не обнаружите. Значит, эксперимент ещё
раз показывает, что на проводнике, находящемся
внутри другого проводника, заряда нет.

Это справедливо потому, что справедлив
закон Кулона. Действительно, внутри проводящей
равномерно заряженной сферы выберем
произвольную точку А и вертикальными
конусами вырежем на сфере площадки S1 и S2. Из геометрии
известно, что Но
эти площадки имеют заряды, пропорциональные их
величинам:
Небольшие площадки создают в точке А поля
напряжённостями  
и отношение
которых

Значит, поскольку напряжённости полей,
созданных любыми подобными парами площадок на
сфере, равны по модулю и противоположно
направлены, результирующая напряжённость поля,
созданного в точке А всей заряженной сферой,
должна быть равна нулю.

Это и показывает эксперимент. Если бы
на опыте был обнаружен хотя бы слабый заряд на
внутреннем шаре, то оказалась бы неверной
формула для напряжённости поля точечного заряда
(5.2) и, следовательно, в законе Кулона (3.1) сила
взаимодействия между зарядами не была бы обратно
пропорциональна квадрату расстояния между ними.
Так как заряд можно измерить с гораздо более
высокой точностью, чем силу взаимодействия между
зарядами, а из закона Кулона следует, что поле
внутри тела отсутствует независимо от его формы,
то рассмотренный эксперимент корректнее
доказывает справедливость закона Кулона, чем
ранее описанные опыты.

Задание. Разработайте и поставьте
доступный вариант рассмотренного эксперимента,
с максимальной убедительностью показывающий,
что внутри заряженного полого проводника
электрическое поле отсутствует.

Вариант выполнения. Чтобы
обнаружить электрическое поле, можно
воспользоваться явлением электростатической
индукции. Внесём в поле два соприкасающихся
проводящих тела на изолированных ручках. В них
произойдёт перераспределение зарядов. Не удаляя
из поля, разъединим эти тела – на них останутся
заряды противоположных знаков. Эти заряды можно
измерить электрометром, находящимся вне
исследуемого поля.

Эксперимент можно поставить так. На
подставке из диэлектрика закрепите полый
металлический шар. Проводником в хорошей
изоляции соедините его с одним из кондукторов
электрофорной машины. К шару приблизьте второй
кондуктор и приведите машину в действие. При этом
возникнут мощные искровые разряды длиной до 10 см.
Аккуратно введите внутрь шара одинаковые
металлические пластинки на ручках из оргстекла.
Приведите пластинки в соприкосновение, затем
разъедините, аккуратно достаньте из полости шара
и по очереди введите в шар электрометра. Вы
обнаружите, что никакого заряда на пластинках
нет! Значит, внутри проводящего шара
электрическое поле отсутствует, несмотря на то,
что шар в целом несёт значительный заряд,
сообщаемый ему работающей электрофорной
машиной. Повторите опыт, прикоснувшись пробным
шариком изнутри к металлу заряженного шара, – вы
вновь не обнаружите никакого заряда. Таким
образом, весь электрический заряд сосредоточен
на поверхности проводящего тела. Объясняется
этот результат тем, что справедлив закон Кулона.
В свою очередь, этот экспериментальный факт с
высокой точностью подтверждает справедливость
закона Кулона.

Вопросы для самоконтроля

1. В чём суть методики введения и
формирования понятия напряжённости
электрического поля?

2. Сравните метод построения силовых
линий посредством диполя с методом визуализации
электростатического поля мелким порошком,
взвешенным в жидком диэлектрике.

3. Изложите методику демонстрации на
уроке принципа суперпозиции электростатических
полей.

4. Каким экспериментом можно
подтвердить справедливость теоремы Гаусса?

5. Как зависят плотность заряда и
напряжённость электрического поля от формы
проводника?

6. Предложите демонстрационный опыт,
прямо показывающий зависимость плотности заряда
от площади проводника.

7. В чём дидактическая ценность
опыта с обнаружением электрического поля вблизи
одной и двух параллельных заряженных проводящих
пластин?

8. Нужно ли в школе рассматривать
метод точного подтверждения закона Кулона?

Литература

Бутиков Е.И., Кондратьев А.С.
Физика: Учеб. пособие: В 3-х кн. Кн. 2.
Электродинамика. Оптика. – М.: Физматлит, 2004.

Демонстрационный эксперимент по
физике в старших классах средней школы: Т. 2.
Электричество. Оптика. Физика атома: Под ред.
А.А.Покровского. – М.: Просвещение, 1972.

Кабардин О.Ф., Орлов В.А., Эвенчик
Э.Е
. Физика: Учеб. для 10 кл. шк. и кл. с углубл.
изуч. физики: Под ред. А.А.Пинского. – М.:
Просвещение, 1997.

Учебное оборудование для кабинетов физики
общеобразовательных учреждений: Под ред.
Г.Г.Никифорова. — М.: Дрофа, 2005. (Cм. также «Физика»
(«ПС») № 10/2005; № 4/2007.)

Продолжение см. в № 22/07

Электрическое поле

Электродинамика – раздел физики, изучающий свойства и взаимодействия электрических зарядов, осуществляемые посредством электромагнитного поля.

Электростатикой называется раздел электродинамики, в котором рассматриваются свойства и взаимодействия неподвижных электрически заряженных тел или частиц.

Электромагнитное взаимодействие – это взаимодействие между электрически заряженными частицами или макротелами.

Точечный заряд – заряженное тело, размер которого мал по сравнению с расстоянием, на котором оценивается его действие.

Содержание

  • Электризация тел
  • Взаимодействие зарядов. Два вида зарядов
  • Закон сохранения электрического заряда
  • Закон Кулона
  • Действие электрического поля на электрические заряды
  • Напряженность электрического поля
  • Принцип суперпозиции электрических полей
  • Потенциальность электростатического поля
  • Потенциал электрического поля. Разность потенциалов
  • Проводники в электрическом поле
  • Диэлектрики в электрическом поле
  • Электрическая емкость. Конденсатор
  • Энергия электрического поля конденсатора
  • Основные формулы раздела «Электрическое поле»

Электризация тел

Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.

Способы электризации:

  • трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
  • через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
  • при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
  • при ударе;
  • под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.

Взаимодействие зарядов. Два вида зарядов

Электрический заряд – скалярная физическая величина, характеризующая способность тела участвовать в электромагнитных взаимодействиях.

Обозначение – ​( q )​, единица измерения в СИ – кулон (Кл).

Существуют два вида электрических зарядов: положительный и отрицательный. Наименьший отрицательный заряд имеет электрон (–1,6·10-19 Кл), наименьший положительный заряд (1,6·10-19 Кл) – протон. Минимальный заряд, который может быть сообщен телу, равен заряду электрона (элементарный заряд). Если тело имеет избыточные (лишние) электроны, то тело заряжено отрицательно, если у тела недостаток электронов, то тело заряжено положительно.

Величина заряда тела будет равна

где ​( N )​ — число избыточных или недостающих электронов;
( e )​ — элементарный заряд, равный 1,6·10-19 Кл.

Важно!
Частица может не иметь заряда, но заряд без частицы не существует.

Электрические заряды взаимодействуют:

  • заряды одного знака отталкиваются:

  • заряды противоположных знаков притягиваются:

Прибор для обнаружения электрического заряда называется электроскоп. Основная часть прибора – металлический стержень, на котором закреплены два листочка металлической фольги, помещенные в стеклянный сосуд. При соприкосновении заряженного тела со стержнем электроскопа заряды распределяются между листочками фольги. Так как заряд листочков одинаков по знаку, они отталкиваются.

Для измерения зарядов можно использовать и электрометр. Основные части его – металлический стержень и стрелка, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой закреплен в пластмассовой втулке и помещен в металлический корпус, закрытый стеклянными крышками. При соприкосновении заряженного тела со стержнем стержень и стрелка получают электрические заряды одного знака. Стрелка поворачивается на некоторый угол.

Закон сохранения электрического заряда

Систему называют замкнутой (электрически изолированной), если в ней не происходит обмена зарядами с окружающей средой.

В любой замкнутой (электрически изолированной) системе сумма электрических зарядов остается постоянной при любых взаимодействиях внутри нее.

Полный электрический заряд ​( (q) )​ системы равен алгебраической сумме ее положительных и отрицательных зарядов ​( (q_1, q_2 … q_N) )​:

Важно!
В природе не возникают и не исчезают заряды одного знака: положительный и отрицательный заряды могут взаимно нейтрализовать друг друга, если они равны по модулю.

Закон Кулона

Закон Кулона был открыт экспериментально: в опытах с использованием крутильных весов измерялись силы взаимодействия заряженных шаров.

Закон Кулона формулируется так:
сила взаимодействия ​( F )​ двух точечных неподвижных электрических зарядов в вакууме прямо пропорциональна их модулям ​( q_1 )​ и ( q_2 ) и обратно пропорциональна квадрату расстояния между ними ​( r )​:

где ​( k=frac{1}{4pivarepsilon_0}=9cdot10^9 )​ (Н·м2)/Кл2 – коэффициент пропорциональности,
( varepsilon_0=8.85cdot10^{-12} )​ Кл2/(Н·м2) – электрическая постоянная.

Коэффициент ​( k )​ численно равен силе, с которой два точечных заряда величиной 1 Кл каждый взаимодействуют в вакууме на расстоянии 1 м.

Сила Кулона направлена вдоль прямой, соединяющей взаимодействующие заряды. Заряды взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.

Значение силы Кулона зависит от среды, в которой они находятся. В этом случае формула закона:

где ​( varepsilon )​ – диэлектрическая проницаемость среды.

Закон Кулона применим к взаимодействию

  • неподвижных точечных зарядов;
  • равномерно заряженных тел сферической формы.

В этом случае ​( r )​ – расстояние между центрами сферических поверхностей.

Важно!
Если заряженное тело протяженное, то его необходимо разбить на точечные заряды, рассчитать силы их попарного взаимодействия и найти равнодействующую этих сил (принцип суперпозиции).

Действие электрического поля на электрические заряды

Электрическое поле – это особая форма материи, существующая вокруг электрически заряженных тел.

Впервые понятие электрического поля было введено Фарадеем. Он объяснял взаимодействие зарядов следующим образом: каждый заряд создает вокруг себя электрическое поле, которое с некоторой силой действует на другой заряд.

Свойства электрического поля заключаются в том, что оно:

  • материально;
  • создается зарядом;
  • обнаруживается по действию на заряд;
  • непрерывно распределено в пространстве;
  • ослабевает с увеличением расстояния от заряда.

Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу.

Силу, с которой электрическое поле действует на заряд, можно рассчитать по формуле:

где ​( vec{E} )​ – напряженность электрического поля, ​( q )​ – заряд.

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов механики с учетом закона Кулона и вытекающих из него следствий.

Алгоритм решения задач о точечных зарядах и системах, сводящихся к ним:

  • сделать рисунок; указать силы, действующие на точечный заряд, помещенный в электрическое поле;
  • записать для заряда условие равновесия или основное уравнение динамики материальной точки;
  • выразить силы электрического взаимодействия через заряды и поля и подставить эти выражения в исходное уравнение;
  • если при взаимодействии заряженных тел между ними происходит перераспределение зарядов, к составленному уравнению добавить уравнение закона сохранения зарядов;
  • записать математически все вспомогательные условия;
  • решить полученную систему уравнений относительно неизвестной величины;
  • проверить решение

Напряженность электрического поля

Напряженность электрического поля( vec{E} )​ – векторная физическая величина, равная отношению силы ​( F )​, действующей на пробный точечный заряд, к величине этого заряда ​( q )​:

Обозначение – ( vec{E} ), единица измерения в СИ – Н/Кл или В/м.

Напряженность поля точечного заряда в вакууме вычисляется по формуле:

где ( k=frac{1}{4pivarepsilon_0}=9cdot10^9 ) (Н·м2)/Кл2,
( q_0 )​ – заряд, создающий поле,
( r )​ – расстояние от заряда, создающего поле, до данной точки.

Напряженность поля точечного заряда в среде вычисляется по формуле:

где ​( varepsilon )​ – диэлектрическая проницаемость среды.

Важно!
Напряженность электрического поля не зависит от величины пробного заряда, она определяется величиной заряда, создающего поле.

Направление вектора напряженности в данной точке совпадает с направлением силы, с которой поле действует на положительный пробный заряд, помещенный в эту точку.

Линией напряженности электрического поля называется линия, касательная к которой в каждой точке направлена вдоль вектора напряженности ​( vec{E} )​.

Линии напряженности электростатического поля начинаются на положительных электрических зарядах и заканчиваются на отрицательных электрических зарядах или уходят в бесконечность от положительного заряда и приходят из бесконечности к отрицательному заряду.

Распределение линий напряженности вокруг положительного и отрицательного точечных зарядов показано на рисунке.

Определяя направление вектора ​( vec{E} )​ в различных точках пространства, можно представить картину распределения линий напряженности электрического поля.

Поле, в котором напряженность одинакова по модулю и направлению в любой точке, называется однородным электрическим полем. Однородным можно считать электрическое поле между двумя разноименно заряженными металлическими пластинами. Линии напряженности в однородном электрическом поле параллельны друг другу.

Принцип суперпозиции электрических полей

Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов.

Принцип суперпозиции электрических полей: напряженность электрического поля системы ​( N )​ зарядов равна векторной сумме напряженностей полей, создаваемых каждым из них в отдельности:

Электрические поля от разных источников существуют в одной точке пространства и действуют на заряд независимо друг от друга.

Потенциальность электростатического поля

Электрическое поле с напряженностью ​( vec{E} )​ при перемещении заряда ​( q )​ совершает работу. Работа ​( A )​ электростатического поля вычисляется по формуле:

где ​( d )​ – расстояние, на которое перемещается заряд,
( alpha )​ – угол между векторами напряженности электрического поля и перемещения заряда.

Важно!
Эта формула применима для нахождения работы только в однородном электростатическом поле.

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда.

Потенциальным называется поле, работа сил которого по перемещению заряда по замкнутой траектории равна нулю.

Важно!
Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Электростатическое поле является потенциальным.

Работа электростатического поля по перемещению заряда равна изменению потенциальной энергии, взятому с противоположным знаком. В электродинамике энергию принято обозначать буквой ​( W )​, так как буквой ​( E )​ обозначают напряженность поля:

Потенциальная энергия заряда ​( q )​, помещенного в электростатическое поле, пропорциональна величине этого заряда. Потенциальная энергия взаимодействия зарядов вычисляется относительно нулевого уровня (аналогично потенциальной энергии поля силы тяжести). Выбор нулевого уровня потенциальной энергии определяется исходя из соображений удобства при решении задачи.

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​( varphi )​, единица измерения в СИ – вольт (В).

Потенциал ( varphi ) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Обозначение – ​( Deltavarphi )​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​( U )​ и называют напряжением.

Важно!
Разность потенциалов ( Deltavarphi=varphi_1-varphi_2 ), а не изменение потенциала ( Deltavarphi=varphi_2-varphi_1 ). Тогда работа электростатического поля равна:

Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле.

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда( q )​ в точке, удаленной от него на расстояние ​( r )​, вычисляется по формуле:

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​( r =R )​, где ​( R )​ – радиус шара). Напряженность поля внутри шара равна нулю.

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Разность потенциалов и напряженность связаны формулой:

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов.

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

Проводники в электрическом поле

Проводниками называют вещества, в которых может происходить упорядоченное перемещение электрических зарядов, т. е. протекать электрический ток.

Проводниками являются металлы, водные растворы солей, кислот, ионизованные газы. В проводниках есть свободные электрические заряды. В металлах валентные электроны взаимодействующих друг с другом атомов становятся свободными.

Если металлический проводник поместить в электрическое поле, то под его действием свободные электроны проводника начнут перемещаться в направлении, противоположном направлению напряженности поля. В результате на одной поверхности проводника появится избыточный отрицательный заряд, а на противоположной – избыточный положительный заряд.

Эти заряды создают внутри проводника внутреннее электрическое поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Под действием внешнего электростатического поля электроны проводимости в металлическом проводнике перераспределяются так, что напряженность результирующего поля в любой точке внутри проводника равна нулю. Электрические заряды расположены на поверхности проводника.

Важно!
Если внутри проводника есть полость, то напряженность в ней будет равна нулю независимо от того, какое поле имеется вне проводника и как заряжен проводник. Внутренняя полость в проводнике экранирована (защищена) от внешних электростатических полей. На этом основана электростатическая защита.

Явление перераспределения зарядов во внешнем электростатическом поле называется электростатической индукцией.

Заряды, разделенные электростатическим полем, взаимно компенсируют друг друга, если проводник удалить из поля. Если такой проводник разрезать, не вынося из поля, то его части будут иметь заряды разных знаков.

Важно!
Во всех точках поверхности проводника вектор напряженности направлен перпендикулярно к его поверхности. Поверхность проводника является эквипотенциальной (потенциалы всех точек поверхности проводника равны).

Диэлектрики в электрическом поле

Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.

В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.

В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.

Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.

Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.

Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.

Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.

Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:

В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.

Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.

Электрическая емкость. Конденсатор

Электрическая емкость (электроемкость) – скалярная физическая величина, характеризующая способность уединенного проводника удерживать электрический заряд.

Обозначение – ​( C )​, единица измерения в СИ – фарад (Ф).

Уединенный проводник – это проводник, удаленный от других проводников и заряженных тел.

Фарад – электроемкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл:

Формула для вычисления электроемкости:

где ​( q )​ – заряд проводника, ​( varphi )​ – его потенциал.

Электроемкость зависит от его линейных размеров и геометрической формы. Электроемкость не зависит от материала проводника и его агрегатного состояния. Электроемкость проводника прямо пропорциональна диэлектрической проницаемости среды, в которой он находится.

Конденсатор – это система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.

Проводники называют обкладками конденсатора. Заряды обкладок конденсатора равны по величине и противоположны по знаку заряда. Электрическое поле сосредоточено между обкладками конденсатора. Конденсаторы используют для накопления электрических зарядов.

Электроемкость конденсатора рассчитывается по формуле:

где ​( q )​ – модуль заряда одной из обкладок,
( U )​ – разность потенциалов между обкладками.

Электроемкость конденсатора зависит от линейных размеров и геометрической формы и расстояния между проводниками. Электроемкость конденсатора прямо пропорциональна диэлектрической проницаемости вещества между проводниками.

Плоский конденсатор представляет две параллельные пластины площадью ​( S )​, находящиеся на расстоянии ​( d )​ друг от друга.

Электроемкость плоского конденсатора:

где ​( varepsilon )​ – диэлектрическая проницаемость вещества между обкладками,
( varepsilon_0 ) – электрическая постоянная.

На электрической схеме конденсатор обозначается:

Виды конденсаторов:

  • по типу диэлектрика – воздушный, бумажный и т. д.;
  • по форме – плоский, цилиндрический, сферический;
  • по электроемкости – постоянной и переменной емкости.

Конденсаторы можно соединять между собой.

Параллельное соединение конденсаторов

При параллельном соединении конденсаторы соединяются одноименно заряженными обкладками. Напряжения конденсаторов равны:

Общая емкость:

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов соединяют их разноименно заряженные обкладки.

Заряды конденсаторов при таком соединении равны:

Общее напряжение:

Величина, обратная общей емкости:

При таком соединении общая емкость всегда меньше емкостей отдельных конденсаторов.

Важно!
Если конденсатор подключен к источнику тока, то разность потенциалов между его обкладками не изменяется при изменении электроемкости и равна напряжению источника. Если конденсатор заряжен до некоторой разности потенциалов и отключен от источника тока, то его заряд не изменяется при изменении электроемкости.

Применение конденсаторов
Конденсаторы используются в радиоэлектронных приборах как накопители заряда, для сглаживания пульсаций в выпрямителях переменного тока.

Энергия электрического поля конденсатора

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Электрическая энергия конденсатора сосредоточена в пространстве между обкладками конденсатора, то есть в электрическом поле, поэтому ее называют энергией электрического поля. Формулы для вычисления энергии электрического поля:

Так как напряженность электрического поля прямо пропорциональна напряжению, то энергия электрического поля конденсатора пропорциональна квадрату напряженности.

Плотность энергии электрического поля:

где ​( V )​ – объем пространства между обкладками конденсатора.

Плотность энергии не зависит от параметров конденсатора, а определяется только напряженностью электрического поля.

Основные формулы раздела «Электрическое поле»

Электрическое поле

2.9 (58.67%) 135 votes

Напряженность электрического поля — что это за показатель

Электрическое поле — это физическое поле, которое окружает каждый электрический заряд и оказывает силовое воздействие на все другие заряды, притягивая или отталкивая их.

Если источником электрического поля служит точечный заряд q, не составит труда найти электрическое поле, которое он создает. Если поместить небольшой заряд q0 в некоторую точку поля на расстоянии  от источника поля, величина силы, действующей на этот заряд, будет определяться по уравнению закона Кулона:

  • силы взаимодействия точечных неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними.

Максвелл доказал, что взаимодействие двух точечных зарядов осуществляется за конечное время:

t=l/c, где i — расстояние между заряженными частицами, c — скорость света, скорость распространения электромагнитных волн.

Проведем эксперимент по взаимодействию двух зарядов. Пусть электрическое поле создается положительным зарядом +q0, и в это поле на некотором расстоянии помещается пробный, точечный положительный заряд +q. По закону Кулона на пробный заряд будет действовать сила электростатического взаимодействия со стороны заряда, создающего электрическое поле.

Тогда отношение этой силы к величине пробного заряда будет характеризовать действие электрического поля в данной точке. Если же в эту точку будет помещен вдвое больший пробный заряд, то сила взаимодействия увеличится вдвое.

Аналогичным образом отношение силы к величине пробного заряда снова даст значение действия электрического поля в данной точке. Таким же образом действие электрического поля определяется, если пробный заряд отрицательный.

Таким образом, в точке, где находится пробный заряд, поле характеризуется величиной, называемой напряженностью. Обозначение — Е.

Напряженность. Определение

Напряженность относят к величинам физического характера. Как уже говорилось, это силовой параметр. Равен обычно соотношению между силой, действующей на заряженное тело, и значением.

Kartinka 1. Izmerenie napryazhyonnosti
Измерение напряжённости

Важно. Показатель напряжённости относят и к векторным величинам. Определяют, с каким значением действует сила на заряженные предметы. При необходимости упрощает определение направления. Главная единица измерения – ньютон на кулон.

Определение напряжённости упрощает организацию измерения показателя. Если заранее знать значение энергии того или иного тела – проще измерить характеристику, воздействующую на него. Как найти напряжённость – объяснено дальше.

Формулы

Из указанного выше определения понятно, как найти напряженность электрического поля в некой точке:

E = F / q, где F — действующая на заряд сила, а q — величина заряда, расположенного в данной точке.

Если нужно выразить силу через напряженность, мы получим следующую формулу:

Направление напряженности электрического поля всегда совпадает с направлением действующей силы. Если взять отрицательный точечный заряд, формулы будут работать аналогично.

Единицы измерения

Ньютоны на кулон, либо вольты на метр – единицы измерения, которые применяют для данного параметра в общепринятых системах.

Принцип суперпозиции

Допустим, у нас есть несколько зарядов, которые взаимодействуют. Вокруг каждого существует свое электрическое поле. Тогда существует некая точка или область, в которой одновременно существует электрическое поле нескольких зарядов. Чему равна общая напряженность электрического поля, создаваемого этими зарядами?

Было установлено, что общая сила воздействия на конкретный заряд, расположенный в поле, является суммой сил, действующих на данный заряд со стороны каждого тела. Из этого следует, что и напряженность поля в любой взятой точке можно вычислить, просуммировав векторно напряженности, создаваемые каждым зарядом в отдельности в той же точке. Это и есть принцип суперпозиции.

Это правило корректно для любых полей, за некоторыми исключениями. Принцип суперпозиции не соблюдается в следующих случаях:

  • расстояние между зарядами очень мало — порядка 10-15м;
  • речь идет о сверхсильных полях с напряженностью более 1020в/м.

Но задачи с такими данными выходят за пределы школьного курса физики.

Напряженность поля точечного заряда

У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.

Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.

Закон Кулона

Предположим, в вакууме есть два точечных заряда, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на них действуют силы, направленные вдоль соединяющей их прямой.

Закон Кулона

Закон Кулона

Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними.

Силу электрического поля в конкретной точке можно найти по формуле:формула силы электрического поля
где q1 и q2 — модули точечных зарядов, r — расстояние между ними.

В формуле участвует коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.

формула силы электрического поля

Важно! Сила взаимодействия двух точечных зарядов остается прежней при появлении сколь угодно большого количества других зарядов в данном поле.

Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:

напряжение электрического поля

Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.

Взаимодействие зарядов. Два вида зарядов

Электрический заряд – скалярная физическая величина, характеризующая способность тела участвовать в электромагнитных взаимодействиях.

Обозначение – ​( q )​, единица измерения в СИ – кулон (Кл).

Существуют два вида электрических зарядов: положительный и отрицательный. Наименьший отрицательный заряд имеет электрон (–1,6·10-19 Кл), наименьший положительный заряд (1,6·10-19 Кл) – протон. Минимальный заряд, который может быть сообщен телу, равен заряду электрона (элементарный заряд). Если тело имеет избыточные (лишние) электроны, то тело заряжено отрицательно, если у тела недостаток электронов, то тело заряжено положительно.

Величина заряда тела будет равна

где ​( N )​ — число избыточных или недостающих электронов;
​( e )​ — элементарный заряд, равный 1,6·10-19 Кл.

Важно!
Частица может не иметь заряда, но заряд без частицы не существует.

Электрические заряды взаимодействуют:

  • заряды одного знака отталкиваются:
  • заряды противоположных знаков притягиваются:

Прибор для обнаружения электрического заряда называется электроскоп. Основная часть прибора – металлический стержень, на котором закреплены два листочка металлической фольги, помещенные в стеклянный сосуд. При соприкосновении заряженного тела со стержнем электроскопа заряды распределяются между листочками фольги. Так как заряд листочков одинаков по знаку, они отталкиваются.

Для измерения зарядов можно использовать и электрометр. Основные части его – металлический стержень и стрелка, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой закреплен в пластмассовой втулке и помещен в металлический корпус, закрытый стеклянными крышками. При соприкосновении заряженного тела со стержнем стержень и стрелка получают электрические заряды одного знака. Стрелка поворачивается на некоторый угол.

Что такое напряжение.

Перемещение заряженных частиц в телах и веществах происходит благодаря разности потенциалов или электрическому напряжению. Напряжение (напряжение тока) — это физическая величина равная отношению работы электрического поля затраченной на перенос электрического заряда из одной точки в другую (между полюсами) к этому заряду. Напряжение измеряется в Вольтах (В) и обозначается буквой V. Для того чтобы переместить между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж (Джоуль), необходимо напряжение тока равное 1 В.

Для лучшего понимания взаимосвязей между разностью потенциалов, электрическим зарядом и током воспользуемся следующим наглядным примером. Представим емкость с трубой внизу, наполненную до определенного уровня водой. Условимся, что количество воды соответствует величине заряда, высота воды в емкости (давление столба жидкости) – это напряжение, а интенсивность выхода потока воды из трубы – это электрический ток.

Напряжение тока

Чем больше воды в резервуаре, тем больше высота столба воды и выше давление. Аналогично в электрических явлениях: чем больше величина заряда, тем выше напряжение необходимое для его переноса. Начнем выпускать воду: давление в резервуаре будет уменьшаться. Т. е. с уменьшением величины заряда – снижается напряжение тока. Также наглядно это видно при работе фонарика с начавшими разряжаться батарейками: по мере того как разряжаются батарейки яркость лампочки становится все меньше и меньше.

Постоянное напряжение

Его можно измерить, используя магнитоэлектрические устройства. Сейчас в продаже можно найти высокоточные приборы, оснащенные цифровым дисплеем. Проще всего непосредственно подключить устройство к участку, на котором нужно провести измерения. При этом необходимо соблюдать следующие правила:

  1. Предельное значение должно превышать предполагаемый максимум. В случае, когда измерительные работы выполняются без знания этого параметра, полагается установить максимальный предел и постепенно снижать его.
  2. Учитывать полярность подсоединения. В противном случае у стрелочного прибора указатель наклонится в противоположную сторону, у цифрового – на экране высветится отрицательное число.

Лабораторный вольтметр

Переменное напряжение

В этом случае в ход идут измерительные приборы разных видов, за исключением магнитоэлектрических. Работают с такими аппаратами только посредством подключения к выходу выпрямителя.

Как измеряют напряжение

Напряжение измеряется с помощью прибора называемого вольтметром. Различные модели вольтметров могут внешне отличаться друг от друга, но общим для них является принцип работы, основанный на электромагнитном действии тока. Латинская буква V используется для обозначения прибора на электрических схемах и на измерительных шкалах вольтметров.

Обозначение вольтметра и схема включения вольтметра для измерения напряжения
Рис. 2. Обозначение вольтметра и схема включения вольтметра для измерения напряжения.

При проведении измерений необходимо учитывать следующие моменты:

  • Вольтметры для измерения постоянного напряжения отличаются от вольтметров, предназначенных для измерений переменного напряжения. У вольтметров для измерения постоянных напряжений на измерительной шкале должен присутствовать знак “—”, а для переменного напряжения знак “~”. В последнее время часто используется обозначение с помощью аббревиатур из букв английского алфавита AC/DC (Alternative Current — переменный ток, Direct Current — постоянный ток);
  • Клеммы вольтметров для постоянного напряжение помечены знаками “+” и “—” или выделены цветом (плюс — красный, минус — синий). При измерениях полярность следует соблюдать, иначе индикаторная стрелка отклонится в другую сторону;
  • Вольтметр всегда подключается параллельно к участку цепи, где производятся измерения;
  • Рекомендуется вначале провести монтаж всех элементов электрической цепи, а вольтметр подключать в самом конце.

primery razlichnyh voltmetrov e1559769225847
Рис. 3. Примеры различных вольтметров

Все измерительные приборы не должны влиять на результат измерения, то есть должны иметь минимальную измерительную погрешность. Чтобы соответствовать этому требованию, вольтметры имеют очень большое входное сопротивление, поэтому ток, текущий через них, намного меньше тока на измеряемом участке цепи. Тогда падение напряжения на вольтметре становится не существенным.

Электрическое напряжение в цепи

Для источников напряжения в схемах обычно используется один из следующих символов.

Электрическое напряжение источник напряжения
Источники напряжения и электрическая цепь

Источник напряжения всегда имеет два соединения/полюса. Полюс «плюс» и полюс «минус». Само напряжение обозначено стрелкой напряжения (UQ). Для источников оно всегда отображается от плюса к минусу.

Электрическое напряжение, падающее на резисторе, также можно обозначить стрелкой напряжения (на схеме обозначена как красная стрелка UR ). Это указывает на техническое направление электрического тока.

Также часто можно услышать термин «напряжение холостого хода» или «напряжение источника». Это выходное напряжение ненагруженного источника, т.е. источника, к которому ничего не подключено. Если цепь замкнута с нагрузкой, то можно измерить только напряжение на полюсах источника.

Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в
раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

Работа тока

Сразу введем новое определение.

Работа тока — это работа, которую совершают силы электрического поля, создающего электрический ток.

В процессе этой работы энергия электрического тока переходит в другие различные виды энергии (механическую, внутреннюю и др.). Более подробно мы говорили об этом, когда рассматривали действия тока.

От чего зависит работа тока?

Логично предположить, что работа тока будет зависеть от того, какой заряд протекает по цепи за определенное время. То есть, работа тока будет зависеть от силы тока.

Проверим это на простом опыте. Соберем цепь, состоящую из ключа, источника тока, амперметра и подключенной к проводам натянутой никелевой проволоки (рисунок 1).

Используя один источник тока, в цепи была определенная сила тока. Проволока нагрелась.

Если же мы заменим источник тока, который даст нам большую силу тока, чем предыдущий, то заметим определенные изменения. Наша проволока нагревается намного сильнее. Вот вам наглядное доказательство того, что тепловое действие (а значит, и работа тока) проявляется сильнее с увеличением силы тока в цепи.

Но дело в том, что сила тока — не единственная характеристика, от которой зависит работа тока. Другая (и не менее важная) величина называется электрическим напряжением или просто напряжением.

Связь работы тока и напряжения

Проведенные нами опыты объясняются следующим.

При одинаковой силе тока работа тока на этих участках цепи при перемещении электрического заряда, равного $1 space Кл$, различна.

Получается, что эта работа тока и определяет нашу новую физическую величину — электрическое напряжение.

Теперь мы может объяснить до конца наши опыты. Напряжение, которое создается батарейкой в первой цепи, меньше напряжение городской осветительной сети. Поэтому лампа, подключенная к сети, дает больше света и тепла. При этом сила тока в обеих цепях одинакова. Вся причина различий — в создаваемом напряжении.

Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую.

Источники

  • https://Wika.TutorOnline.ru/fizika/class/10/opredelenie-napryazhennosti-elektricheskogo-polya
  • https://rusenergetics.ru/novichku/napryazhennost-elektricheskogo-polya
  • https://skysmart.ru/articles/physics/napryazhennost-elektricheskogo-polya
  • https://fizi4ka.ru/egje-2018-po-fizike/jelektricheskoe-pole.html
  • https://www.calc.ru/Napryazheniye-Toka.html
  • https://amperof.ru/teoriya/edinica-izmereniya-napryazheniya.html
  • https://obrazovaka.ru/fizika/edinica-izmereniya-napryazheniya.html
  • https://www.asutpp.ru/elektricheskoe-napryazhenie.html
  • https://dic.academic.ru/dic.nsf/ruwiki/15264
  • https://obrazavr.ru/fizika/8-klass/elektricheskie-yavleniya/soprotivlenie-i-zakon-oma/elektricheskoe-napryazhenie-edinitsy-napryazheniya/

Как вам статья?

Павел

Павел

Бакалавр «210400 Радиотехника» – ТУСУР. Томский государственный университет систем управления и радиоэлектроники

Написать

Пишите свои рекомендации и задавайте вопросы

58

ЭЛЕКТРОСТАТИКА.
ПОСТОЯННЫЙ ТОК

Основные законы и формулы

Закон
Кулона:

,

где
F
– сила взаимодействия двух точечных
зарядов q1
и q2;
r
– расстояние между зарядами; 
— диэлектрическая
проницаемость среды; 0
— электрическая постоянная

.

Закон сохранения заряда:

,

где
– алгебраическая сумма зарядов, входящих
в изолированную систему;n
– число зарядов.

Напряженность и потенциал электростатического поля:

;

,
или,

где
– сила, действующая на точечный
положительный зарядq0,
помещенный в данную точку поля; П –
потенциальная энергия заряда; А
— работа,
затраченная на перемещение заряда q0
из данной точки поля в бесконечность.

Поток
вектора напряженности
электрического поля:

а)
через произвольную поверхность S,
помещенную в неоднородное поле:

,
или
,

где

– угол между вектором напряженности
и нормальюк элементу поверхности;dS
– площадь элемента поверхности; En
– проекция вектора напряженности на
нормаль;

б)
через плоскую поверхность, помещенную
в однородное электрическое поле:

.

Поток
вектора напряженности
через замкнутую поверхность –

(интегрирование
ведется по всей поверхности).

Теорема Остроградского-Гаусса. Поток вектора напряженностичерез любую замкнутую поверхность, охватывающую зарядыq1,q2, …,qn, –

,

где

– алгебраическая
сумма зарядов, заключенных внутри
замкнутой поверхности; n
– число зарядов.

Напряженность
электростатического поля, создаваемого
точечным зарядом q
на расстоянии r
от заряда, –

.

Напряженность
электрического поля, создаваемого
сферой, имеющей радиус R
и несущей заряд q,
на расстоянии r
от центра сферы такова:

внутри
сферы (r
R)
Е=0;

на
поверхности сферы (r=R)

;

вне
сферы (r

R)
.

Принцип суперпозиции (наложения)
электростатических полей, согласно
которому напряженность
результирующего поля, созданного двумя
(и более) точечными зарядами, равна
векторной (геометрической) сумме
напряженностей складываемых полей,
выражается формулой

.

В
случае двух электрических полей с
напряженностями
иабсолютное значение вектора напряженности
составляет

,

где

— угол между векторами
и.

Напряженность
поля, создаваемого бесконечно длинной
и равномерно заряженной нитью (или
цилиндром) на расстоянии r
от ее оси, –

,

где

— линейная плотность заряда.

Линейная
плотность заряда есть величина, равная
его отношению к длине нити (цилиндра):

.

Напряженность
поля, создаваемого бесконечной равномерно
заряженной плоскостью, –

,

где

— поверхностная плотность заряда.

Поверхностная
плотность заряда есть величина, равная
отношению заряда, распределенного по
поверхности, к ее площади:

.

Напряженность
поля, создаваемого двумя бесконечными
и параллельными плоскостями, заряженными
равномерно и разноименно, с одинаковой
по абсолютному значению поверхностной
плотностью заряда
(поле плоского конденсатора) –

.

Приведенная
формула справедлива при вычислении
напряженности поля между пластинами
плоского конденсатора (в его средней
части) только в том случае, если расстояние
между пластинами намного меньше линейных
размеров пластин конденсатора.

Электрическое
смещение
связано с напряженностьюэлектрического поля соотношением

,

которое
справедливо только для изотропных
диэлектриков.

Потенциал
электрического поля есть величина,
равная отношению потенциальной энергии
и точечного положительного заряда,
помещенного в данную точку поля:

.

Иначе
говоря, потенциал электрического поля
есть величина, равная отношению работы
сил поля по перемещению точечного
положительного заряда из данной точки
поля в бесконечность к величине этого
заряда:

.

Потенциал
электрического поля в бесконечности
условно принят равным нулю.

Потенциал
электрического поля, создаваемый
точечным зарядом q
на

расстоянии
r
от заряда, –

.

Потенциал
электрического поля, создаваемый
металлической сферой, имеющей радиус
R
и несущей заряд q,
на расстоянии r
от центра сферы таков:

внутри
сферы (r

R)
;

на
поверхности сферы (r
= R)
;

вне
сферы (r

R)
.

Во
всех формулах, приведенных для потенциала
заряженной сферы, 
есть диэлектрическая проницаемость
однородного безграничного диэлектрика,
окружающего сферу.

Потенциал
электрического поля, образуемого
системой n
точечных зарядов в данной точке в
соответствии с принципом суперпозиции
электрических полей, равен алгебраической
сумме потенциалов
,
создаваемых отдельными точечными
зарядами:

.

Энергия
W
взаимодействия системы точечных зарядов
определяется работой, которую эта
система может совершить при удалении
их относительно друг друга в бесконечность,
и выражается формулой

,

где
— потенциал поля, создаваемый всеми
(n-1)
зарядами (за исключением i-го)
в точке, где находится заряд
.

Потенциал
связан с напряженностью электрического
поля соотношением

.

В случае электрического
поля, обладающего сферической симметрией,
эта связь выражается формулой

,

или в скалярной
форме

.

В
случае однородного поля, т.е. поля,
напряженность которого в каждой его
точке одинакова как по абсолютному
значению, так и по направлению, –

,

где
1
и 2
– потенциалы точек двух эквипотенциальных
поверхностей; d
— расстояние между этими поверхностями
вдоль электрической силовой линии.

Работа,
совершаемая электрическим полем при
перемещении точечного заряда q
из одной точки поля, имеющей потенциал
1,
в другую, имеющую потенциал 2,
равна

,
или ,

где
E
– проекция вектора
на направление перемещения;— перемещение.

В случае однородного
поля последняя формула принимает вид

,

где
– перемещение;
— угол между направлениями вектора
и перемеще-ния.

Диполь есть система
двух точечных (равных по абсолютному
значению и противоположных по знаку)
зарядов, находящихся на некотором
расстоянии друг от друга.

Электрический
момент
диполя есть вектор, направленный от
отрицательного заряда к положительному,
равный произведению зарядана вектор,
проведенный от отрицательного заряда
к положительному, и называемый плечом
диполя, т.е.

.

Диполь
называется точечным, если его плечо
намного меньше расстоянияr
от центра диполя до точки, в которой нас
интересует действие диполя (
r),
см. рис. 1.

Рис. 1

Напряженность
поля точечного диполя:

,

где
р – электрический момент диполя; r
– абсолютное значение радиус-вектора,
проведенного от центра диполя к точке,
напряженность поля в которой нас
интересует; 
— угол между радиус-вектором
и плечомдиполя.

Напряженность
поля точечного диполя в точке, лежащей
на оси диполя

(=0),
находится по формуле

;

в
точке, лежащей на перпендикуляре к плечу
диполя, восстановленном из его середины
,
– по формуле

.

Потенциал
поля точечного диполя в точке, лежащей
на оси диполя (=0),
составляет

,

а
в точке, лежащей на перпендикуляре к
плечу диполя, восстановленном из его
середины
,

=0.

Напряженность
и потенциал неточечного диполя
определяются так же как и для системы
зарядов.

Механический
момент, действующий на диполь с
электрическим моментом р, помещенный
в однородное электрическое поле с
напряженностью Е, –

,
или
,

где

— угол между направлениями векторов
и.

Электроемкость
уединенного проводника или конденсатора

,

где
q
– заряд, сообщенный проводнику; 
изменение потенциала,
вызванное этим зарядом.

Электроемкость
уединенной проводящей сферы радиусом
R,
находящейся в бесконечной среде с
диэлектрической проницаемостью ,

.

Если
сфера полая и заполнена диэлектриком,
то ее электроемкость при этом не
изменяется.

Электроемкость
плоского конденсатора:

,

где
S
– площадь каждой пластины конденсатора;
d
– расстояние между пластинами; 
— диэлектрическая проницаемость
диэлектрика, заполняющего пространство
между пластинами.

Электроемкость
плоского конденсатора, заполненного n
слоями диэлектрика толщиной di
и диэлектрической проницаемостью i
каждый (слоистый конденсатор), составляет

.

Электроемкость
сферического конденсатора (две
концентрические сферы радиусом R1
и R2
, пространство
между которыми заполнено диэлектриком
с диэлектрической проницаемостью )
находится так:

.

Электроемкость
последовательно соединенных конденсаторов
составляет:

в
общем случае –

,

где
n
– число конденсаторов;

в
случае двух конденсаторов –

;

в
случае n
одинаковых конденсаторов с электроемкостью
С1
каждый –

.

Электроемкость
параллельно соединенных конденсаторов
определяется следующим образом:

в
общем случае –

С=С12+…+Сn;

в
случае двух конденсаторов –

С=
С12;

в
случае n
одинаковых конденсаторов с электроемкостью
С1
каждый –

С=nС1.

Энергия
заряженного проводника выражается
через заряд q,
потенциал 
и электроемкость С проводника следующим
образом:

.

Энергия
заряженного конденсатора –

,

где
q
– заряд конденсатора; С – электроемкость
конденсатора; U
– разность потенциалов на его пластинах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как составить бизнес план для лпх крс
  • Как найти неизвестные углы параллельных прямых
  • Как найти вес тела формула по физике
  • Как найти определение суда по банкротству
  • Как найти сохраненные в закладках видео