Как найти среднюю скорость по физике формула


Загрузить PDF


Загрузить PDF

Чтобы вычислить среднюю скорость, воспользуйтесь простой формулой: {text{Скорость}}={frac  {{text{Пройденный путь}}}{{text{Время}}}}. Но в некоторых задачах даются два значения скорости — на разных участках пройденного пути или в различные промежутки времени. В этих случаях нужно пользоваться другими формулами для вычисления средней скорости. Навыки решения подобных задач могут пригодиться в реальной жизни, а сами задачи могут встретиться на экзаменах, поэтому запомните формулы и уясните принципы решения задач.

  1. Изображение с названием Calculate Average Speed Step 1

    1

    Посмотрите на данные величины. Воспользуйтесь этим методом, если даны следующие величины:

    • длина пути, пройденного телом;
    • время, за которое тело прошло этот путь.
    • Например: автомобиль проехал 150 км за 3 ч. Найдите среднюю скорость автомобиля.
  2. Изображение с названием Calculate Average Speed Step 2

    2

    Запишите формулу для вычисления средней скорости. Формула: v={frac  {s}{t}}, где v — средняя скорость, s — пройденный путь, t — время, за которое пройден путь.[1]

  3. Изображение с названием Calculate Average Speed Step 3

    3

    В формулу подставьте пройденный путь. Значение пути подставьте вместо s.

    • В нашем примере автомобиль проехал 150 км. Формула запишется так: v={frac  {150}{t}}.
  4. Изображение с названием Calculate Average Speed Step 4

    4

    В формулу подставьте время. Значение времени подставьте вместо t.

    • В нашем примере автомобиль ехал в течение 3 ч. Формула запишется так: v={frac  {150}{3}}.
  5. Изображение с названием Calculate Average Speed Step 5

    5

    Разделите путь на время. Вы найдете среднюю скорость (как правило, она измеряется в километрах в час).

    Реклама

  1. Изображение с названием Calculate Average Speed Step 6

    1

    Посмотрите на данные величины. Воспользуйтесь этим методом, если даны следующие величины:

    • несколько значений пройденных участков пути;
    • несколько значений времени, за которые был пройден каждый участок пути.[2]
    • Например: автомобиль проехал 150 км за 3 ч, 120 км за 2 ч, 70 км за 1 ч. Найдите среднюю скорость автомобиля на всем протяжении пути.
  2. Изображение с названием Calculate Average Speed Step 7

    2

    Запишите формулу для вычисления средней скорости. Формула: v={frac  {s}{t}}, где v — средняя скорость, s — общий пройденный путь, t — общее время, за которое пройден путь.[3]

  3. Изображение с названием Calculate Average Speed Step 8

    3

    Вычислите общий пройденный путь. Для этого сложите значения пройденных участков пути. В формулу подставьте общий пройденный путь (вместо s).

  4. Изображение с названием Calculate Average Speed Step 9

    4

    Вычислите общее время в пути. Для этого сложите значения времени, за которые был пройден каждый участок пути. В формулу подставьте общее время (вместо t).

  5. Изображение с названием Calculate Average Speed Step 10

    5

    Разделите общий путь на общее время. Вы найдете среднюю скорость.

    Реклама

  1. Изображение с названием Calculate Average Speed Step 11

    1

    Посмотрите на данные величины. Воспользуйтесь этим методом, если даны следующие величины:

    • несколько значений скоростей, с которыми двигалось тело;
    • несколько значений времени, в течение которого тело двигалось с соответствующей скоростью.[4]
    • Например: автомобиль двигался со скоростью 50 км/ч в течение 3 ч, со скоростью 60 км/ч в течение 2 ч, со скоростью 70 км/ч в течение 1 ч. Найдите среднюю скорость автомобиля на всем протяжении пути.
  2. Изображение с названием Calculate Average Speed Step 12

    2

    Запишите формулу для вычисления средней скорости. Формула: v={frac  {s}{t}}, где v — средняя скорость, s — общий пройденный путь, t — общее время, за которое пройден путь.[5]

  3. Изображение с названием Calculate Average Speed Step 13

    3

    Вычислите общий путь. Для этого умножьте каждую скорость на соответствующее время. Так вы найдете длину каждого участка пути. Чтобы вычислить общий путь, сложите значения пройденных участков пути. В формулу подставьте общий пройденный путь (вместо s).

  4. Изображение с названием Calculate Average Speed Step 14

    4

    Вычислите общее время в пути. Для этого сложите значения времени, за которые был пройден каждый участок пути. В формулу подставьте общее время (вместо t).

  5. Изображение с названием Calculate Average Speed Step 15

    5

    Разделите общий путь на общее время. Вы найдете среднюю скорость.

    Реклама

  1. Изображение с названием Calculate Average Speed Step 16

    1

    Посмотрите на данные величины. Воспользуйтесь этим методом, если даны следующие величины и условия:

    • два или несколько значений скоростей, с которыми двигалось тело;
    • тело двигалось с определенными скоростями в течение равных промежутков времени.
    • Например: автомобиль двигался со скоростью 40 км/ч в течение 2 ч и со скоростью 60 км/ч в течение других 2 ч. Найдите среднюю скорость автомобиля на всем протяжении пути.
  2. Изображение с названием Calculate Average Speed Step 17

    2

  3. Изображение с названием Calculate Average Speed Step 18

    3

  4. Изображение с названием Calculate Average Speed Step 19

    4

    Сложите значения двух скоростей. Затем сумму разделите на два. Вы найдете среднюю скорость на всем протяжении пути.

    Реклама

  1. Изображение с названием Calculate Average Speed Step 20

    1

    Посмотрите на данные величины. Воспользуйтесь этим методом, если даны следующие величины и условия:

    • два или несколько значений скоростей, с которыми двигалось тело;
    • тело двигалось с определенными скоростями и прошло равные участки пути.
    • Например: автомобиль проехал 150 км со скоростью 40 км/ч, а затем вернулся обратно (то есть проехал те же 160 км) со скоростью 60 км/ч. Найдите среднюю скорость автомобиля на всем протяжении пути.
  2. Изображение с названием Calculate Average Speed Step 21

    2

    Запишите формулу для вычисления средней скорости, если даны две скорости и одинаковые значения участков пути. Формула: v={frac  {2ab}{a+b}}, где v — средняя скорость, a — скорость тела, с которым оно двигалось на первом участке пути, b — скорость тела, с которым оно двигалось на втором (таком же, как первый) участке пути.
    [7]

    • Зачастую в условиях таких задач дано, что тело прошло определенный путь и вернулось обратно.
    • В таких задачах значения участков пути не важны — главное, чтобы они были равны.
    • Если даны три скорости и равные участки пути, перепишите формулу так:v={frac  {3abc}{ab+bc+ca}}.[8]
  3. Изображение с названием Calculate Average Speed Step 22

    3

  4. Изображение с названием Calculate Average Speed Step 23

    4

    Произведение двух скоростей умножьте на 2. Полученный результат запишите в числителе дроби.

  5. Изображение с названием Calculate Average Speed Step 24

    5

    Сложите две скорости. Полученный результат запишите в знаменателе дроби.

  6. Изображение с названием Calculate Average Speed Step 25

    6

    Сократите дробь. Вы найдете среднюю скорость на всем протяжении пути.

    Реклама

Об этой статье

Эту страницу просматривали 170 698 раз.

Была ли эта статья полезной?

Средняя скорость

Средняя (путевая) скорость — это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден:

[v_text{ср}=dfrac{Sigma s}{Sigma t}=dfrac{s_1+s_2+…+s_n}{t_1+t_2+…+t_n}]

Средняя скорость равна среднему арифметическому от скоростей тела во время движения лишь в том случае, когда тело двигалось с этими скоростями одинаковые промежутки времени.

Средняя скорость по перемещению

Можно также ввести среднюю скорость по перемещению, которая будет вектором, равным отношению перемещения ко времени, за которое оно совершено:

[{displaystyle {vec {v}}_{cp}={frac {vec {r}}{Delta t}}}]

Средняя скорость, определённая таким образом, может равняться нулю даже в том случае, если тело реально двигалось (но в конце промежутка времени вернулось в исходное положение).

Если перемещение происходило по прямой (причём в одном направлении), то средняя путевая скорость равна модулю средней скорости по перемещению.

Формула средней скорости

ОПРЕДЕЛЕНИЕ

Средняя скорость тела — это отношение пути к времени прохождения этого пути. Скорость движения не требуется постоянной.

Здесь — средняя скорость, — весь путь, пройденный телом, — время прохождения пути.

Единица измерения скорости — м / с (метр в секунду).

Средняя скорость — это скаляр. Если тело перемещается с разной скоростью в равные промежутки времени, то средняя скорость равна среднему арифметическому для всех скоростей, в противном случае

Где — отрезок пути, — время прохождения этого отрезка.

Примеры решения проблем на тему «Средняя скорость»

ПРИМЕР 1

  • Задача

    Тело прошло 5 метров за 12 секунд, затем 7 метров за 3 секунды. Найдите среднюю скорость тела.

  • Решение

    Решение очевидно (S и t — путь и время прохождения этого пути для определенных сегментов):

  • Ответ

    Средняя скорость тела равна метров в секунду.

    ПРИМЕР 2

  • Задача

    Средняя скорость движения тела . Скорость на первой секции была , на второй , на третьей длине секций S1, S2 и S3 соответственно. Мы не знаем S2. Найдите время прохождения второго раздела.

  • Решение

    Давайте рассмотрим формулу средней скорости для трех разделов:

    В этой форме формула ничего нам не дает, но если вспомнить, что

    Вы можете переписать формулу по-другому:

    Мы разделим обе части выражения на .

  • Ответ

  • Физическое понятие «скорость» является неоднозначным термином: зависимость от расстояния и времени позволяет ввести два понятия скорости, так как в физике используются векторные (перемещение) и скалярные (модуль перемещения, пройденный путь, время) величины.

    1. Отношение вектора перемещения (vec{S}) к интервалу времени (Delta{t}) определяет среднюю (по времени) скорость:

    (vec{v}_{ср}=frac{vec{S}}{Delta{t}})  ((1)).

    • Направление вектора средней (по времени) скорости определяется согласно математической формуле ((1)) определения данной физической величины (сравни математическое выражение (vec{a}) (=) (frac{vec{b}}{2}) и формулу ((1))): 

      Длина вектора (vec{v}_{ср}) не связана с длиной вектора (vec{S}), так как данные физические величины имеют разные размерности (единицы измерения).

    • Числовое значение данной физической величины в случае равномерного прямолинейного движения является постоянным (рис. (1)): 

      υx=const

      .

    Примечание: «const» — «постоянный» (сокращение от латинского).

    vienadi.svg

    Рис. (1). Изменение координаты точки при равномерном движении

    2. При движении тела с постоянной скоростью и его возврате в исходное положение с той же скоростью значение средней (по времени) скорости будет равно нулю.

    Отношение пути (l) (длины траектории) к интервалу времени (Delta{t}) определяет средний модуль скорости (среднюю путевую скорость):

    (overline{v}=frac{l}{Delta{t}})  ((2)).

    Обозначение: черта над символом ((overline{v})) обозначает среднее значение этой величины.

    Именно физическое понятие «средняя путевая скорость» используется при описании движения в ситуациях следующего типа: «спортсмен/турист… пробежал/прошёл… дистанцию/расстояние… со средней скоростью <…> м/с».

    Источники:

    Рис. 1. Изменение координаты точки при равномерном движении. © ЯКласс.

    Понравилась статья? Поделить с друзьями:
  • Как найти сайт непрерывного медицинского образования
  • Как найти гостиницу в паре
  • Как найти удаление контакты
  • Как приблизительно найти значение выражения
  • Как найти лекарства в махачкале