Как найти среднюю величину изучаемого признака

Средние

Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, являются средние показатели (средняя величина).

Средняя величина – представляет  обобщенную количественную характеристику признака в статистической совокупности в конкретных условиях места и времени.


Показатель в форме средней величины выражает типичные черты и дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Он отражает уровень этого признака, отнесенный к единице совокупности.


Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности.

Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные.

  • Например, курс акций корпорации в основном определяется финансовыми результатами ее деятельности. В то же время, в отдельные дни и на отдельных биржах эти акции в силу сложившихся обстоятельств могут продаваться по более высокому или заниженному курсу.

Сущность средней заключается, в том, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенно­стей, присущих отдельным единицам.


ВИДЫ СРЕДНИХ ВЕЛИЧИН наиболее часто применяемых на практике:

  • средняя арифметическая;                     
  • средняя гармоническая;
  • средняя геометрическая;                       
  • средняя квадратическая.

Выбор средней величины зависит от содержания осредняемого признака и конкретных данных, по которым ее приходится вычислять.



  • Средняя арифметическая простая (невзвешенная) – вычисляется  когда каждый вариант совокупности встречается только один раз.


  • Средняя арифметическая (взвешенная) варианты повторяются различное число раз, при этом число повторений вариантов называется частотой, или статистическим весом.


ФОРМУЛЫ СРЕДНИХ ВЕЛИЧИН


  • Средняя арифметическая простая – самый распространенный вид средней величины, рассчитывается по формуле (8.8):

Статистика Формула Средняя арифметическая простая

(8.8 -формула средней арифметической простой)


  • где хi – вариант, а n – количество единиц  совокупности.

  • Пример вычисления средней арифметической простой. Провели опрос о желаемом размере заработной платы у пяти сотрудников  офиса. По результатам опроса выяснили, что желаемый размер заработной платы составляет соответственно для каждого сотрудника: 50000, 100000, 200000, 350000, 500000 рублей человек. Рассчитаем среднюю арифметическую простую по формуле (8.8):Пример формула 8.9Вывод: в среднем желаемый размер заработной платы  по результатам опроса 5-ти человек составил 240 тысяч рублей.

  • Средняя арифметическая взвешенная  формула 8.9.

Статистика Формула Средняя арифметическая взвешенная

(8.9 -формула средней арифметической взвешенной)


  • где хi – вариант, а fi  – частота или статистический вес.

  • Пример вычисления  средней арифметической взвешенной. Результаты опроса всех работников офиса приведены в табл. 8.2.

Таблица 8.2 – Результаты опроса работников офиса

Желаемый размер заработной платы, тыс.руб

хi

Количество работников fi хifi
1 2 3

50

100

200

350

500

6

10

20

9

5

300

1000

4000

3150

2500

Итого 50 10950

Пример. Вычислим (ориентируясь на итоговые строки таблицы) желаемый размер заработной платы, 50 сотрудников офиса (используем формулу 8.9):

Пример к формуле 8.9

Пример вычисления средней арифметической взвешенной

Вывод: в среднем желаемый размер заработной платы  по результатам опроса 50 человек составил 219 тысяч рублей.


Среднеарифметическая – всегда обобщающая количественная характеристика варьирующего признака совокупности.



  • Средняя гармоническая вычисляется в тех случаях, когда приходится суммировать не сами варианты, а обратные им величины.

  • Средняя гармоническая  простая представлена ниже:

Статистика Формула средней гармонической простой

(8.10 – формула средней гармонической простой)


Средняя гармоническая взвешенная определяется по формуле

Статистика Формула средней гармонической взвешенной

(8.11- формула средней гармонической взвешенной)


где xi – вариант, n – количество вариантов, Vi – веса для обратных значений xi.



Средняя гармоническая невзвешенная. Эта форма средней, используемая значительно реже, чем взвешенная. Для иллюстрации области ее применения воспользуемся упрощенным условным примером.


  • Пример (вычисление средней гармонической простой (невзвешенной)).

Предположим, в фирме, специализирующейся на торговле по почте на основе предварительных заказов, упаковкой и отправкой товаров занимаются два работника. Первый из них на обработку одного заказа затрачивает 5 мин., второй – 15 мин.

  • Каковы средние затраты времени на 1 заказ, если общая продолжительность рабочего времени у работников равна?

На первый взгляд, ответ на этот вопрос заключается в осреднении индивидуальных значений затрат времени на 1 заказ, т.е. если используем среднюю арифметическую простую получим: (5+15):2=10, мин.

  • Проверим обоснованность такого подхода на примере одного часа (60 минут) работы. За этот час первый работник обрабатывает 12 заказов (60:5), второй – 4 заказа (60:15), что в сумме составляет 16 заказов.

Если же заменить индивидуальные значения их предполагаемым средним значением, то общее число обработанных обоими работниками заказов в данном случае уменьшится: (60/10) + (60/10) = 12 заказов (что не соответствует истине).


  • Подойдем к решению через исходное соотношение средней. Для определения средних затрат времени необходимо общие затраты времени за любой интервал (например, за час) разделить на общее число обработанных за этот интервал двумя работниками заказов, т.е. используем среднюю гармоническую:

Статистика Пример средней гармонической невзвешенной

Пример вычисления средней гармонической простой (невзвешенной)


Если теперь мы заменим индивидуальные значения их средней величиной, то общее количество обработанных за час заказов не изменится: (60/7,5) + (60/7,5) = 16 заказов

  • Подведем итог: средняя гармоническая невзвешенная может использоваться вместо взвешенной в тех случаях, когда значения Wj для единиц совокупности равны (в рассмот­ренном примере рабочий день у сотрудников одинаковый).


    Пример (вычисление средней гармонической взвешенной) В ходе торгов на валютной бирже за первый час работы заключено пять сделок. Данные о сумме продажи рублей и курсе рубля по отношению к доллару США приведены в табл.8.3.

    Таблица 8.3 – Данные о ходе торгов на валютной бирже (цифры условные)

    Номер сделки Сумма продажи V, млн руб. Курс рубля x, руб. за 1 дол. V/x
    1 2 3 4

    1

    2

    3

    4

    5

    455,00

    327,50

    528,00

    266,00

    332,50

    65,00

    65,50

    66,00

    66,50

    66,50

    7,00

    5,00

    8,00

    4,00

    5,00

    итого 1909,00 29,00

    Для того чтобы определить средний курс рубля по отношению к доллару, нужно найти соотношение между суммой продажи рублей, которые затрачены на покупку долларов в ходе всех сделок, и суммой приобретенных в результате этих сделок долларов.

    Пример средней гармонической взвешенной


  • Вывод: средний курс за один доллар составил 65,83 руб.;

  • Если бы для расчета среднего курса была использована средняя арифметическая простая:пример расчета по ср арифм то,  за один доллар, по данному курсу на покупку 29 млн дол. нужно было бы затратить 1899,5  млн.руб., что не соответствует действительности.


    Средняя геометрическая используется для анализа динамики явлений и позволяет определить средний коэффициент роста. При расчете средней геометрической индивидуальные значения признака обычно представляют собой относительные показатели динамики, построенные в виде цепных величин как отношение каждого уровня ряда к предыдущему уровню.



  • Средняя геометрическая простая рассчитывается по формуле 8.12

Формула 8.12

(8.12)



  • Если использовать частоты m, получим формулу средней геометрической взвешенной
  • Средняя геометрическая взвешенная рассчитывается по формуле 8.13

Статистика Формула Средняя геометрическая взвешенная

(8.13)


Средняя квадратическая применяется, когда изучается вариация признака. В качестве вариантов используются отклонения фактических значений признака либо от средней арифметической, либо от заданной нормы.

Для несгруппированных данных используют формулу средней квадратической простой

Средняя квадратическая простая (формула 8.14)

Статистика Формула Средняя квадратическая простая

8.14


Для сгруппированных данных используют формулу средней квадратической взвешенной

Средняя квадратическая взвешенная (формула 8.15)

Статистика Формула Средняя квадратическая взвешенная

(8.15) – Формула -средняя квадратическая взвешенная


Средние арифметическая, гармоническая, геометрическая и квадратическая, рассчитанные для одного и того же ряда вариантов, отличаются друг от друга. Их численное значение возрастает с ростом показателя степени в формуле степенной средней правило мажорантности средних А.Я. Боярского, т.е.

Статистика Правило мажорантности средних А.Я. Боярского



Мода и Медиана (структурные средние) формулы и примеры вычисления см.  по ссылке


Большое распространение в статистике
имеют средние величины. Средние величины
характеризуют качественные показатели
коммерческой деятельности: издержки
обращения, прибыль, рентабельность и
др.

Средняя — это один из
распространенных приемов обобщений.
Правильное понимание сущности средней
определяет ее особую значимость в
условиях рыночной экономики, когда
средняя через единичное и случайное
позволяет выявить общее и необходимое,
выявить тенденцию закономерностей
экономического развития.

Средняя величина— это обобщающие
показатели, в которых находят выражение
действия общих условий, закономерностей
изучаемого явления.

Статистические средние рассчитываются
на основе массовых данных правильно
статистически организованного массового
наблюдения (сплошного и выборочного).
Однако статистическая средняя будет
объективна и типична, если она
рассчитывается по массовым данным для
качественно однородной совокупности
(массовых явлений). Например, если
рассчитывать среднюю заработную плату
в кооперативах и на госпредприятиях,
а результат распространить на всю
совокупность, то средняя фиктивна, так
как рассчитана по неоднородной
совокупности, и такая средняя теряет
всякий смысл.

При помощи средней происходит как бы
сглаживание различий в величине признака,
которые возникают по тем или иным
причинам у отдельных единиц наблюдения.

Например, средняя выработка продавца
зависит от многих причин: квалификации,
стажа, возраста, формы обслуживания,
здоровья и т.д.

Средняя выработка отражает общее
свойство всей совокупности.

Средняя величина является отражением
значений изучаемого признака,
следовательно, измеряется в той же
размерности, что и этот признак.

Каждая средняя величина характеризует
изучаемую совокупность по какому-либо
одному признаку. Чтобы получить полное
и всестороннее представление об
изучаемой совокупности по ряду
существенных признаков, в целом необходимо
располагать системой средних величин,
которые могут описать явление с разных
сторон.

Существуют различные средние:

  1. средняя арифметическая;

  2. средняя геометрическая;

  3. средняя гармоническая;

  4. средняя квадратическая;

  5. средняя хронологическая.

Рассмотрим некоторые виды средних,
которые наиболее часто используются в
статистике.

Средняя арифметическая

Средняя арифметическая простая
(невзвешенная) равна сумме отдельных
значений признака, деленной на число
этих значений.

Отдельные значения признака называют
вариантами и обозначают через х ();
число единиц совокупности обозначают
через n, среднее значение признака —
через.
Следовательно, средняя арифметическая
простая равна:

По данным дискретного ряда распределения
видно, что одни и те же значения признака
(варианты) повторяются несколько раз.
Так, варианта х встречается в совокупности
2 раза, а варианта х-16 раз и т.д.

Число одинаковых значений признака в
рядах распределения называется частотой
или весом и обозначается символом n.

Вычислим среднюю заработную плату
одного рабочего
в руб.:

Фонд заработной платы по каждой группе
рабочих равен произведению варианты
на частоту, а сумма этих произведений
дает общий фонд заработной платы всех
рабочих.

В соответствии с этим, расчеты можно
представить в общем виде:

Полученная формула называется средней
арифметической взвешенной.

Статистический материал в результате
обработки может быть представлен не
только в виде дискретных рядов
распределения, но и в виде интервальных
вариационных рядов с закрытыми или
открытыми интервалами.

Исчисление средней по сгруппированным
данным производится по формуле средней
арифметической взвешенной:

В практике экономической статистики
иногда приходится исчислять среднюю
по групповым средним или по средним
отдельных частей совокупности (частным
средним). В таких случаях за варианты
(х) принимаются групповые или частные
средние, на основании которых исчисляется
общая средняя как обычная средняя
арифметическая взвешенная.

Основные свойства средней
арифметической
.

Средняя арифметическая обладает рядом
свойств:

1. От уменьшения или увеличения частот
каждого значения признака х в п раз
величина средней арифметической не
изменится.

Если все частоты разделить или умножить
на какое-либо число, то величина средней
не изменится.

2. Общий множитель индивидуальных
значений признака может быть вынесен
за знак средней:

3. Средняя суммы (разности) двух или
нескольких величин равна сумме (разности)
их средних:

4. Если х = с, где с — постоянная величина,
то
.

5. Сумма отклонений значений признака
Х от средней арифметической х равна
нулю:

Средняя гармоническая.

Наряду со средней арифметической, в
статистике применяется средняя
гармоническая величина, обратная
средней арифметической из обратных
значений признака. Как и средняя
арифметическая, она может быть простой
и взвешенной.

Характеристиками вариационных рядов,
наряду со средними, являются мода и
медиана.

Мода— это величина признака
(варианта), наиболее часто повторяющаяся
в изучаемой совокупности. Для дискретных
рядов распределения модой будет значение
варианта с наибольшей частотой.

Для интервальных рядов распределения
с равными интервалами мода определяется
по формуле:

где
— начальное значение интервала, содержащего
моду;

— величина модального интервала;

— частота модального интервала;

— частота интервала, предшествующего
модальному;

— частота интервала, следующего за
модальным.

Медиана — это варианта,
расположенная в середине вариационного
ряда. Если ряд распределения дискретный
и имеет нечетное число членов, то медианой
будет варианта, находящаяся в середине
упорядоченного ряда (упорядоченный ряд
— это расположение единиц совокупности
в возрастающем или убывающем порядке).

Соседние файлы в папке ЕП Статистика

  • #
  • #

    22.02.20161.09 Mб2451.doc

  • #
  • #
  • #
  • #
  • #

Средняя арифметическая взвешенная и средняя гармоническая

Краткая теория


В процессе обработки и обобщения статистических
данных возникает необходимость определения средних величин. Как правило,
индивидуальные значения одного и того же признака у различных единиц
совокупности неодинаковы. Средняя величина — обобщающая характеристика
изучаемого признака в исследуемой совокупности. Она отражает его типичный
уровень в расчете на единицу совокупности в конкретных условиях места и
времени. Например, при изучении доходов рабочих концерна обобщающей
характеристикой служит средний доход одного рабочего. Для его определения общую
сумму средств, направленных на потребление, в виде заработной платы, социальных
и трудовых льгот, материальной помощи, дивидендов по акциям и процентов по
вкладам в имущество концерна за рассматриваемый период (год, квартал, месяц)
делят на численность рабочих концерна.

Очень важное правило — вычислять средние величины
лишь по однородной совокупности единиц. Только при выполнении этого условия
средняя как обобщающая характеристика отражает общее, типичное, закономерное,
присущее всем единицам исследуемой совокупности. Прежде чем вычислять средние
величины, необходимо произвести группировку единиц исследуемой совокупности,
выделив качественно однородные группы.

Средняя, рассчитанная по совокупности в целом,
называется общей средней, средние, исчисленные для каждой группы, — групповыми
средними. Общая средняя отражает общие черты изучаемого явления, групповая
средняя дает характеристику размера явления, складывающуюся в конкретных
условиях данной группы. Сравнительный анализ групповых и общих средних
используется для характеристики социально-экономических типов изучаемого
общественного явления. 

В статистике используются различные виды
средних величии: средняя арифметическая, средняя гармоническая, средняя
геометрическая, средняя квадратическая, средняя хронологическая и т. д. При
использовании средних величин важно правильно выбрать вид средней и способ ее
расчета. Самой распространенной средней, используемой в социально-экономическом
анализе, является средняя арифметическая.

Средние арифметические бывают простые и
взвешенные. Средняя арифметическая простая рассчитывается по формуле:

где

 – индивидуальные значения признака, средняя величина
которых находится,

 – количество единиц совокупности.

Средняя арифметическая простая
применяется в тех случаях, когда каждое индивидуальное значение признака
встречается один раз или одинаковое количество раз.

Если же варианты (значения признака)
встречаются неодинаковое количество раз, то используется средняя арифметическая взвешенная:

где

 – варианты, значения признака,

 – частота появления соответствующего значения
признака.

В некоторых случаях средняя
рассчитывается по другому – когда известен ряд вариант

 и ряд произведений вариант на частоту

,
а сама частота

 неизвестна. В этом случае средняя
рассчитывается по формуле средней гармонической взвешенной:

где

Средняя гармоническая может иметь и
простую форму расчета, которая в практике статистики используется крайне редко
и представляет собой простую среднюю из обратных значений признака.

Величина средних величин зависит как от
индивидуальных значений признака в случае использования простых видов средних величин,
так и от удельного веса этих значений в общей совокупности при использовании
взвешенных видов.

Формулы средних взвешенных применяются во
всех случаях, когда варианты значений признака имеют различный удельный вес, а
формулы простых (не взвешенных) средних  — когда варианты имеют равные веса. В первом
случае расчет ведется по уже сгруппированным данным на основании дискретных рядов распределения, а во втором — обычно по несгруппированным, где каждый
признак представлен одним числом или равное число раз. Неправильный выбор
формулы, расчет средних показателей по формуле средней простой вместо средней
взвешенной может привести к серьезным ошибкам.

Средние
величины применяются для оценки достигнутого изучаемого показателя, при анализе
и планировании экономической деятельности предприятий. Средняя величина всегда
величина именованная и имеет ту же размерность что и признак у отдельных единиц
совокупности. Основным условием правильного расчета средней величины
является качественная однородность совокупностей, по которой исчислена средняя.

Примеры решения задач


Задача 1

Имеются
следующие данные о работе автотранспортных предприятий за отчетный период:

№ п/п Общий грузооборот, млн.т/км Выполнено тыс. т/км в среднем
на 1 автомобиль
% выпуска автомобилей на
линию
Средняя грузоподъемность
одного автомобиля, т
В общем грузообороте доля
его выполнения за пределы региона (%)
1 39 130 71 6.2 32
2 57 156 85 5.9 45
3 41 127 79 5.5 28

Определите
по совокупности предприятий средние значения всех признаков, используя
экономически обоснованные формулы расчета. Укажите вид и форму рассчитанных
средних.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Решение

Средний
грузооборот вычислим по формуле средней арифметической простой:

Среднее
выполнение на 1 автомобиль тыс.т/км по формуле
средней гармонической, так как определяющим показателем в данном случае
является отсутствующее в условии  число
автомобилей:

где

 – общий грузооборот

 – среднее выполнение на 1 автомобиль тыс.т/км

Средний
процент выпуска автомобилей на линию вычислим по формуле средней арифметической
взвешенной, так как определяющим показателем является численность автомобилей,
которую в свою очередь можно найти делением общего грузооборота на выработку
одного автомобиля.

 – процент выпуска автомобилей на линию

 – численность автомобилей

Среднюю
грузоподъемность одного автомобиля вычислим по формуле средней арифметической
взвешенной, так как определяющим показателем является численность автомобилей,
которую в свою очередь можно найти делением общего грузооборота на выработку
одного автомобиля.

 – грузоподъемность 1 автомобиля

 – численность автомобилей

Среднюю
долю выполнения за пределы региона вычислим по формуле средней арифметической
взвешенной, так как определяющим показателем является общий грузооборот.

 – доля в общем грузообороте выполнения за
пределы региона

 – общий грузооборот

Таким
образом средний грузооборот по предприятиям составил 45,7 млн. т/км, средняя
выработка на 1 автомобиль  — 138,6 тыс.
т/км,  средний процент выпуска
автомобилей на линию – 78,8%, средняя грузоподъемность одного автомобиля – 5,9
т., а средняя доля в общем грузообороте выполнения за пределы региона составила
36,2%.


Задача 2

Имеются
данные о финансовых показателях предприятий за отчетный период.

Предприятия Получено прибыли, тыс.руб. Акционерный капитал, тыс.р. Рентабельность акционерного
капитала, %
А 1 2 3
1 1512 5040 30
2 528 1320 40
3 1410 5640 25

Определите
средний процент рентабельности акционерного капитала фирмы, используя
показатели:

  1. гр. 1
    и гр. 2
  2. гр. 2
    и гр. 3
  3. гр. 1
    и гр. 3

Решение

1)
Средний процент рентабельности в этом случае определим напрямую, по формуле
рентабельности:

2)
Средний процент рентабельности в этом случае определим по формуле средней арифметической
взвешенной:

3)
Средний процент рентабельности в этом случае определим по формуле средней
гармонической:

Средний
процент рентабельности по всем предприятиям составил 28.75%


Задача 3

  1. Рассчитайте средние значения всех признаков, приведенных в условии
    задачи.
  2. Укажите формулу расчета средней в обозначениях задачи, расчет полностью,
    вид и формулу средней, использованной в расчете, единицы измерения средней.

Имеются
следующие данные (данные условные):

Страна Стоимость экспорта РФ, млн.долл.США Доля экспорта в стоимости
внешнеторгового оборота, %
Доля морепродуктов в
стоимости экспорта, %
Доля мороженной
рыбы в стоимости экспорта морепродуктов, %
Средняя цена за тонну мороженной рыбы, долл. США
  S D R M C
Япония 2995 74.8 5.46 74.2 1843
Корея 835 49.9 3.72 97.3 594
Китай 3981 76.0 0.56 97.1 478
Индия 2172 47.4 0.32 82.5 725

Решение

Среднюю
стоимость экспорта вычислим по формуле средней арифметической простой:

Среднюю
долю экспорта в стоимости внешнеторгового оборота вычислим по формуле средней
гармонической:

Среднюю
долю морепродуктов в стоимости экспорта вычислим по формуле средней
арифметической взвешенной:

Долю мороженной рыбы в стоимости экспорта морепродуктов вычислим
по формуле:

Среднюю
цену за тонну мороженной рыбы вычислим по формуле:

Вывод к задаче

Таким
образом средняя стоимость экспорта составила 2495,75 млн.долл.,
средняя доля экспорта в стоимости внешнеторгового оборота 64,4%, средняя доля
морепродуктов в стоимости экспорта 2.2%. Доля мороженной
рыбы в стоимости экспорта морепродуктов составила 79.9%, а средняя цена тонны
мороженной рыбы 1053.1 долл.

Начиная рассуждать о средних величинах, чаще всего вспоминают, как заканчивали школу и поступали в учебное заведение. Тогда по аттестату рассчитывался средний балл: все оценки (и хорошие, и не очень) складывали, полученную сумму делили на их количество. Так вычисляется самый простой вид средней, которая называется средняя арифметическая простая. На практике в статистике применяются различные виды средних величин: арифметическая, гармоническая, геометрическая, квадратическая, структурные средние. Тот или иной их вид используется в зависимости от характера данных и целей исследования.

Средняя величина является наиболее распространенным статистическим показателем, с помощью которого дается обобщающая характеристика совокупности однотипных явлений по одному из варьирующих признаков. Она показывает уровень признака в расчете на единицу совокупности. С помощью средних величин проводится сравнение различных совокупностей по варьирующим признакам, изучаются закономерности развития явлений и процессов общественной жизни.

В статистике применяются два класса средних: степенные (аналитические) и структурные. Последние используются для характеристики структуры вариационного ряда и будут рассмотрены далее в гл. 8.

К группе степенных средних относят среднюю арифметическую, гармоническую, геометрическую, квадратическую. Индивидуальные формулы для их вычисления можно привести к виду, общему для всех степенных средних, а именно

где m — показатель степенной средней: при m = 1 получаем формулу для вычисления средней арифметической, при m = 0 — средней геометрической, m = -1 — средней гармонической, при m = 2 — средней квадратической;

xi — варианты (значения, которые принимает признак);

fi — частоты.

Главным условием, при котором можно использовать степенные средние в статистическом анализе, является однородность совокупности, которая не должна содержать исходных данных, резко различающихся по своему количественному значению (в литературе они носят название аномальных наблюдений).

Продемонстрируем важность этого условия на следующем примере.

Пример 6.1. Вычислим среднюю заработную плату сотрудников малого предприятия.

Таблица
6.1.
Заработная плата работников

№ п/п Заработная плата, руб. № п/п Заработная плата, руб.
1 5 950 11 7 000
2 6 790 12 5 950
3 6 790 13 6 790
4 5 950 14 5 950
5 7 000 5 6 790
6 6 790 16 7 000
7 5 950 17 6 790
8 7 000 18 7 000
9 6 790 19 7 000
10 6 790 20 5 950

Для расчета среднего размера заработной платы необходимо просуммировать заработную плату, начисленную всем работникам предприятия (т.е. найти фонд заработной платы), и разделить на число работающих:

А теперь добавим в нашу совокупность всего лишь одного человека (директора этого предприятия), но с окладом в 50 000 руб. В таком случае вычисляемая средняя будет совсем другая:

Как видим, она превышает 7000 руб., т.д. она больше всех значений признака за исключением одного-единственного наблюдения.

Для того чтобы таких случаев не происходило на практике, и средняя не теряла бы своего смысла (в примере 6.1 она уже не выполняет роль обобщающей характеристики совокупности, которой должна быть), при расчете средней следует аномальные, резко выделяющиеся наблюдения либо исключить из анализа и тем самым сделать совокупность однородной, либо разбить совокупность на однородные группы и вычислить средние значения по каждой группе и анализировать не общую среднюю, а групповые средние значения.

6.1. Средняя арифметическая и ее свойства

Средняя арифметическая вычисляется либо как простая, либо как взвешенная величина.

При расчете средней заработной платы по данным таблицы примера 6.1 мы сложили все значения признака и поделили на их количество. Ход наших вычислений запишем в виде формулы средней арифметической простой

где хi — варианты (отдельные значения признака);

п — число единиц в совокупности.

Пример 6.2. Теперь сгруппируем наши данные из таблицы примера 6.1, т.д. построим дискретный вариационный ряд распределения работающих по уровню заработной платы. Результаты группировки представлены в таблице.

Таблица
6.2.
Распределение работников предприятия по уровню заработной платы

Заработная плата, руб. Численность работников
5 950 6
6 790 8
7 000 6
Итого 20

Запишем выражение для вычисления среднего уровня заработной платы в более компактной форме:

В примере 6.2 была применена формула средней арифметической взвешенной

где fi — частоты, показывающие, сколько раз встречается значение признака хi y единиц совокупности.

Расчет средней арифметической взвешенной удобно проводить в таблице, как это показано ниже (табл. 6.3):

Таблица
6.3.
Расчет средней арифметической в дискретном ряду

Исходные данные Расчетный показатель
заработная плата, руб. численность работающих, чел. фонд заработной платы, руб.
xi fi xifi
5 950 6 35 760
6 790 8 54 320
7 000 6 42 000
Итого 20 132 080

Следует отметить, что средняя арифметическая простая используется в тех случаях, когда данные не сгруппированы или сгруппированы, но все частоты равны между собой.

Часто результаты наблюдения представляют в виде интервального ряда распределения (см. таблицу в примере 6.4). Тогда при расчете средней в качестве xi берут середины интервалов. Если первый и последний интервалы открыты (не имеют одной из границ), то их условно «закрывают», принимая за величины данного интервала величину примыкающего интервала, т.д. первый закрывают исходя из величины второго, а последний — по величине предпоследнего.

Пример 6.3. По результатам выборочного обследования одной из групп населения рассчитаем размер среднедушевого денежного дохода.

В приведенной таблице середина первого интервала равна 500. Действительно, величина второго интервала — 1000 (2000-1000); тогда нижняя граница первого равна 0 (1000-1000), а его середина — 500. Аналогично поступаем с последним интервалом. За его середину принимаем 25 000: величина предпоследнего интервала 10 000 (20 000-10 000), тогда его верхняя граница — 30 000 (20 000 + 10 000), а середина, соответственно, — 25 000.

Таблица
6.4.
Расчет средней арифметической в интервальном ряду

Среднедушевой денежный доход, руб. в месяц Численность населения к итогу, %
fi
Середины интервалов
xi
xifi
До 1 000 4,1 500 2 050
1 000-2 000 8,6 1 500 12 900
2 000-4 000 12,9 3 000 38 700
4 000-6 000 13,0 5 000 65 000
6 000-8 000 10,5 7 000 73 500
8 000-10 000 27,8 9 000 250 200
10 000-20 000 12,7 15 000 190 500
20 000 и выше 10,4 25 000 260 000
Итого 100,0 892 850

Тогда среднедушевой размер месячного дохода составит

Средняя арифметическая величина обладает рядом математических свойств. Приведем основные из них:

  1. если хi = с, где с — постоянная величина, то средняя арифметическая будет равна с;
  2. сумма отклонений значений признака от его средней арифметической равна 0, т.е.

  3. если из всех значений признака вычесть постоянную величину с, то средняя арифметическая уменьшится на эту величину с:

  4. от уменьшения или увеличения частот fi каждого значения признака в m раз величина средней арифметической не изменится:

  5. если все индивидуальные значения признака уменьшить или увеличить в d раз, то величина средней арифметической также уменьшится или увеличится в d раз:

На изложенных свойствах средней арифметической базируется один из методов ее расчета — способ моментов, или метод отсчета от условного нуля, который используется в случае вариационных рядов с равными интервалами. Согласно этому методу среднюю арифметическую взвешенную можно вычислить по следующей формуле: x = mi * d + c

где — момент первого порядка

За d, как правило, принимают величину интервалов, а за с — значение середины интервала, находящегося в центре ряда (если количество интервалов нечетное), или середину интервала с наибольшей частотой также из центра ряда (при четном количестве интервалов в центре ряда будут находиться два интервала).

Пример 6.4. Рассчитаем среднюю прибыль по группе банков способом моментов.

Расчет средней арифметической способом моментов

Рис.
6.13.
Расчет средней арифметической способом моментов

Понравилась статья? Поделить с друзьями:
  • Медаль за отвагу номерная как найти
  • Как составить обращение главе города
  • Покинул рабочее место как составить акт
  • Dragon age как найти клады
  • Outlast как найти отца мартина