Рассмотрим вопрос о зависимости решения задачи Коши от начальных данных. Пусть дана задача Коши
Если функция f(t, х) непрерывна по совокупности аргументов и имеет ограниченную производную в некоторой области изменения t, х, содержащей точку (tо, xo), то решение задачи Коши (1)-(2) существует и единственно. Если изменять значения t0 и хо, то будет меняться и решение. Возникает важный в приложениях вопрос: как оно будет меняться? Вопрос этот имеет и большое принципиальное значение. Действительно, если какая-либо физическая задача приводит к задаче Коши, то начальные значения находятся из опыта и за абсолютную точность измерения ручаться нельзя. И если сколь угодно малые изменения начальных данных способны сильно изменять решение, то математическая модель окажется малопригодной для описания реального процесса.
Справедлива следующая теорема о непрерывной зависимости решения от начальных условий.
Теорема:
Если правая часть f(t, х) дифференциального уравнения
непрерывна по совокупности переменных и имеет ограниченную частную производную в некоторой области G изменения t , х, то решение
удовлетворяющее начальному условию непрерывно зависит от начальных данных.
Иными словами, пусть через точку проходит решение x(t) уравнения (1), определенное на отрезке Тогда для любого найдется такое решение уравнения (1), проходящее через точку существует на отрезке и отличается там от x(t) меньше чем на
Аналогичная теорема справедлива и для системы дифференциальных уравнений
При выполнении условий теоремы (1) решение задачи Коши существует, единственно и непрерывно зависит от начальных данных. В этом случае говорят, что задача Коши поставлена корректно. Существенным является то обстоятельство, что отрезок [а, b] изменения t конечен. Однако во многих задачах нас интересует зависимость решения от начальных данных в бесконечном промежутке Переход от конечного промежутка, в котором рассматривается непрерывная зависимость решения от начальных значений, к бесконечному существенно меняет характер задачи и методы исследования. Эта проблема относится к теории устойчивости, созданной А.М. Ляпуновым.
Остановимся вкратце на понятии о продолжаемости решения. Пусть имеем систему дифференциальных уравнений
где t — независимая переменная (время); искомые функции; функции, определенные для из некоторой области Если функции
в их области определения непрерывны по совокупности аргументов и имеют ограниченные частные производные по то для системы (3) справедлива локальная теорема существования:
для каждой системы значений
существует единственное решение
системы (3), определенное в некотором интервале изменения t и удовлетворяющее начальным условиям
Введем следующее понятие. Пусть
— решение задачи Коши (3)-(4), определенное на некотором интервале I = (t1,t2). Это решение может бьггь продолжено, вообще говоря, на больший интервал времени. Решение
называется продолжением решения если оно определено на большем интервале и совпадает с при Решение называется неограниченно продолжаемым (неограниченно продолжаемым вправо или влево), если его можно продолжить на всю ось (на полуось или соответственно).
Для дальнейших рассмотрений важен вопрос о существовании решения хi(t), (глобальная теорема существования). Этим свойством обладает линейная система
где — непрерывные функции на Для нее каждое решение существует на (неограниченно продолжаемо вправо) и единственно.
Не все системы обладают таким свойством. Например, для скалярного уравнения
функция
непрерывна и имеет производные всех порядков по х. Нетрудно проверить, что функция
является решением задачи
Однако это решение существует только в интервале зависящем от начального условия, и не-продолжаемо на полуинтервал
Уравнение (5) есть уравнение сверхбыстрого размножения, когда прирост пропорционален числу всевозможных пар. Его решение показывает, что при таком законе прироста населения количество населения становится бесконечным за конечное время (в то время как обычный закон прироста — экспоненциальный).
Задача:
Показать, что решения уравнения
нельзя продолжить неограниченно ни вправо, ни влево.
Устойчивость по Ляпунову. Основные понятия и определения
Рассмотрим дифференциальное уравнение первого порядка
где функция f(t,x) определена и непрерывна для и х из некоторой области D и имеет ограниченную частную производную . Пусть функция
есть решение уравнения (1), удовлетворяющее начальному условию
Пусть, далее, функция
есть решение того же уравнения, удовлетворяющее другому начальному условию
Предполагается, что решения определены для всех неограниченно продолжаемы вправо.
Определение:
Решение уравнения (1) называется устойчивым по Ляпунову при если для любого такое, что для всякого решения х = x(t) этого уравнения из неравенства
следует неравенство
для всех (всегда можно считать, что
Это значит, что решения, близкие по начальным значениям к решению остаются близкими и при всех Геометрически это означает следующее. Решение
уравнения (1) устойчиво, если, какой бы узкой ни была е-полоска, содержащая кривую , все достаточно близкие к ней в начальный момент интегральные кривые х = x(t) уравнения целиком содержатся в указанной е-полоске при всех (рис. 1).
Если при сколь угодно малом хотя бы для одного решения х = x(t) уравнения (1) неравенство (3) не выполняется, то решение этого уравнения называется неустойчивым. Неустойчивым следует считать и решение, не продолжаемое вправо при
Определение:
Решение уравнения (1) называется асимптотически устойчивым, если
1) решение устойчиво;
2) существует такое, что для любого решения х = x(t) уравнения (1), удовлетворяющего условию имеем
Это означает, что все решения х = x(t), близкие по начальным условиям к асимптотически устойчивому решению , не только остаются близкими к нему при , но и неограниченно сближаются с ним при
Вот простая физическая модель. Пусть шарик лежит на дне полусферической лунки (находится в положении равновесия). Если малым возмущением вывести шарик из этого положения, то он будет колебаться около него. При отсутствии трения положение равновесия будет устойчивым, при наличии трения колебания шарика будут уменьшаться с возрастанием времени, т. е. положение равновесия будет асимптотически устойчивым.
Пример:
Исследовать на устойчивость тривиальное решение
уравнения
Решение , очевидно, удовлетворяет начальному условию
Решение уравнения (*), удовлетворяющее начальному условию
имеет вид
Легко видеть (рис. 2), что, какова бы ни была -полоска вокруг интегральной кривой х = 0, существует , например, такое, что любая интегральная кривая для которой целиком содержится в указанной полоске для всех Следовательно, решение устойчиво. Асимптотической устойчивости нет, поскольку решение при не стремится к прямой х = 0.
Пример:
Исследовать на устойчивость тривиальное решение уравнения
Решение уравнения (**), удовлетворяющее начальному условию
имеет вид
Возьмем любое > 0 и рассмотрим разность решений
Поскольку для всех , из выражения (***) следует, что существует например, такое, что при имеем
Согласно определению (1) это означает, что решение уравнения (**) устойчиво. Кроме того, имеем
поэтому решение асимптотически устойчиво (рис. 3).
Пример:
Показать, что решение
уравнения
неустойчиво.
В самом деле, при сколь угодно малом решение
этого уравнения не удовлетворяет условию
при достаточно больших t > to. Более того, при любых имеем
(рис.4).
Рассмотрим теперь систему дифференциальных уравнений
где функции fi определены для из некоторой области D изменения и удовлетворяют условиям теоремы существования и единственности решения задачи Коши. Предположим, что все решения системы (4) неограниченно продолжаемы вправо при
Определение:
Решение
системы (4) называется устойчивым по Ляпунову при если для любого > 0 существует такое, что для всякого решения той же системы, начальные значения которого удовлетворяют условию
выполняются неравенства
для всех т. е. близкие по начальным значениям решения остаются близкими для всех
Если при сколь угодно малом хотя бы для одного решения не все неравенства (5) выполняются, то решение называется неустойчивым.
Определение:
Решение
системы (4) называется асимптотически устойчивым, если:
1) решение это устойчиво;
2) существует такое, что всякое решение системы, для которого
удовлетворяет условию
Пример:
Исходя из определения устойчивости по Ляпунову, показать, что решение системы
удовлетворяющее начальным условиям
устойчиво.
Решение системы (*), удовлетворяющее начальным условиям (**), есть
Решение этой системы, удовлетворяющее условиям имеет вид
Возьмем произвольное > 0 и покажем, что существует такое, что при выполняются неравенства
для всех Это и будет означать, согласно определению, что нулевое решение системы (*) устойчиво по Ляпунову. Очевидно, имеем:
то при будут иметь место неравенства
для всех т.е. действительно нулевое решение системы устойчиво по Ляпунову, но эта устойчивость не асимптотическая.
Из устойчивости нетривиального решения дифференциального уравнения не следует ограниченности этого решения. Рассмотрим, например, уравнение
Решением этого уравнения, удовлетворяющим условию х(0) = 0, является функция
Решение, удовлетворяющее начальному условию имеет вид
Геометрически очевидно (рис.5), что для всякого существует например такое, что любое решение x(t) уравнения, для которого верно неравенство удовлетворяет условию Последнее означает, что решение устойчиво по Ляпунову, однако это решение является неограниченным при
Из ограниченности решений дифференциального уравнения не следует устойчивости решений.
Рассмотрим уравнение
Оно имеет очевидные решения
Интегрируя уравнение (6), находим
Все решения (7) и (8) ограничены на Однако решение неустойчиво при так как при любом имеем
(рис. 6).
Таким образом, ограниченность и устойчивость решений являются понятиями, независимыми друг от друга.
Замечание:
Исследуемое на устойчивость решение
системы (4) всегда можно преобразовать в тривиальное решение
другой системы заменой
В самом деле, пусть имеем (для простоты) одно дифференциальное уравнение
и пусть требуется исследовать на устойчивость какое-либо решение этого уравнения. Положим, что
(величину называют возмущением). Тогда
и подстановка в (*) приводит к равенству
Но — решение уравнения (*), поэтому
и из (**) имеем
Обозначив здесь правую часть через F(t, у), получим
Это уравнение имеет решение так как при его левая и правая части тождественно по t равны нулю:
Таким образом, вопрос об устойчивости решения уравнения (*) приводится к вопросу об устойчивости тривиального решения уравнения (***), к которому сводится (*). Поэтому в дальнейшем мы будем, как правило, считать, что на устойчивость исследуется тривиальное решение.
Устойчивость автономных систем. Простейшие типы точек покоя
Нормальная система дифференциальных уравнений называется автономной, если ее правые части fi не зависят явно от t, т. е. если она имеет вид
Это значит, что закон изменения неизвестных функций, описываемый автономной системой, не меняется со временем, как это бывает с физическими законами. Пусть имеем автономную систему
и пусть (а1, a2, …, аn) — такая совокупность чисел, что
Тогда система функций
будет решением системы (1). Точку фазового пространства (x1, x2,…, хn) называют точкой покоя (положением равновесия) данной системы. Рассмотрим автономную систему (1) , для которой
есть точка покоя этой системы. Обозначим через S(R) шар
и будем считать, что для рассматриваемой системы в шаре S(R) выполнены условия теоремы существования и единственности решения задачи Коши.
Определение:
Будем говорить, что точка покоя
системы (1) устойчива, если для любого существует такое что любая траектория системы, начинающаяся в начальный момент все время затем остается в шаре Точка покоя асимптотически устойчива, если:
1) она устойчива;
2) существует такое что каждая траектория системы, начинающаяся в точке Mо области стремится к началу координат, когда время t неограниченно растет (рис. 7).
Поясним это определение примерами.
Пример:
Рассмотрим систему
Траектории здесь — концентрические окружности
с центром в начале координат — единственной точкой покоя системы. Если взять то любая траектория, начинающаяся в круге , остается все время внутри , а следовательно, и внутри , так что имеет место устойчивость. Однако траектории не приближаются к началу координат при и точка покоя не является асимптотически устойчивой.
Пример:
Пусть дана система
Ее решения:
Отсюда имеем
поэтому траекториями являются лучи, входящие в начало координат (рис.8). Можно снова выбрать Любая точка траектории, находившаяся в начальный момент внутри , остается все время в круге и, кроме того, неограниченно приближается к началу координат при Следовательно, наблюдается асимптотическая устойчивость.
Пример:
Возьмем, наконец, систему
Здесь также
и траекториями являются лучи, исходящие из начала координат, но в отличие от примера 2 движение по лучам происходит в направлении от центра. Точка покоя неустойчива.
Простейшие типы точек покоя
Исследуем расположение траекторий в окрестности точки покоя х = 0, у = 0 системы двух линейных однородных уравнений с постоянными коэффициентами:
Решение будем искать в виде
Для определения получаем характеристическое уравнение
Величины с точностью до постоянного множителя определяются из системы
Возможны следующие случаи.
А. Корни характеристического уравнения (3) — действительные и различные. Общее решение системы (2) имеет вид
- Пусть Точка покоя (0,0) в этом случае асимптотически устойчива, так как из-за наличия множителей все точки каждой траектории, находившиеся в начальный момент в произвольной окрестности начала координат, при достаточно большом t переходят в точки, лежащие в сколь угодно малой, окрестности начала координат, а при стремятся к этому началу. Такая точка покоя называется устойчивым узлом
При С2 = 0 из (4) получаем
и траекториями являются два луча, входящие в начало координат с угловым коэффициентом
Аналогично, при С1 = 0 получаем еще два луча, входящие в начало координат с угловым коэффициентом
Пусть теперь и (для определенности) Тогда в силу (4)
т. е. все траектории (исключая лучи в окрестности точки покоя О(0,0) имеют направление луча
(рис. 9).
2. Если то расположение траекторий такое же, как и в предыдущем случае, но точки движутся по траекториям в противоположном направлении. Точка покоя рассматриваемого типа называется неустойчивым узлом (рис. 10).
Пример:
Рассмотрим систему
Для нее точка О(0,0) — точка покоя. Характеристическое уравнение
имеет корни так что налицо неустойчивый узел. Перейдем от данной системы к одному уравнению
Оно имеет решения
так что траекториями системы будут лучи падающие с координатными полуосями, семейство парабол, касающихся оси Oх в начале координат (рис. 11)
3. Пусть теперь тогда точка покоя неустойчива.
При С2 = 0 получаем решение
С возрастанием t точка этой траектории движется по лучу
в направлении от начала неограниченно удаляясь от него. При С1 = 0 имеем:
Отсюда видно, что при возрастании t точка движется по лучу
в направлении к началу координат . Если так и при траектория покидает окрестность точки покоя. Точка покоя рассматриваемого типа называется седлом (рис. 12).
Пример:
Исследуем характер точки покоя О(0,0) системы
Характеристическое уравнение системы
имеет корни Перейдем к одному уравнению
интегрируя которое получаем
Уравнение (6) имеет также решения
Таким образом, интегральные кривые этого уравнения (траектории системы (5)) — равнобочные гиперболы и лучи, совпадающие с координатными полуосями.
Б. Корни характеристического уравнения — комплексные: Общее решение системы (2) можно представить в виде
где C1 и C2 — произвольные постоянные, а — некоторые линейные комбинации этих постоянных
- Пусть в этом случае множитель стремится к нулю при а вторые множители в (7) — ограниченные периодические функции. Траектории — спирали, асимптотически приближающиеся к началу координат при Точка покоя х = 0, у = 0 асимптотически устойчива. Она называется устойчивым фокусом (рис. 13).,
- Если то этот случай переходит в предыдущий при замене t на -t. Траектории не отличаются от траекторий предыдущего случая, но движение по ним при возрастании t происходит в противоположном направлении. Точка покоя неустойчива — неустойчивый фокус.
- Если же то решения системы (2) — периодические функции. Траекториями являются замкнутые кривые, содержащие внутри себя точку покоя, называемую в этом случае центром (рис. 14). Центр является устойчивой точкой покоя, однако асимптотической устойчивости нет, так как решение
не стремится к нулю при
Пример. Рассмотрим систему уравнений
Характеристическое уравнение системы
имеет комплексные корни
Перейдем от системы к одному уравнению
и введем полярные координаты Тогда
Следовательно,
Используя уравнение (9), находим, что
Эти интегральные кривые являются логарифмическими спиралями, навивающимися на начало координат, которое достигается в пределе при в зависимости от того, будет ли а < 0 или а > 0. Налицо точка покоя типа фокуса. В частном случае, когда а = 0, уравнение (9) принимает вид
Интегральные кривые этого уравнения — окружности с центром в начале координат, которое при а = 0 является точкой покоя системы (8) типа центра.
В. Корни характеристического уравнения кратные: Случай этот — скорее исключение, а не правило, так как сколь угодно малое изменение коэффициентов системы разрушает его. Применяя метод исключения, находим, что общее решение системы уравнений (2) имеет вид
( — некоторые линейные комбинации С1, С2).
- Если то из-за наличия множителя решения х(t), y(t) стремятся к нулю при Точка покоя х = 0, у = 0 асимптотически устойчива. Ее называют устойчивым вырожденным узлам (рис. 15). Он отличается от узла в случае А. 1 (там одна из траекторий имела касательную, отличную от всех остальных). Возможен также дикритический узел (см. рис. 8).
- При замена t на -t приводит к предыдущему случаю, но движение по траекториям происходит в противоположном направлении. Точка покоя в этом случае называется неустойчивым вырожденным узлом.
Пример:
Для системы уравнений
характеристическое уравнение
имеет кратные корни Деля второе уравнение системы на первое, найдем
В этом случае
Поэтому все интегральные кривые проходят через начало координат, и все они имеют там ось Оу общей касательной.
Мы перебрали и исчерпали все возможности, поскольку случай исключен условием
Пример:
Исследовать уравнение малых колебаний маятника с учетом трения.
Уравнение малых колебаний маятника в этом случае имеет вид
где x — угол малого отклонения маятника от вертикали, к — коэффициент трения. Заменим уравнение (*) эквивалентной системой
Характеристическое уравнение для системы (**)
имеет корни
Если 0 < к < 2, то эти корни будут комплексными с отрицательной действительной частью, так что нижнее положение равновесия маятника х = х1 = 0 будет устойчивом фокусом. Решением уравнения (*) является функция
— частота колебаний, а величины А, а определяются из начальных условий.
График решения и фазовая кривая при 0 < к < 2 имеют вид, изображенный на рис. 16. При т. е. с уменьшением коэффициента трения, фокус превращается в центр: маятник будет совершать незатухающие периодические колебания.
Сформулируем результаты, касающиеся устойчивости решений системы п линейных однородных дифференциальных уравнений первого порядка с постоянными коэффициентами
Рассмотрим для системы (10) характеристическое уравнение
Справедливы следующие предложения:
1) если все корни характеристического уравнения имеют отрицательную действительную часть, то все решения системы (10) асимптотически устойчивы. Действительно, в этом случае все слагаемые общего решения содержат множители стремящиеся к нулю при
2) если хотя бы один корень характеристического уравнения имеет положительную действительную часть, то все решения системы неустойчивы;
3) если характеристическое уравнение имеет простые корни с нулевой действительной частью (т. е. чисто мнимые или равные нулю корни), а остальные корни, если они есть, имеют отрицательную действительную часть, та все решения устойчивы, но асимптотической устойчивости нет.
Эти результаты относятся и к одному линейному дифференциальному уравнению с постоянными коэффициентами.
Следует обратить внимание на то, что для линейной системы все решения либо устойчивы, либо неустойчивы одновременна
Теорема:
Решения Системы линейных дифференциальных уравнений
либо все одновременно устойчивы, либо неустойчивы.
Преобразуем произвольное частное решение
системы (11) в тривиальное с помощью замены
Система (11) преобразуется при этом в линейную однородную систему относительно yi(t):
Следовательно, все частные решения системы (11) в смысле устойчивости ведут себя одинаково, а именно как тривиальное решение однородной системы (12).
В самом деле, пусть тривиальное решение
системы (12) устойчиво. Это значит, что для любого такое, что для всякого другого решения системы из условия следует, что
Замечая, что получаем, что из условия
для всякого решения исходной системы (11). Согласно определению, это означает устойчивость решения этой системы.
Это предложение не имеет места для нелинейных систем, некоторые решения которых могут быть устойчивыми, а другие — неустойчивыми.
Пример:
Рассмотрим нелинейное уравнение
Оно имеет очевидные решения
Решение x(t) = -1 неустойчиво, а решение x(t) = 1 является асимптотически устойчивым. В самом деле, при все решения
стремятся к +1. Это означает, согласно определению, что решение x(t) = 1 асимптотически устойчиво.
Замечание:
Как и в случае n = 2, можно исследовать расположение траекторий в окрестности точки покоя О(0,0,0) системы (10). Для n = 3 возможны так называемые узлофокусы (рис. 17), седлофокусы (рис. 18) и т. д.
Метод функций Ляпунова
Метод функций Ляпунова состоит в исследовании устойчивости точки покоя системы дифференциальных уравнений с помощью подходящим образом выбранной функции — так называемой функции Ляпунова, причем делается это без предварительного построения решения системы; в этом неоценимое преимущество метода.
Ограничимся рассмотрением автономных систем
для которых Xi = 0, i = 1, 2,…, n, есть точка покоя.
Идея метода состоит в следующем. Предположим, что на устойчивость исследуется точка покоя системы (1). Если бы с возрастанием t точки всех траекторий приближались к началу координат или хотя бы не удалялись от него, то рассматриваемая точка покоя была бы устойчивой. Проверка выполнения этого условия не требует знания решений системы. Действительно, если р — расстояние от точки траектории до начала координат
(производная вдоль траектории): Правая часть в (2) есть известная функция от х1, х2,…, хn, и можно исследовать ее знак. Если окажется, что то точки на всех траекториях не удаляются от начала координат при возрастании t и точка покоя хi = 0, i = 1, 2,…, n, устойчива. Однако точка покоя может быть устойчивой и при немонотонном приближении к ней с возрастанием t точек траекторий (например, в случае, когда траектории — эллипсы). Поэтому А. М. Ляпунов вместо функции р рассматривал функции v (x1, x2, … , хn), являющиеся в некотором смысле «обобщенным расстоянием» от начала координат.
Определение:
Функция v(x1, х2, … xn), определенная в некоторой окрестности начала координат, называется знакоопределенной (знакоположительной или знакоотрицательной), если в области G
где h — достаточно малое положительное число, она может принимать значения только одного определенного знака и обращается в нуль лишь при
Так, в случае n = 3 функции
будут знакоположительными, причем здесь величина h > 0 может быть взята сколь угодно большой.
Определение:
Функция называется знакопостоянной (положительной или отрицательной), если она в области G может принимать значения только одного определенного знака, но может обращаться в нуль и при
Например, функция
будет знакопостоянной (положительной). В самом деле, функцию v(x1, x2, x3) можно представить так:
отсюда видно, что она неотрицательна всюду, но обращается в нуль и при а именно при X3 = 0 и любых, x1, х2 таких, что х1 = -х2.
Пусть — дифференцируемая функция своих аргументов, и пусть
являются некоторыми функциями времени, удовлетворяющими системе дифференциальных уравнений (1). Тогда для полной производной функции v повремени имеем
Определение:
Величина определяемая формулой (3), называется полной производной функции v по времени, составленной в силу системы уравнений (1).
Определение:
Функций обладающую свойствами:
1) дифференцируема в некоторой окрестности начала координат;
2) определенно-положительна в и
3) полная производная функции , составленная в силу системы (1),
всюду в , называют функцией Ляпунова.
Теорема:
Теорема Ляпунова об устойчивости. Если для системы дифференциальных уравнений
существует дифференцируемая знакоопределенная функция , полная производная которой по времени, составленная в силу системы (1), есть знакопостоянная функция (знака, противоположного с v) или тождественно обращается в ноль, то тонка покоя системы (1) устойчива.
Приведем идею доказательства. Пусть для определенности есть знакоположительная функция, для которой Так как
причем v = 0 лишь при то начало координат есть точка строгого минимума функции В окрестности начала координат поверхности уровня
функции v являются, Как можно показать, замкнутыми поверхностями, внутри которых находится начало координат. Чтобы картина стала нагляднее, остановимся на случае n = 2. Так как только для то поверхность
в общих чертах напоминает параболоид, вогнутый Вверх (рис. 19).
Линии уровня представляют собой семейство замкнутых кривых, окружающих начало координат. При этом если то линия уровня целиком лежит внутри области, ограниченной линией Зададим При достаточно малом С > 0 линия уровня v = С целиком лежит в е-окрестности начала координат, но не проходит через начало. Следовательно, можно выбрать такое, что окрестность начала координат целиком лежит внутри области, ограниченной линией v = С, причем в этой окрестности v < С (рис. 20).
Рассмотрим траекторию системы (1), выходящую в начальный момент времени t = to из какой-нибудь точки окрестности начала координат. Эта траектория при возрастании t никогда не пересечет ни одной из линий v(x1,x2) изнутри наружу. В самом деле, если бы такое пересечение было возможным в какой-нибудь точке, то в этой точке или в ее окрестности функция необходимо имела бы положительную производную так как при переходе от какой-нибудь линии v = С к другой линии этого семейства, охватывающей первую, функция v(x1,x2) возрастает. Но это невозможно в силу того, что по условию Значит, если в начальный момент времени какая-нибудь траектория находилась внутри области, ограниченной линией v = С, то она и в дальнейшем будет все время оставаться внутри этой области. Отсюда ясно, что для всякого существует такое, что любая траектория системы, выходящая в начальный момент времени окрестности начала координат, для всех будет содержаться в е-окрестности начала. Это и означает устойчивость точки покоя системы (1).
Теорема:
Теорема Ляпунова об асимптотической устойчивости. Если для системы дифференциальных уравнений
существует дифференцируемая знакоопределенная функция полная производная которой по времени, составленная в силу системы, есть также знакоопределенная функция знака, противоположного с v, то тонка покоя системы (1) асимптотически устойчива.
Пример:
Исследовать на устойчивость точку покоя О(0,0) системы
Выберем в качестве функции v(x, y) функцию
Эта функция знакоположительная. В силу системы (*) найдем
Из теоремы 3 следует, что точка покоя О(0,0) системы (*) устойчива (центр). Асимптотической устойчивости нет, так как траектория системы (*) — окружности.
Пример 2. Исследовать на устойчивость точку покоя О(0,0) системы
Беря опять
Таким образом, есть знакоотрицательная функция. В силу теоремы 4 точка покоя О(0,0) системы (**) устойчива асимптотически.
Теорема:
О неустойчивости. Пусть для системы дифференциальных уравнений
существует дифференцируемая в окрестности начала координат функция такая, что v(0,0,…, 0) = 0. Если ее полная производная составленная в силу системы (4), есть знакоположительная функция и сколь угодно близко от начала координат имеются точки, в которых функция принимает положительные значения, то точка покоя системы (4) неустойчива.
Пример:
Исследовать на устойчивость точку покоя О(0,0) системы
Возьмем функцию
Для нее функция
знакоположительная. Так как сколь угодно близко к началу координат найдутся точки, в которых v > 0 (например, вдоль прямой у = 0), то выполнены все условия теоремы 5 и точка покоя О(0,0) неустойчива (седло).
Метод функций Ляпунова оказывается универсальным и эффективным для широкого круга проблем теории устойчивости. Недостаток же метода в том, что достаточно общего конструктивного способа построения функций Ляпунова пока нет. В простейших случаях функцию Ляпунова можно искать в виде
Устойчивость по первому (линейному) приближению
Пусть имеем систему дифференциальных уравнений
и пусть есть точка покоя системы, т. е.
Будем предполагать, что функции дифференцируемы в окрестности начала координат достаточное число раз. Применяя формулу Тейлора, разложим функции fi по х в окрестности качала координат
а слагаемые Ri содержат члены не ниже второго порядка малости относительно Система дифференциальных уравнений (1) примет вид
Так как понятие устойчивости точки покоя O(0,0,…, 0) связано с малой окрестностью начала координа’т в- фазовом пространстве, то естественно ожидать, что поведение решения (1) будет определяться главными линейными членами разложения функций fi по х. Поэтому наряду с системой (3) рассмотрим систему
называемую системой уравнений первого (линейного) приближения для системы (3).
Вообще говоря, строгой связи между системами (3) и (4) нет. Рассмотрим, например, уравнение
Здесь f(x) = 0; линеаризированное уравнение для уравнения (5) имеет вид
Решение уравнения (6) является устойчивым. Оно же, будучи решением исходного уравнения (5), не является для него устойчивым. В самом деле, каждое действительное решение уравнения (5), удовлетворяющее начальному условию имеет вид и перестает существовать при (решение не продолжаемо вправо).
Теорема:
Если все корни характеристического уравнения
имеют отрицательные действительные части, то точка покоя системы (4) и системы (3) асимптотически устойчива.
При выполнении условий теоремы возможно исследование на устойчивость по первому приближению.
Теорема:
Если хотя бы один корень характеристического уравнения (7) имеет положительную действительную часть, то точка покоя Xi= 0 системы (4) и системы (3) неустойчива.
В этом случае также возможно исследование на устойчивость по первому приближению.
Наметим идею доказательства теорем 6 и 7.
Пусть для простоты корни характеристического уравнения (7) — действительные и различные. В этом случае существует такая невырожденная матрица Т с постоянными элементами, что матрица будет диагональной:
где — матрица из коэффициентов системы (4). Положим
и система (4) преобразуется к виду
Отсюда получаем
или, в силу выбора матрицы Т,
Система (3) при том же преобразовании перейдет в систему
причем в опять входят члены не ниже второго порядка малости относительно Yi при
Рассмотрим следующие возможности:
1. Все корни — отрицательные. Положим
тогда производная в силу системы (8) будет иметь вид
где малая более высокого порядка, чем квадратичная форма
Таким образом, в достаточно малой окрестности точки O(0, 0,…, 0) функция у(y1,y2, …, yn) знакоположительна, а производная знакоотрицательна, и, значит, точка покоя O (0,0,…, 0) асимптотически устойчива.
2. Некоторые из корней положительные, а остальные — отрицательные. Положим
Отсюда видно, что сколь угодно близко к началу координат найдутся точки (например, такие, у которых Что касается производной то, поскольку отрицательны, производная — знакоположительная функция. В силу теоремы 5 точка покоя O (0,0,…, 0) неустойчива.
В критическом случае, когда все действительные части корней характеристического уравнения неположительны, причем действительная часть хотя бы одного корня равна нулю, на устойчивость тривиального решения системы (3) начинают влиять нелинейные члены Ri и исследование на устойчивость по первому приближению становится невозможным.
Пример:
Исследовать на устойчивость по первому приближению точку покоя х = 0, у = 0 системы
Система первого приближения имеет вид
Нелинейные члены удовлетворяют нужным условиям: их порядок не меньше 2. Составляем характеристическое уравнение для системы (**):
Корни характеристического уравнения нулевое решение системы (*) неустойчиво.
Пример:
Исследуем на устойчивость точку покоя О(0, 0) системы
Точка покоя х = 0, у = 0 системы (*) асимптотически устойчива, так как для этой системы функция Ляпунова
удовлетворяет условиям теоремы Ляпунова об асимптотической устойчивости. В частности,
В то же время точка покоя х = 0, у = 0 системы
неустойчива.
В самом деле, для функции в силу системы (**) имеем
т.е. — функция знакоположительная. Сколь угодно близко от начала координат 0(0,0) имеются точки, в которых
В силу теоремы 5 заключаем о неустойчивости точки покоя О(0,0) системы (**).
Для системы (*) и (**) система первого приближения одна и та же:
Характеристическое уравнение
для системы (***) имеет чисто мнимые корни — критический случай (действительные части корней характеристического уравнения равны нулю). Для системы первого приближения (***) начало координат является устойчивой точкой покоя — центром. Системы (*) и (**) получаются малым возмущением правых частей (***) в окрестности начала координат. Однако эти малые возмущения приводят к тому, что для системы (*) точка покоя О(0,0) становится асимптотически устойчивой, а для системы (**) неустойчивой.
Этот пример показывает, что в критическом случае нелинейные члены могут влиять на устойчивость точки покоя.
Задача. Исследовать на устойчивость точку покоя О(0,0) системы
где функция f(х,у) разлагается в сходящийся отеленной ряд и f(0,0) = 0.
Решение заданий и задач по предметам:
- Математика
- Высшая математика
- Математический анализ
- Линейная алгебра
Дополнительные лекции по высшей математике:
- Тождественные преобразования алгебраических выражений
- Функции и графики
- Преобразования графиков функций
- Квадратная функция и её графики
- Алгебраические неравенства
- Неравенства
- Неравенства с переменными
- Прогрессии в математике
- Арифметическая прогрессия
- Геометрическая прогрессия
- Показатели в математике
- Логарифмы в математике
- Исследование уравнений
- Уравнения высших степеней
- Уравнения высших степеней с одним неизвестным
- Комплексные числа
- Непрерывная дробь (цепная дробь)
- Алгебраические уравнения
- Неопределенные уравнения
- Соединения
- Бином Ньютона
- Число е
- Непрерывные дроби
- Функция
- Исследование функций
- Предел
- Интеграл
- Двойной интеграл
- Тройной интеграл
- Интегрирование
- Неопределённый интеграл
- Определенный интеграл
- Криволинейные интегралы
- Поверхностные интегралы
- Несобственные интегралы
- Кратные интегралы
- Интегралы, зависящие от параметра
- Квадратный трехчлен
- Производная
- Применение производной к исследованию функций
- Приложения производной
- Дифференциал функции
- Дифференцирование в математике
- Формулы и правила дифференцирования
- Дифференциальное исчисление
- Дифференциальные уравнения
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения в частных производных
- Тригонометрические функции
- Тригонометрические уравнения и неравенства
- Показательная функция
- Показательные уравнения
- Обобщенная степень
- Взаимно обратные функции
- Логарифмическая функция
- Уравнения и неравенства
- Положительные и отрицательные числа
- Алгебраические выражения
- Иррациональные алгебраические выражения
- Преобразование алгебраических выражений
- Преобразование дробных алгебраических выражений
- Разложение многочленов на множители
- Многочлены от одного переменного
- Алгебраические дроби
- Пропорции
- Уравнения
- Системы уравнений
- Системы уравнений высших степеней
- Системы алгебраических уравнений
- Системы линейных уравнений
- Системы дифференциальных уравнений
- Арифметический квадратный корень
- Квадратные и кубические корни
- Извлечение квадратного корня
- Рациональные числа
- Иррациональные числа
- Арифметический корень
- Квадратные уравнения
- Иррациональные уравнения
- Последовательность
- Ряды сходящиеся и расходящиеся
- Тригонометрические функции произвольного угла
- Тригонометрические формулы
- Обратные тригонометрические функции
- Теорема Безу
- Математическая индукция
- Показатель степени
- Показательные функции и логарифмы
- Множество
- Множество действительных чисел
- Числовые множества
- Преобразование рациональных выражений
- Преобразование иррациональных выражений
- Геометрия
- Действительные числа
- Степени и корни
- Степень с рациональным показателем
- Тригонометрические функции угла
- Тригонометрические функции числового аргумента
- Тригонометрические выражения и их преобразования
- Преобразование тригонометрических выражений
- Комбинаторика
- Вычислительная математика
- Прямая линия на плоскости и ее уравнения
- Прямая и плоскость
- Линии и уравнения
- Прямая линия
- Уравнения прямой и плоскости в пространстве
- Кривые второго порядка
- Кривые и поверхности второго порядка
- Числовые ряды
- Степенные ряды
- Ряды Фурье
- Преобразование Фурье
- Функциональные ряды
- Функции многих переменных
- Метод координат
- Гармонический анализ
- Вещественные числа
- Предел последовательности
- Аналитическая геометрия
- Аналитическая геометрия на плоскости
- Аналитическая геометрия в пространстве
- Функции одной переменной
- Высшая алгебра
- Векторная алгебра
- Векторный анализ
- Векторы
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Операции над векторами
- Непрерывность функций
- Предел и непрерывность функций нескольких переменных
- Предел и непрерывность функции одной переменной
- Производные и дифференциалы функции одной переменной
- Частные производные и дифференцируемость функций нескольких переменных
- Дифференциальное исчисление функции одной переменной
- Матрицы
- Линейные и евклидовы пространства
- Линейные отображения
- Дифференциальные теоремы о среднем
- Функции комплексного переменного
- Преобразование Лапласа
- Теории поля
- Операционное исчисление
- Системы координат
- Рациональная функция
- Интегральное исчисление
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций нескольких переменных
- Отношение в математике
- Математическая логика
- Графы в математике
- Линейные пространства
- Первообразная и неопределенный интеграл
- Линейная функция
- Выпуклые множества точек
- Система координат
Устойчивость по Ляпунову: основные понятия и определения
Пусть имеем систему дифференциальных уравнений
(1)
Решение , системы (1), удовлетворяющее начальным условиям , называется устойчивым no Ляпунову при , если для любого существует такое, что для всякого решения , системы (1), начальные значения которого удовлетворяют условиям
имеют место неравенства
для всех .
Если при сколь угодно малом хотя бы для одного решения , неравенства (3) не выполняются, то решение называется неустойчивым.
Если, кроме выполнения неравенств (3) при условии (2) выполняется также условие
(4)
то решение , называется асимптотически устойчивым.
Исследование на устойчивость решения , системы (1) можно свести к исследованию на устойчивость нулевого (тривиального) решения , некоторой системы, аналогичной системе (1),
(1′)
где .
Говорят, что точка , есть точка покоя системы (1′).
Применительно к точке покоя определения устойчивости и неустойчивости могут быть сформулированы так. Точка покоя , устойчива по Ляпунову, если, каково бы ни было , можно найти такое , что для любого решения , начальные данные которого , удовлетворят условию
(2′)
выполняются неравенства
(3′)
для всех .
Для случая геометрически это означает следующее. Каким бы малым ни был радиус цилиндра с осью , в плоскости найдется δ-окрестность точки такая, что все интегральные кривые , выходящие из этой окрестности, для всех будут оставаться внутри этого цилиндра (рис. 30).
Если кроме выполнения неравенств (3), выполняется также условие , то устойчивость асимптотическая.
Точка покоя , неустойчива, если при сколь угодно малом хотя бы для одного решения , условие (3′) не выполняется.
Пример 1. Исходя из определения устойчивости по Ляпунову, исследовать на устойчивость решение уравнения, удовлетворяющее начальному условию
(5)
Решение. Уравнение (5) есть линейное неоднородное уравнение. Его общее решение . Начальному условию удовлетворяет решение
(6)
уравнения (5). Начальному условию удовлетворяет решение
(7)
Рассмотрим разность решений (7) и (6) уравнения (5) и запишем ее так:
Отсюда видно, что для всякого существует (например, ) такое, что для всякого решения уравнения (5), начальные значения которого удовлетворяют условию , выполняется неравенство
для всех . Следовательно, решение является устойчивым. Более того, поскольку
решение является асимптотически устойчивым.
Это решение является неограниченным при .
Приведенный пример показывает, что из устойчивости решения дифференциального уравнения не следует ограниченности решения.
Пример 2. Исследовать на устойчивость решение уравнения
(8)
Решение. Оно имеет очевидные решения
(9)
Интегрируем уравнение (8): , или , откуда
(10)
Все решения (9) и (10) ограничены на . Однако решение неустойчиво при , так как при любом имеем (рис.31).
Следовательно, из ограниченности решений дифференциального уравнения, вообще говоря, не следует их устойчивости. Это явление характерно для нелинейных уравнений и систем.
Пример 3. Исходя из определения устойчивости по Ляпунову, показать, что решение системы, удовлетворяющее начальным условиям , устойчиво
(11)
Решение. Решение системы (11), удовлетворяющее заданным начальным условиям, есть . Любое решение этой системы, удовлетворяющее условиям , имеет вид
Возьмем произвольное и покажем, что существует такое, что при имеют место неравенства
для всех
Это и будет означать, согласно определению, что нулевое решение системы (11) устойчиво по Ляпунову. Имеем, очевидно,
(12)
для всех . Поэтому, если то и подавно
(13)
для всех .
Следовательно, если, например, взять , то при и в силу (12) будут иметь место неравенства (13) для всех , т.е. действительно нулевое решение системы (11) устойчиво по Ляпунову, но эта устойчивость не асимптотическая.
Теорема. Решения системы линейных дифференциальных уравнений
либо все одновременно устойчивы, либо неустойчивы.
Это предложение не верно для нелинейных систем, некоторые решения которых могут быть устойчивыми, а другие — неустойчивыми.
Пример 4. Исследовать на устойчивость решение нелинейного уравнения
(14)
Решение. Оно имеет очевидные решения и .
Решение этого уравнения неустойчиво, а решение является асимптотически устойчивым. В самом деле, при все решения уравнения (14)
стремятся к . Это означает, согласно определению, что решение уравнения асимптотически устойчиво.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
В результате получим замкнутую систему, в которой будут наблюдаться незатухающие колебания с постоянной амплитудой, а, как мы знаем, это характерно для систем, находящихся на границе устойчивости (см. рис. 7.2,е в разделе 7.1). Таким образом, прохождение графика АФХ разомкнутой системы через точку (–1, 0i) свидетельствует о нахождении соответствующей замкнутой системы на границе устойчивости.
Теперь рассмотрим второй случай. Предположим, в ходе того же самого опыта на выходе разомкнутой системы установились колебания с тем же сдвигом фазы π, но с меньшей амплитудой:
φ = ±π ; Aвых < Aвх.
Это состояние соответствует точке АФХ разомкнутой системы, лежащей на вещественной оси правее точки (–1, 0i) (Mраз(ω) = Aвых/Aвх < 1, φраз(ω) = ±π).
После отключения генератора колебаний и замыкания отрицательной обратной связи на вход Wраз(iω) поступит сигнал с меньшей амплитудой, чем создавал генератор. Пройдя через регулятор и объект, этот сигнал снова будет несколько ослаблен (так как Mраз(ω) < 1), в следующий момент времени поступит по обратной связи на вход Wраз(iω) с еще меньшей амплитудой, и это будет повторяться снова и снова. Таким образом, в данном случае с течением времени амплитуда колебаний в замкнутой системе будет непрерывно уменьшаться, стремясь к нулю, т.е. будет наблюдаться затухающий процесс, что, как известно, характерно для устойчивых систем (рис. 7.2,г).
В третьем возможном случае на выходе разомкнутой системы установятся колебания со сдвигом фазы π и большей амплитудой, нежели входные колебания:
φ = ±π ; Aвых > Aвх,
что соответствует точке АФХ разомкнутой системы, лежащей на вещественной оси левее точки (–1, 0i) (Mраз(ω) = Aвых/Aвх > 1, φраз(ω) = ±π).
Здесь при прохождении через регулятор и объект сигнал усиливается (Mраз(ω) > 1), и его подача по обратной связи на вход Wраз(iω) приводит к возникновению колебательного процесса с непрерывно нарастающей амплитудой («расходящегося»), как на рис. 7.2,д, т.е. замкнутая система оказывается неустойчивой.
Из сказанного становится ясно, что об устойчивости замкнутой системы можно судить на основании расположения амплитудно-фазовой характеристики разомкнутой системы относительно точки с координатами (–1, 0i) (рис. 7.7).
Критерий Найквиста – Михайлова формулируется следующим образом.
Замкнутая система устойчива, если она устойчива в разомкнутом состоянии, и ее амплитудно-фазовая характеристика (построенная для всех значений ω от 0 до бесконечности) не охватывает точку с координатами (–1, 0i).
Если амплитудно-фазовая характеристика проходит через точку с координатами (–1, 0i), система находится на границе устойчивости. Если АФХ охватывает точку с координатами (–1, 0i), то система неустойчива.
Приветствую
Не знаю как обозвать то, что мне надо, постараюсь разъяснить. Для примера возьмем несколько последовательностей:
1, 2, 3, 4, 5 (рост, стабильно)
5, 4, 3, 2, 1 (спад, стабильно)
5, 50, 4, 3, 1 (в общем — это спад, нестабильный)
1, 2, 1, 2, 1 (колебания, стабильно)
2, 1, 2, 1, 2 (колебания, стабильно)
1, 5, 2, 5, 1 (колебания, нестабильно)
5, 4, 4, 5, 4 (колебания, стабильно)
Есть ли какие-то формулы/алгоритмы, которые могут определить состояние последовательности? Например, такие:
— стабильность (небольшие отклонения в колебаниях)
— нестабильность (значительные отклонения)
— рост, спад (стремительный, стабильный).
Визуально и логически я могу определить состояние последовательности, но обличить это дело в скрипт расчета затрудняюсь. Люди добрые, расскажите пожалуйста что почитать, чтобы понять реализацию, а если покажете примеры — вообще отлично!