Онлайн калькулятор для определения стационарных точек.
Стационарные точки — это точки, в которых производная функции равна 0 или не существует.
Синтаксис
основных функций:
xa: x^a
|x|: abs(x)
√x: Sqrt[x]
n√x: x^(1/n)
ax: a^x
logax: Log[a, x]
ln x: Log[x]
cos x: cos[x] или Cos[x]
sin x: sin[x] или Sin[x]
tg: tan[x] или Tan[x]
ctg: cot[x] или Cot[x]
sec x: sec[x] или Sec[x]
cosec x: csc[x] или Csc[x]
arccos x: ArcCos[x]
arcsin x: ArcSin[x]
arctg x: ArcTan[x]
arcctg x: ArcCot[x]
arcsec x: ArcSec[x]
arccosec x: ArcCsc[x]
ch x: cosh[x] или Cosh[x]
sh x: sinh[x] или Sinh[x]
th x: tanh[x] или Tanh[x]
cth x: coth[x] или Coth[x]
sech x: sech[x] или Sech[x]
cosech x: csch[x] или Csch[е]
areach x: ArcCosh[x]
areash x: ArcSinh[x]
areath x: ArcTanh[x]
areacth x: ArcCoth[x]
areasech x: ArcSech[x]
areacosech x: ArcCsch[x]
конъюнкция «И» ∧: &&
дизъюнкция «ИЛИ» ∨: ||
отрицание «НЕ» ¬: !
импликация =>
число π pi : Pi
число e: E
бесконечность ∞: Infinity, inf или oo
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»
bold{mathrm{Basic}} | bold{alphabetagamma} | bold{mathrm{ABGamma}} | bold{sincos} | bold{gedivrightarrow} | bold{overline{x}spacemathbb{C}forall} | bold{sumspaceintspaceproduct} | bold{begin{pmatrix}square&square\square&squareend{pmatrix}} | bold{H_{2}O} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Подпишитесь, чтобы подтвердить свой ответ
Подписаться
Войдите, чтобы сохранять заметки
Войти
Номер Строки
Примеры
-
критические:точки:y=frac{x^2+x+1}{x}
-
критические:точки:f(x)=x^3
-
критические:точки:f(x)=ln (x-5)
-
критические:точки:f(x)=frac{1}{x^2}
-
критические:точки:y=frac{x}{x^2-6x+8}
-
критические:точки:f(x)=sqrt{x+3}
-
критические:точки:f(x)=cos(2x+5)
-
критические:точки:f(x)=sin(3x)
- Показать больше
Описание
Пошаговый поиск критических и стационарных точек функций
function-critical-points-calculator
ru
Блог-сообщения, имеющие отношение к Symbolab
Functions
A function basically relates an input to an output, there’s an input, a relationship and an output. For every input…
Read More
Введите Задачу
Сохранить в блокнот!
Войти
Экстремумы функции
С помощью данного сервиса можно найти наибольшее и наименьшее значение функции одной переменной f(x) с оформлением решения в Word. Если же задана функция f(x,y), следовательно, необходимо найти экстремум функции двух переменных. Также можно найти интервалы возрастания и убывания функции.
- Решение онлайн
- Видеоинструкция
- Оформление Word
- Также решают
Необходимое условие экстремума функции одной переменной
Уравнение f’0(x*) = 0 — это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает.
Достаточное условие экстремума функции одной переменной
Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие:
f’0(x*) = 0
f»0(x*) > 0
то точка x* является точкой локального (глобального) минимума функции.
Если в точке x* выполняется условие:
f’0(x*) = 0
f»0(x*) < 0
то точка x* — локальный (глобальный) максимум.
Пример №1. Найти наибольшее и наименьшее значения функции:
на отрезке [1; 3].
Решение.
Критическая точка одна x1 = 2 (f’(x)=0). Эта точка принадлежит отрезку [1;3]. (Точка x=0 не является критической, так как 0∉[1;3]).
Вычисляем значения функции на концах отрезка и в критической точке.
f(1)=9, f(2)=5/2, f(3)=3 8/81
Ответ: fmin=5/2 при x=2; fmax=9 при x=1
Пример №2. С помощью производных высших порядков найти экстремум функции y=x-2sin(x)
.
Решение.
Находим производную функции: y’=1-2cos(x)
. Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=±π/3+2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x=π/3+2πk, k∈Z – точки минимума функции; , значит x=-π/3+2πk, k∈Z – точки максимума функции.
Пример №3. Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0
, то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.
Пример №4. Разбить число 49 на два слагаемых, произведение которых будет наибольшим.
Решение. Обозначим x — первое слагаемое. Тогда (49-x) — второе слагаемое.
Произведение будет максимальным: x·(49-x) → max
или
49x — x2
Наибольший объем цилиндра
Найти размеры цилиндра наибольшего объема, изготовленного из заготовки в форме шара радиуса R.
Решение:
Объем цилиндра равен: V = πr2H
где H = 2h,
Подставим эти значения в целевую функцию.
V → max
Найдем экстремум функции. Поскольку функция объема V(h) зависит только от одной переменной, то найдем производную с помощью сервиса Производная онлайн
и приравняем ее к нулю.
dV/dh = 2πR2 — 6πh2
dV/dh = 0
2πR2 — 6πh2 = 0 или R2 = 3h2
Откуда
При высоте и радиусе основания размеры цилиндра будут наибольшими.
Стационарная точка – это точка, в которой производная функции равна нулю, или не существует. Любая точка экстремума функции – стационарная, если она находится внутри области области определения функции, а не на ее границе. Седловая точка — такая точка из области определения функции, которая является стационарной для данной функции, однако не является её локальным экстремумом. Седловая точка — частный случай стационарной.
С помощью нашего решебника вы можете находить стационарные и седловые точки функции. Ниже приведены примеры команд. Скопируйте и вставьте в строку решателя или просто наберите ваш пример а затем нажмите кнопку «Решить».
Найти стационарные точки функции
stationary points of (x^5+x^9-x-1)^3
stationary points f(t)=sin^2(t)cos(t)
stationary point calculator
Найти стационарные точки функции нескольких переменных
stationary points (3x+1)y^3 + x^2 y
Найти стационарные точки в заданной области
stationary points of cos x with |x|<10
Найти стационарную точку вблизи указанной точки
stationary point of (sin t)/t near t=4
Найти седловые точки функции
saddle points of x^3 - y^3 - 2xy + 6
saddle points x^3+4x^2-x-4y^2-3y-3xy^2
Найти седловую точку вблизи указанной точки
saddle point of sin(x y)-tan x near (5,6)
Похожие публикации: математика
Здесь приведены примеры команд для решения задач по методам оптимизации с использованием специального калькулятора. Также можно находить минимум и максимум функции, стационарные точки для функций одной или двух переменных. Калькулятор пригодится студентам, изучающим методы оптимизации и высшую математику.
Найти минимум функции одной переменной (y=x^4-x)
minimize x^4-x
Найти максимум функции одной переменной (y=x(1-x)e^x)
maximize x(1-x)e^x
Найти максимум функции двух переменных (z=5 + 3x — 4y — x^2 + x y — y^2)
maximize 5 + 3x - 4y - x^2 + x y - y^2
Найти минимум функции двух переменных (z=(4 — x^2 — 2y^2)^2)
minimize (4 - x^2 - 2y^2)^2
Найти минимум функции (y= x^5 — 3x^4 + 5) на отрезке ([0,4])
minimize x^5 - 3x^4 + 5 over [0,4]
Найти максимум функции (z=e^x cdot sin(y) ) в области (x^2+y^2=1)
maximize e^x sin y on x^2+y^2=1
Найти максимум функции (v=xyz) в объеме (x^2+2y^2+3z^2<=1)
maximize xyz in x^2+2y^2+3z^2<=1
Найти локальный максимум функции (y=x^5 — 10x^3 + 30x)
local maximum x^5 - 10x^3 + 30x
Найти локальные экстремумы функции (y=sin x^2)
local extrema sin x^2
Найти стационарные точки функции (y=(x^5+x^9-x-1)^3):
stationary points of (x^5+x^9-x-1)^3
Найти стационарные точки функции двух переменных (z=(3x+1)y^3 + x^2 y):
stationary points (3x+1)y^3 + x^2 y
Найти стационарные точки функции (f(t)=sin^2(t)cos(t))
stationary points f(t)=sin^2(t)cos(t)
Найти стационарные точки функции (y=cos(x)) на интервале (|x|<10)
stationary points of cos x with |x|<10
Найти стационарные точки функции (y=(sin t)/t) в окрестности точки (t=4)
stationary point of (sin t)/t near t=4
Похожие публикации
2016-03-30 • Просмотров [ 14919 ]