Как найти стандартное отклонение алгебра

Стандартное отклонение (англ. Standard Deviation) — простыми словами это мера того, насколько разбросан набор данных.

Вычисляя его, можно узнать, являются ли числа близкими к среднему значению или далеки от него. Если точки данных находятся далеко от среднего значения, то в наборе данных имеется большое отклонение; таким образом, чем больше разброс данных, тем выше стандартное отклонение.

Стандартное отклонение обозначается буквой σ (греческая буква сигма).

Стандартное отклонение также называется:

  • среднеквадратическое отклонение,
  • среднее квадратическое отклонение,
  • среднеквадратичное отклонение,
  • квадратичное отклонение,
  • стандартный разброс.

Использование и интерпретация величины среднеквадратического отклонения

Стандартное отклонение используется:

  • в финансах в качестве меры волатильности,
  • в социологии в опросах общественного мнения — оно помогает в расчёте погрешности.

Пример:

Рассмотрим два малых предприятия, у нас есть данные о запасе какого-то товара на их складах.

День 1 День 2 День 3 День 4
Пред.А 19 21 19 21
Пред.Б 15 26 15 24

В обеих компаниях среднее количество товара составляет 20 единиц:

  • А -> (19 + 21 + 19+ 21) / 4 = 20
  • Б -> (15 + 26 + 15+ 24) / 4 = 20

Однако, глядя на цифры, можно заметить:

  • в компании A количество товара всех четырёх дней очень близко находится к этому среднему значению 20 (колеблется лишь между 19 ед. и 21 ед.),
  • в компании Б существует большая разница со средним количеством товара (колеблется между 15 ед. и 26 ед.).

Если рассчитать стандартное отклонение каждой компании, оно покажет, что

  • стандартное отклонение компании A = 1,
  • стандартное отклонение компании Б ≈ 5.

Стандартное отклонение показывает эту волатильность данных — то, с каким размахом они меняются; т.е. как сильно этот запас товара на складах компаний колеблется (поднимается и опускается).

Расчет среднеквадратичного (стандартного) отклонения

Формулы вычисления стандартного отклонения

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула
Где:
σ — стандартное отклонение,
xi — величина отдельного значения выборки,
μ — среднее арифметическое выборки,
n — размер выборки.
Эта формула применяется, когда анализируются все значения выборки.
стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула
Где:
S — стандартное отклонение,
n — размер выборки,
xi — величина отдельного значения выборки,
xср — среднее арифметическое выборки.
Эта формула применяется, когда присутствует очень большой размер выборки, поэтому на анализ обычно берётся только её часть.
Единственная разница с предыдущей формулой: “n — 1” вместо “n”, и обозначение «xср» вместо «μ».

Разница между формулами S и σ («n» и «n–1»)

Состоит в том, что мы анализируем — всю выборку или только её часть:

  • только её часть – используется формула S (с «n–1»),
  • полностью все данные – используется формула σ (с «n»).

Как рассчитать стандартное отклонение?

Пример 1 (с σ)

Рассмотрим данные о запасе какого-то товара на складах Предприятия Б.

День 1 День 2 День 3 День 4
Пред.Б 15 26 15 24

Если значений выборки немного (небольшое n, здесь он равен 4) и анализируются все значения, то применяется эта формула:

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула

Применяем эти шаги:

1. Найти среднее арифметическое выборки:

μ = (15 + 26 + 15+ 24) / 4 = 20

2. От каждого значения выборки отнять среднее арифметическое:

x1 — μ = 15 — 20 = -5

x2 — μ = 26 — 20 = 6

x3 — μ = 15 — 20 = -5

x4 — μ = 24 — 20 = 4

3. Каждую полученную разницу возвести в квадрат:

(x1 — μ)² = (-5)² = 25

(x2 — μ)² = 6² = 36

(x3 — μ)² = (-5)² = 25

(x4 — μ)² = 4² = 16

4. Сделать сумму полученных значений:

Σ (xi — μ)² = 25 + 36+ 25+ 16 = 102

5. Поделить на размер выборки (т.е. на n):

(Σ (xi — μ)²)/n = 102 / 4 = 25,5

6. Найти квадратный корень:

√((Σ (xi — μ)²)/n) = √ 25,5 ≈ 5,0498

Пример 2 (с S)

Задача усложняется, когда существуют сотни, тысячи или даже миллионы данных. В этом случае берётся только часть этих данных и анализируется методом выборки.

У Андрея 20 яблонь, но он посчитал яблоки только на 6 из них.

Популяция — это все 20 яблонь, а выборка — 6 яблонь, это деревья, которые Андрей посчитал.

Яблоня 1 Яблоня 2 Яблоня 3 Яблоня 4 Яблоня 5 Яблоня 6
9 2 5 4 12 7

Так как мы используем только выборку в качестве оценки всей популяции, то нужно применить эту формулу:

стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула

Математически она отличается от предыдущей формулы только тем, что от n нужно будет вычесть 1. Формально нужно будет также вместо μ (среднее арифметическое) написать X ср.

Применяем практически те же шаги:

1. Найти среднее арифметическое выборки:

Xср = (9 + 2 + 5 + 4 + 12 + 7) / 6 = 39 / 6 = 6,5

2. От каждого значения выборки отнять среднее арифметическое:

X1 – Xср = 9 – 6,5 = 2,5

X2 – Xср = 2 – 6,5 = –4,5

X3 – Xср = 5 – 6,5 = –1,5

X4 – Xср = 4 – 6,5 = –2,5

X5 – Xср = 12 – 6,5 = 5,5

X6 – Xср = 7 – 6,5 = 0,5

3. Каждую полученную разницу возвести в квадрат:

(X1 – Xср)² = (2,5)² = 6,25

(X2 – Xср)² = (–4,5)² = 20,25

(X3 – Xср)² = (–1,5)² = 2,25

(X4 – Xср)² = (–2,5)² = 6,25

(X5 – Xср)² = 5,5² = 30,25

(X6 – Xср)² = 0,5² = 0,25

4. Сделать сумму полученных значений:

Σ (Xi – Xср)² = 6,25 + 20,25+ 2,25+ 6,25 + 30,25 + 0,25 = 65,5

5. Поделить на размер выборки, вычитав перед этим 1 (т.е. на n–1):

(Σ (Xi – Xср)²)/(n-1) = 65,5 / (6 – 1) = 13,1

6. Найти квадратный корень:

S = √((Σ (Xi – Xср)²)/(n–1)) = √ 13,1 ≈ 3,6193

Дисперсия и стандартное отклонение

Стандартное отклонение равно квадратному корню из дисперсии (S = √D). То есть, если у вас уже есть стандартное отклонение и нужно рассчитать дисперсию, нужно лишь возвести стандартное отклонение в квадрат (S² = D).

Дисперсия — в статистике это «среднее квадратов отклонений от среднего». Чтобы её вычислить нужно:

  1. Вычесть среднее значение из каждого числа
  2. Возвести каждый результат в квадрат (так получатся квадраты разностей)
  3. Найти среднее значение квадратов разностей.

Ещё расчёт дисперсии можно сделать по этой формуле:

Дисперсия и стандартное отклонение расчёт дисперсии формула
Где:
S² — выборочная дисперсия,
Xi — величина отдельного значения выборки,
Xср (может появляться как X̅) — среднее арифметическое выборки,
n — размер выборки.

Правило трёх сигм

Это правило гласит: вероятность того, что случайная величина отклонится от своего математического ожидания более чем на три стандартных отклонения (на три сигмы), почти равна нулю.

Правило трёх сигм

Глядя на рисунок нормального распределения случайной величины, можно понять, что в пределах:

  • одного среднеквадратического отклонения заключаются 68,26% значений (Xср ± 1σ или μ ± 1σ),
  • двух стандартных отклонений — 95,44% (Xср ± 2σ или μ ± 2σ),
  • трёх стандартных отклонений — 99,72% (Xср ± 3σ или μ ± 3σ).

Это означает, что за пределами остаются лишь 0,28% — это вероятность того, что случайная величина примет значение, которое отклоняется от среднего более чем на 3 сигмы.

Стандартное отклонение в excel

Вычисление стандартного отклонения с «n – 1» в знаменателе (случай выборки из генеральной совокупности):

1. Занесите все данные в документ Excel.

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

2. Выберите поле, в котором вы хотите отобразить результат.

3. Введите в этом поле «=СТАНДОТКЛОНА(«

4. Выделите поля, где находятся данные, потом закройте скобки.

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

5. Нажмите Ввод (Enter).

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

В случае если данные представляют всю генеральную совокупность (n в знаменателе), то нужно использовать функцию СТАНДОТКЛОНПА.

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

Коэффициент вариации

Коэффициент вариации — отношение стандартного отклонения к среднему значению, т.е. Cv = (S/μ) × 100% или V = (σ/X̅) × 100%.

Стандартное отклонение делится на среднее и умножается на 100%.

Можно классифицировать вариабельность выборки по коэффициенту вариации:

  • при <10% выборка слабо вариабельна,
  • при 10% – 20 % — средне вариабельна,
  • при >20 % — выборка сильно вариабельна.

Узнайте также про:

  • Корреляции,
  • Метод Крамера,
  • Метод наименьших квадратов,
  • Теорию вероятностей
  • Интегралы.
  1. Image titled Calculate Standard Deviation Step 1

    1

    Look at your data set. This is a crucial step in any type of statistical calculation, even if it is a simple figure like the mean or median.[2]

    • Know how many numbers are in your sample.
    • Do the numbers vary across a large range? Or are the differences between the numbers small, such as just a few decimal places?
    • Know what type of data you are looking at. What do your numbers in your sample represent? this could be something like test scores, heart rate readings, height, weight etc.
    • For example, a set of test scores is 10, 8, 10, 8, 8, and 4.
  2. Image titled Calculate Standard Deviation Step 2

    2

    Gather all of your data. You will need every number in your sample to calculate the mean.[3]

    • The mean is the average of all your data points.
    • This is calculated by adding all of the numbers in your sample, then dividing this figure by the how many numbers there are in your sample (n).
    • In the sample of test scores (10, 8, 10, 8, 8, 4) there are 6 numbers in the sample. Therefore n = 6.

    Advertisement

  3. Image titled Calculate Standard Deviation Step 3

    3

    Add the numbers in your sample together. This is the first part of calculating a mathematical average or mean.[4]

    • For example, use the data set of quiz scores: 10, 8, 10, 8, 8, and 4.
    • 10 + 8 + 10 + 8 + 8 + 4 = 48. This is the sum of all the numbers in the data set or sample.
    • Add the numbers a second time to check your answer.
  4. Image titled Calculate Standard Deviation Step 4

    4

    Divide the sum by how many numbers there are in your sample (n). This will provide the average or mean of the data.[5]

    • In the sample of test scores (10, 8, 10, 8, 8, and 4) there are six numbers, so n = 6.
    • The sum of the test scores in the example was 48. So you would divide 48 by n to figure out the mean.
    • 48 / 6 = 8
    • The mean test score in the sample is 8.
  5. Advertisement

  1. Image titled Calculate Standard Deviation Step 5

    1

    Find the variance. The variance is a figure that represents how far the data in your sample is clustered around the mean.[6]

    • This figure will give you an idea of how far your data is spread out.
    • Samples with low variance have data that is clustered closely about the mean.
    • Samples with high variance have data that is clustered far from the mean.
    • Variance is often used to compare the distribution of two data sets.
  2. Image titled Calculate Standard Deviation Step 6

    2

    Subtract the mean from each of your numbers in your sample. This will give you a figure of how much each data point differs from the mean.[7]

    • For example, in our sample of test scores (10, 8, 10, 8, 8, and 4) the mean or mathematical average was 8.
    • 10 — 8 = 2; 8 — 8 = 0, 10 — 8 = 2, 8 — 8 = 0, 8 — 8 = 0, and 4 — 8 = -4.
    • Do this procedure again to check each answer. It is very important you have each of these figures correct as you will need them for the next step.
  3. Image titled Calculate Standard Deviation Step 7

    3

    Square all of the numbers from each of the subtractions you just did. You will need each of these figures to find out the variance in your sample.[8]

    • Remember, in our sample we subtracted the mean (8) from each of the numbers in the sample (10, 8, 10, 8, 8, and 4) and came up with the following: 2, 0, 2, 0, 0 and -4.
    • To do the next calculation in figuring out variance you would perform the following: 22, 02, 22, 02, 02, and (-4)2 = 4, 0, 4, 0, 0, and 16.
    • Check your answers before proceeding to the next step.
  4. Image titled Calculate Standard Deviation Step 8

    4

    Add the squared numbers together. This figure is called the sum of squares.[9]

    • In our example of test scores, the squares were as follows: 4, 0, 4, 0, 0, and 16.
    • Remember, in the example of test scores we started by subtracting the mean from each of the scores and squaring these figures: (10-8)^2 + (8-8)^2 + (10-8)^2 + (8-8)^2 + (8-8)^2 + (4-8)^2
    • 4 + 0 + 4 + 0 + 0 + 16 = 24.
    • The sum of squares is 24.
  5. Image titled Calculate Standard Deviation Step 9

    5

    Divide the sum of squares by (n-1). Remember, n is how many numbers are in your sample. Doing this step will provide the variance. The reason to use n-1 is to have sample variance and population variance unbiased. [10]

    • In our sample of test scores (10, 8, 10, 8, 8, and 4) there are 6 numbers. Therefore, n = 6.
    • n-1 = 5.
    • Remember the sum of squares for this sample was 24.
    • 24 / 5 = 4.8
    • The variance in this sample is thus 4.8.
  6. Advertisement

  1. Image titled Calculate Standard Deviation Step 10

    1

    Find your variance figure. You will need this to find the standard deviation for your sample.[11]

    • Remember, variance is how spread out your data is from the mean or mathematical average.
    • Standard deviation is a similar figure, which represents how spread out your data is in your sample.
    • In our example sample of test scores, the variance was 4.8.
  2. Image titled Calculate Standard Deviation Step 11

    2

    Take the square root of the variance. This figure is the standard deviation.[12]

    • Usually, at least 68% of all the samples will fall inside one standard deviation from the mean.
    • Remember in our sample of test scores, the variance was 4.8.
    • √4.8 = 2.19. The standard deviation in our sample of test scores is therefore 2.19.
    • 5 out of 6 (83%) of our sample of test scores (10, 8, 10, 8, 8, and 4) is within one standard deviation (2.19) from the mean (8).
  3. Image titled Calculate Standard Deviation Step 12

    3

    Go through finding the mean, variance and standard deviation again. This will allow you to check your answer.[13]

    • It is important that you write down all steps to your problem when you are doing calculations by hand or with a calculator.
    • If you come up with a different figure the second time around, check your work.
    • If you cannot find where you made a mistake, start over a third time to compare your work.
  4. Advertisement

Practice Problems and Answers

Add New Question

  • Question

    What is the standard deviation of 10 samples with a mean of 29.05?

    Community Answer

    Depends on the 10 samples of data. If all ten numbers were 29.05 then the standard deviation would be zero. Standard deviation is a measure of how much the data deviates from the mean.

  • Question

    How do I calculate the standard deviation of 5 samples with the mean of 26?

    Community Answer

    You take the average of 26 and 5, divide by b squared and multiply by deviation equation constant.

  • Question

    How do I find the standard deviation of 10 samples with a mean of 29.05?

    Community Answer

    Take each sample and subract the mean. Next, square each result, getting rid of the negative. Add the 10 results and divide the sun by 10 — 1 or 9. That is the standard deviation.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

Thanks for submitting a tip for review!

References

About This Article

Article SummaryX

To calculate standard deviation, start by calculating the mean, or average, of your data set. Then, subtract the mean from all of the numbers in your data set, and square each of the differences. Next, add all the squared numbers together, and divide the sum by n minus 1, where n equals how many numbers are in your data set. Finally, take the square root of that number to find the standard deviation. To learn how to find standard deviation with the help of example problems, keep reading!

Did this summary help you?

Thanks to all authors for creating a page that has been read 2,559,851 times.

Reader Success Stories

  • Lorie Jessup

    «This article was the best statistics instructor I have ever been taught by. I have learned more from this little…» more

Did this article help you?

В данной статье я расскажу о том, как найти среднеквадратическое отклонение. Этот материал крайне важен для полноценного понимания математики, поэтому репетитор по математике должен посвятить его изучению отдельный урок или даже несколько. В этой статье вы найдёте ссылку на подробный и понятный видеоурок, в котором рассказано о том, что такое среднеквадратическое отклонение и как его найти.

Среднеквадратическое отклонение дает возможность оценить разброс значений, полученных в результате измерения какого-то параметра. Обозначается символом sigma (греческая буква «сигма»).

Формула для расчета sigma довольно проста. Чтобы найти среднеквадратическое отклонение, нужно взять квадратный корень из дисперсии. Так что теперь вы должны спросить: “А что же такое дисперсия?”

Что такое дисперсия

Определение дисперсии звучит так. Дисперсия — это среднее арифметическое от квадратов отклонений значений от среднего.

Чтобы найти дисперсию последовательно проведите следующие вычисления:

  • Определите среднее (простое среднее арифметическое ряда значений).
  • Затем от каждого из значений отнимите среднее и возведите полученную разность в квадрат (получили квадрат разности).
  • Следующим шагом будет вычисление среднего арифметического полученных квадратов разностей (Почему именно квадратов вы сможете узнать ниже).

Рассмотрим на примере. Допустим, вы с друзьями решили измерить рост ваших собак (в миллиметрах). В результате измерений вы получили следующие данные измерений роста (в холке): 600 мм, 470 мм, 170 мм, 430 мм и 300 мм.

Порода собаки Рост в миллиметрах
Ротвейлер 600
Бульдог 470
Такса 170
Пудель 430
Мопс 300

Вычислим среднее значение, дисперсию и среднеквадратическое отклонение.

Сперва найдём среднее значение. Как вы уже знаете, для этого нужно сложить все измеренные значения и поделить на количество измерений. Ход вычислений:

Среднее  =frac{600+470+170+430+300}{5} = 394 мм.

Итак, среднее (среднеарифметическое) составляет 394 мм.

Теперь нужно определить отклонение роста каждой из собак от среднего:

    [ begin{array}{l} 1: 600-394 = 206 \ 2: 470-394 = 76 \ 3: 170-394 = -224\ 4: 430-394 = 36\ 5: 300-394 = -94 end{array} ]

Наконец, чтобы вычислить дисперсию, каждую из полученных разностей возводим в квадрат, а затем находим среднее арифметическое от полученных результатов:

Дисперсия = frac{206^2+76^2+(-224)^2+36^2+(-94)^2}{5} = 21704 мм2.

Таким образом, дисперсия составляет 21704 мм2.

Как найти среднеквадратическое отклонение

Так как же теперь вычислить среднеквадратическое отклонение, зная дисперсию? Как мы помним, взять из нее квадратный корень. То есть среднеквадратическое отклонение равно:

sigma = sqrt{21704} approx 147 мм (округлено до ближайшего целого значения в мм).

Применив данный метод, мы выяснили, что некоторые собаки (например, ротвейлеры) – очень большие собаки. Но есть и очень маленькие собаки (например, таксы, только говорить им этого не стоит).

Самое интересное, что среднеквадратическое отклонение несет в себе полезную информацию. Теперь мы можем показать, какие из полученных результатов измерения роста находятся в пределах интервала, который мы получим, если отложим от среднего (в обе стороны от него) среднеквадратическое отклонение.

То есть с помощью среднеквадратического отклонения мы получаем “стандартный” метод, который позволяет узнать, какое из значений является нормальным (среднестатистическим), а какое экстраординарно большим или, наоборот, малым.

Что такое стандартное отклонение

Но… все будет немного иначе, если мы будем анализировать выборку данных. В нашем примере мы рассматривали генеральную совокупность. То есть наши 5 собак были единственными в мире собаками, которые нас интересовали.

Но если данные являются выборкой (значениями, которые выбрали из большой генеральной совокупности), тогда вычисления нужно вести иначе.

Если есть N значений, то:

Все остальные расчеты производятся аналогично, в том числе и определение среднего.

Например, если наших пять собак – только выборка из генеральной совокупности собак (всех собак на планете), мы должны делить на 4, а не на 5, а именно:

Дисперсия выборки = frac{108520}{4}=27130 мм2.

При этом стандартное отклонение по выборке равно sqrt{27130} = 165 мм (округлено до ближайшего целого значения).

Можно сказать, что мы произвели некоторую “коррекцию” в случае, когда наши значения являются всего лишь небольшой выборкой.

Примечание. Почему именно квадраты разностей?

Но почему при вычислении дисперсии мы берём именно квадраты разностей? Допустим при измерении какого-то параметра, вы получили следующий набор значений: 4; 4; -4; -4. Если мы просто сложим абсолютные отклонения от среднего (разности) между собой … отрицательные значения взаимно уничтожатся с положительными:

frac{4+4-4-4}{4}=0.

Получается, этот вариант бесполезен. Тогда, может, стоит попробовать абсолютные значения отклонений (то есть модули этих значений)?

frac{4+4+|-4|+|-4|}{4} = frac{4+4+4+4}{4}=4.

На первый взгляд получается неплохо (полученная величина, кстати, называется средним абсолютным отклонением), но не во всех случаях. Попробуем другой пример. Пусть в результате измерения получился следующий набор значений: 7; 1; -6; -2. Тогда среднее абсолютное отклонение равно:

frac{7+1+|-6|+|-2|}{4} = frac{7+1+6+2}{4}=4.

Вот это да! Снова получили результат 4, хотя разности имеют гораздо больший разброс.

А теперь посмотрим, что получится, если возвести разности в квадрат (и взять потом квадратный корень из их суммы).

Для первого примера получится:

sqrt{frac{4^2+4^2+(-4)^2+(-4)^2}{4}}=4.

Для второго примера получится:

sqrt{frac{7^2+1^2+(-6)^2+(-2)^2}{4}}=4.74.

Теперь – совсем другое дело! Среднеквадратическое отклонение получается тем большим, чем больший разброс имеют разности … к чему мы и стремились.

Фактически в данном методе использована та же идея, что и при вычислении расстояния между точками, только примененная иным способом.

И с математической точки зрения использование квадратов и квадратных корней дает больше пользы, чем мы могли бы получить на основании абсолютных значений отклонений, благодаря чему среднеквадратическое отклонение применимо и для других математических задач.

О том, как найти среднеквадратическое отклонение, вам рассказал репетитор по математике в Москве, Сергей Валерьевич

Числовые характеристики распределения вероятностей. Математическое ожидание, дисперсия и стандартное отклонение

  1. Закон распределения дискретной случайной величины
  2. Математическое ожидание
  3. Дисперсия
  4. Среднее квадратичное отклонение
  5. Правило трёх сигм
  6. Примеры

п.1. Закон распределения дискретной случайной величины

Законом распределения дискретной случайной величины называют соответствие между полученными на опыте значениями этой величины X= {xi} и их вероятностями pi = P(xi).
При этом сумма всех вероятностей равна 1: (mathrm{sum_{i=1}^n p_i=1})
Закон распределения можно задать таблицей, графиком или аналитически (в виде формулы).

Например:
Закон распределения случайной величины X = {0;1;2;3}, равной числу выпадения орлов при 3 бросках монеты, аналитически задаётся формулой: $$ mathrm{ p_i=P(x_i)=P_3(i)=frac{C_3^{i}}{2^3}, i={0;1;2;3} } $$

В табличном виде:

xi

pi

0

1/8

1

3/8

2

3/8

3

1/8

В виде графика:

Закон распределения дискретной случайной величины

п.2. Математическое ожидание

Математическое ожидание дискретной случайной величины X = {xi} равно сумме произведений всех возможных значений xi на соответствующие вероятности pi: $$ mathrm{ M(X)=x_1p_1+x_2p_2+…+x_{n}p_{n}=sum_{i=1}^n x_{i}p_{i} } $$ Математическое ожидание является средним значением величины X.

Свойства математического ожидания
1) Размерность математического ожидания равна размерности случайной величины.
2) Математическое ожидание может быть любым действительным числом: положительным, равным 0, отрицательным.
3) Математическое ожидание постоянной величины равно этой постоянной:

M(C) = C

4) Математическое ожидание суммы независимых случайных величин равно сумме математических ожиданий:

M(X + Y) = M(X) + M(Y)

5) Математическое ожидание произведения двух независимых случайных величин равно произведению математических ожиданий:

M(XY) = M(X) · M(Y)

6) Постоянный множитель можно вынести за знак математического ожидания:

M(CX) = C · M(X)

Например:
Пусть в результате экспериментов получено следующее распределение случайной величины X – числа появления белых шаров (см. пример 1, §40 данного справочника):

Число белых шаров, xi 0 1 2 3 4 5
pi (mathrm{C_5^0q^5}) (mathrm{C_5^1pq^4}) (mathrm{C_5^2p^2q^3}) (mathrm{C_5^3p^3q^2}) (mathrm{C_5^4p^4q}) (mathrm{C_5^5p^5})
0,0074 0,0618 0,2060 0,3433 0,2861 0,0954

Найдём математическое ожидание для данного распределения:

M(X) = 0 · 0,0074 + 1 · 0,0618 + … + 5 · 0,0954 = 3,125

п.3. Дисперсия

Дисперсия дискретной случайной величины X = {xi} – это математическое ожидание квадрата отклонения случайной величины от её математического ожидания: $$ mathrm{ D(X)=M(X-M(X))^2 } $$ На практике дисперсия рассчитывается по формуле: $$ mathrm{ D(X)=M(X)^2-M^2(X)=sum_{i=1}^n x_i^2p_i-M^2(X) } $$

Свойства дисперсии
1) Размерность дисперсии равна квадрату размерности случайной величины.
2) Дисперсия может быть любым неотрицательным действительным числом.
3) Дисперсия постоянной величины равна нулю:

D(C) = 0

4) Дисперсия суммы независимых случайных величин равна сумме дисперсий:

D(X + Y) = D(X) + D(Y)

5) Постоянный множитель можно вынести за знак дисперсии:

D(CX) = C2 · D(X)

Например:
Продолжим исследование и найдём дисперсию для распределения случайной величины X – числа появления белых шаров. Составим расчётную таблицу:

pi

0,0074

0,0618

0,2060

0,3433

0,2861

0,0954

1

xip1

0

0,0618

0,4120

1,0300

1,1444

0,4768

3,125

(mathrm{x_i^2})

0

1

4

9

16

25

(mathrm{x_i^2p_i})

0

0,0618

0,8240

3,0899

4,5776

2,3842

10,9375

Получаем: D(X) = 10,9375 – 3,1252 ≈ 1,1719.

п.4. Среднее квадратичное отклонение

Среднее квадратичное отклонение (СКО) дискретной случайной величины X = {xi} – это корень квадратный от дисперсии: $$ mathrm{ sigma(X)=sqrt{D(X)} } $$ СКО характеризует степень отклонения случайной величины от среднего значения.

Свойства СКО
1) Размерность СКО равна размерности случайной величины.
2) СКО может быть любым неотрицательным действительным числом.
3) СКО постоянной величины равно нулю:

σ(C) = 0

4) Постоянный множитель можно вынести за знак СКО:

σ(CX) = C · σ(X)

п.5. Правило трёх сигм

Большое количество случайных величин, измеряемых в экспериментах (например, в школьных лабораторных работах), имеет так называемое нормальное распределение.
В частности, при больших n, биномиальное распределение можно с хорошей точностью описывать как нормальное с M(X) = np и (mathrm{sigma(X)=sqrt{npq}}).
График плотности нормального распределения p(x) похож на колокол, с максимумом, соответствующим M(X) = Xcp – среднему значению измеряемой величины.
Правило трёх сигм
Величина СКО σ(X) характеризует степень отклонения X от среднего значения M(X).

Если величина X имеет нормальное распределение, то в пределах
±σ лежит 68,26% значений, принимаемых этой величиной
±2σ лежит 95,44% значений, принимаемых этой величиной
±3σ лежит 99,72% значений, принимаемых этой величиной
Вероятность того, что нормально распределённая величина примет значение, отклоняющееся от среднего больше, чем на «три сигмы», равна 0,28%, т.е. пренебрежимо мала.

п.6. Примеры

Пример 1. Найдите математическое ожидание, дисперсию и СКО при бросании кубика.

Закон распределения величины X – очки на верхней грани при бросании кубика и расчётная таблица:

pi

1/6

1/6

1/6

1/6

1/6

1/6

1

xip1

1/6

1/3

1/2

2/3

5/6

1

3,5

(mathrm{x_i^2})

1

4

9

16

25

36

(mathrm{x_i^2p_i})

(mathrm{frac16})

(mathrm{frac23})

(mathrm{1frac12})

(mathrm{2frac23})

(mathrm{4frac16})

6

(mathrm{15frac16})

Получаем: begin{gather*} mathrm{ M(X)=sum_{i=1}^6 x_ip_i=3,5 }\ mathrm{ D(X)=sum_{i=1}^6 x_i^2p_i-M^2(X)=15frac16-3,5^3=2frac{11}{12} }\ mathrm{ sigma(X)=sqrt{D(X)}=sqrt{2frac{11}{12}}approx 1,7 } end{gather*} Ответ: (mathrm{M(X)=3,5; D(X)=2frac{11}{12}; sigma(X)approx 1,7}).

Пример 2*. Найти математическое ожидание, дисперсию и СКО суммы очков при бросании двух кубиков.

Используем свойства мат.ожиданий и дисперсий.
Пусть X – очки на первом кубике, Y – на втором.
Параметры распределения для каждого из кубиков рассчитаны в примере 1.
(mathrm{M(X)=M(Y)=3,5, D(X)=D(Y)=2frac{11}{12}}).
Для суммы очков получаем:
(mathrm{M(X+Y)=M(X)+M(Y)=3,5+3,5=7})
(mathrm{D(X+Y)=D(X)+D(Y)=2frac{11}{12}+2frac{11}{12}=5frac56})
(mathrm{sigma(X+Y)=sqrt{D(X+Y)}=sqrt{5frac56}approx 2,4})
Ответ: (mathrm{M(X+Y)=7; D(X+Y)=5frac56; sigma(X+Y)approx 2,4}).

Пример 3*. Докажите, что в опытах по схеме Бернулли математическое ожидание M(X)=np, а дисперсия D(X)=npq.

Проведем один опыт. В нём может быть только два исхода: «успех» и «неудача».
Составим расчётную таблицу:

(mathrm{x_i^2p_i})

0

p

p

Мат.ожидание первого опыта (mathrm{M(X)=sum x_ip_i=p}).
Общее число успехов при n опытах складывается из числа успехов при каждом опыте, т.е. (mathrm{X=X_1+X_2+…+X_n}). Все опыты между собой независимы.
По свойству мат.ожидания суммы независимых событий: begin{gather*} mathrm{ M(X)=M(X_1+X_2+…+X_n)=M(X_1)+M(X_2)+…+M(X_n)= }\ mathrm{=underbrace{p+p+…+p}_{n text{раз}}=np } end{gather*} Дисперсия первого опыта (mathrm{D(X)=sum x_i^2p_i-M(X)=p-p^2=p(1-p)=pq})
По свойству дисперсии суммы независимых событий: begin{gather*} mathrm{ D(X)=D(X_1+X_2+…+X_n)=D(X_1)+D(X_2)+…+D(X_n)= }\ mathrm{=underbrace{pq+pq+…+pq}_{n text{раз}}=npq } end{gather*} Что и требовалось доказать.

Пример 4. 100 канцелярских кнопок высыпали на стул. Вероятность, что кнопка упала острием вверх, равна 0,4. Найдите среднее количество, дисперсию и СКО для числа кнопок, упавших острием вверх. Найдите интервал оценки для количества этих кнопок по правилу «трёх сигм».

По условию n = 100, p = 0,4.
Для каждой кнопки может быть два исхода: упасть острием вверх или вниз.
Таким образом, это испытание Бернулли с биномиальным распределением случайной величины. begin{gather*} mathrm{ M(X)=np=100cdot 0,4=40 }\ mathrm{D(X)=npq=100cdot 0,4cdot 0,6=24 }\ mathrm{sigma(X)=sqrt{D(X)}=sqrt{24}approx 4,9} end{gather*} Интервал оценки «три сигмы»: begin{gather*} mathrm{ M(X)-3sigma(X)lt Xlt M(X)+3sigma(X) }\ mathrm{40-3cdot 4,9lt Xlt 40+3cdot 4,9 }\ mathrm{25,3lt Xlt 54,7}\ mathrm{26leq Xleq 54} end{gather*} Скорее всего (99,7%), от 26 до 54 кнопок будут острием вверх.
Ответ: (mathrm{M(X)=40; D(X)=24; sigma(X)approx 4,9; 26leq Xleq 54})

Пример 5*. В тесте 10 задач с 4 вариантами ответов. Ответы выбираются наугад. Постройте распределение величины X = «количество угаданных ответов», найдите числовые характеристики этого распределения.
Найдите интервал оценки для количества угаданных ответов по правилу «трёх сигм».
Какова вероятность угадать хотя бы 1 ответ? Хотя бы 5 ответов? Угадать все 10 ответов?

По условию: (mathrm{n=10, p=frac14, q=frac34}).
Для каждого ответа может быть два исхода: «угадал»/ «не угадал».
Таким образом, это испытание Бернулли с биномиальным распределением случайной величины. $$ mathrm{ P_{10}(k)=C_{10}^kp^kq^{10-k}=C_{10}^kfrac{3^{10-k}}{4^{10}}=left(frac34right)^{10}frac{C_{10}^k}{3^k} } $$ Строим расчётную таблицу. Для (mathrm{C_{10}^k}) используем рекуррентную формулу (см. §36 данного справочника): $$ mathrm{ C_{n}^k=frac{n-k+1}{k}C_n^{k-1} } $$

(mathrm{x_i=k}) (mathrm{C_k}) (mathrm{3^k}) (mathrm{p_i(x_i)}) (mathrm{x_icdot p_i}) (mathrm{x_i^2}) (mathrm{x_i^2cdot p_i})
0 1 1 0,0563135 0,0000000 0 0,0000000
1 10 3 0,1877117 0,1877117 1 0,1877117
2 45 9 0,2815676 0,5631351 4 1,1262703
3 120 27 0,2502823 0,7508469 9 2,2525406
4 210 81 0,1459980 0,5839920 16 2,3359680
5 252 243 0,0583992 0,2919960 25 1,4599800
6 210 729 0,0162220 0,0973320 36 0,5839920
7 120 2187 0,0030899 0,0216293 49 0,1514053
8 45 6561 0,0003862 0,0030899 64 0,0247192
9 10 19683 0,0000286 0,0002575 81 0,0023174
10 1 59049 0,0000010 0,0000095 100 0,0000954
Σ 1 2,5 8,125

Получаем: begin{gather*} mathrm{ M(X)=sum_{i=0}^{10} x_ip_i=2,5 }\ mathrm{ D(X)=sum_{i=0}^{10} x_i^2p_i-M^2(X)=8,125=2,5^2=1,875 }\ mathrm{ sigma(X)=sqrt{D(X)}=sqrt{1,875}approx 1,37 } end{gather*} Пример 5
Интервал оценки «три сигмы»: begin{gather*} mathrm{ M(X)-3sigma(X) lt Xlt M(X)+3sigma(X) }\ mathrm{ 2,5-3cdot 1,37lt X lt 2,5+3cdot 1,37 }\ mathrm{ -1,61lt Xlt 6,61 }\ mathrm{ 0leq Xleq 6 } end{gather*} Скорее всего (по расчетам – 99,65%), вы угадаете от 0 до 6 ответов.

Вероятность угадать хотя бы один ответ: begin{gather*} mathrm{ P(Xgeq 1)=1-p_0approx 1-0,0563=0,9437 }end{gather*} Очень хорошие шансы – 94,37%.
Вероятность угадать хотя бы 5 ответов: begin{gather*} mathrm{ P(Xgeq 5)=1-left(sum_{i=0}^{4}{p_i} right)approx 1-(0,0563+0,1877+…+0,1460)=0,0781 }end{gather*} Шансов мало – 7,81%. Т.е. «средний балл» при сдаче тестов мало достижим методом научного тыка.
Вероятность угадать все 10 ответов: p10≈ 0,000001. Шанс – один из миллиона.

Как рассчитать стандартное отклонение

На чтение 3 мин. Просмотров 12 Опубликовано 05.06.2021

Стандартное отклонение (обычно обозначается строчной греческой буквой σ) – это среднее или среднее всех средних значений для нескольких наборов данных. Стандартное отклонение – важный расчет для математики и естественных наук, особенно для лабораторных отчетов. Ученые и статистики используют стандартное отклонение, чтобы определить, насколько наборы данных близки к среднему значению всех наборов. К счастью, это несложный расчет. Многие калькуляторы имеют функцию стандартного отклонения. Однако вы можете выполнить расчет вручную и должны понимать, как это делать.

Содержание

  1. Различные способы расчета стандартного отклонения
  2. Какое уравнение мне использовать?
  3. Рассчитайте стандартное отклонение выборки
  4. Вычислить стандартное отклонение совокупности

Различные способы расчета стандартного отклонения

Существует два основных способа расчета стандартного отклонения: стандартное отклонение генеральной совокупности и стандартное отклонение выборки. Если вы собираете данные от всех членов генеральной совокупности или набора, вы применяете стандартное отклонение генеральной совокупности. Если вы берете данные, которые представляют собой выборку из более широкой генеральной совокупности, вы применяете формулу стандартного отклонения выборки. Уравнения/вычисления почти такие же, за двумя исключениями: для стандартного отклонения генеральной совокупности дисперсия делится на количество точек данных (N), а для стандартного отклонения выборки она делится на количество точек данных минус один. (N-1, степени свободы).

Какое уравнение мне использовать?

В общем, если вы анализируете данные, представляющие большой набор, выберите стандартное отклонение выборки. Если вы собираете данные от каждого члена набора, выберите стандартное отклонение генеральной совокупности. Вот несколько примеров:

  • Стандартное отклонение населения – анализ результатов тестов класса.
  • Стандарт населения Отклонение – анализ возраста респондентов при национальной переписи.
  • Выборочное стандартное отклонение – анализ влияния кофеина на время реакции у людей в возрасте от 18 до 25 лет.
  • Выборка Стандартное отклонение – анализ количества меди в системе водоснабжения.

Рассчитайте стандартное отклонение выборки

Вот пошаговые инструкции по вычислению стандартного отклонения вручную:

  1. Рассчитайте среднее или среднее значение для каждого набора данных. Для этого сложите все числа в наборе данных и разделите их на общее количество частей данных. Например, если в наборе данных четыре числа, разделите сумму на четыре. Это среднее набора данных.
  2. Вычтите отклонение каждого фрагмента данных, вычтя среднее из каждого номер. Обратите внимание, что дисперсия для каждого фрагмента данных может быть положительным или отрицательным числом.
  3. Возведите каждое отклонение в квадрат.
  4. Сложите все квадраты отклонений.
  5. Разделите это число на единицу меньше, чем количество элементов в наборе данных. Например, если у вас четыре числа, разделите их на три.
  6. Вычислите квадратный корень из полученного значения. Это стандартное отклонение образца .

Вычислить стандартное отклонение совокупности

  1. Вычислить среднее или среднее значение каждого набора данных . Сложите все числа в наборе данных и разделите на общее количество частей данных. Например, если в наборе данных четыре числа, разделите сумму на четыре. Это среднее набора данных.
  2. Вычтите отклонение каждого фрагмента данных, вычтя среднее из каждого номер. Обратите внимание, что дисперсия для каждого фрагмента данных может быть положительным или отрицательным числом.
  3. Возведите каждое отклонение в квадрат.
  4. Сложите все квадраты отклонений.
  5. Разделите это значение на количество элементов в наборе данных. Например, если у вас было четыре числа, разделите на четыре.
  6. Вычислите квадратный корень из полученного значения. Это стандартное отклонение населения .

Понравилась статья? Поделить с друзьями:
  • Как найти страницу памяти
  • План фхд как составить новичку в бюджетной организации
  • Как найти свои видеозаписи вконтакте
  • Как найти несмещенная оценку дисперсии генеральной совокупности
  • Как найти корень функции в питоне