Как найти стандартное отклонение набора данных

Стандартное отклонение (англ. Standard Deviation) — простыми словами это мера того, насколько разбросан набор данных.

Вычисляя его, можно узнать, являются ли числа близкими к среднему значению или далеки от него. Если точки данных находятся далеко от среднего значения, то в наборе данных имеется большое отклонение; таким образом, чем больше разброс данных, тем выше стандартное отклонение.

Стандартное отклонение обозначается буквой σ (греческая буква сигма).

Стандартное отклонение также называется:

  • среднеквадратическое отклонение,
  • среднее квадратическое отклонение,
  • среднеквадратичное отклонение,
  • квадратичное отклонение,
  • стандартный разброс.

Использование и интерпретация величины среднеквадратического отклонения

Стандартное отклонение используется:

  • в финансах в качестве меры волатильности,
  • в социологии в опросах общественного мнения — оно помогает в расчёте погрешности.

Пример:

Рассмотрим два малых предприятия, у нас есть данные о запасе какого-то товара на их складах.

День 1 День 2 День 3 День 4
Пред.А 19 21 19 21
Пред.Б 15 26 15 24

В обеих компаниях среднее количество товара составляет 20 единиц:

  • А -> (19 + 21 + 19+ 21) / 4 = 20
  • Б -> (15 + 26 + 15+ 24) / 4 = 20

Однако, глядя на цифры, можно заметить:

  • в компании A количество товара всех четырёх дней очень близко находится к этому среднему значению 20 (колеблется лишь между 19 ед. и 21 ед.),
  • в компании Б существует большая разница со средним количеством товара (колеблется между 15 ед. и 26 ед.).

Если рассчитать стандартное отклонение каждой компании, оно покажет, что

  • стандартное отклонение компании A = 1,
  • стандартное отклонение компании Б ≈ 5.

Стандартное отклонение показывает эту волатильность данных — то, с каким размахом они меняются; т.е. как сильно этот запас товара на складах компаний колеблется (поднимается и опускается).

Расчет среднеквадратичного (стандартного) отклонения

Формулы вычисления стандартного отклонения

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула
Где:
σ — стандартное отклонение,
xi — величина отдельного значения выборки,
μ — среднее арифметическое выборки,
n — размер выборки.
Эта формула применяется, когда анализируются все значения выборки.
стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула
Где:
S — стандартное отклонение,
n — размер выборки,
xi — величина отдельного значения выборки,
xср — среднее арифметическое выборки.
Эта формула применяется, когда присутствует очень большой размер выборки, поэтому на анализ обычно берётся только её часть.
Единственная разница с предыдущей формулой: “n — 1” вместо “n”, и обозначение «xср» вместо «μ».

Разница между формулами S и σ («n» и «n–1»)

Состоит в том, что мы анализируем — всю выборку или только её часть:

  • только её часть – используется формула S (с «n–1»),
  • полностью все данные – используется формула σ (с «n»).

Как рассчитать стандартное отклонение?

Пример 1 (с σ)

Рассмотрим данные о запасе какого-то товара на складах Предприятия Б.

День 1 День 2 День 3 День 4
Пред.Б 15 26 15 24

Если значений выборки немного (небольшое n, здесь он равен 4) и анализируются все значения, то применяется эта формула:

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула

Применяем эти шаги:

1. Найти среднее арифметическое выборки:

μ = (15 + 26 + 15+ 24) / 4 = 20

2. От каждого значения выборки отнять среднее арифметическое:

x1 — μ = 15 — 20 = -5

x2 — μ = 26 — 20 = 6

x3 — μ = 15 — 20 = -5

x4 — μ = 24 — 20 = 4

3. Каждую полученную разницу возвести в квадрат:

(x1 — μ)² = (-5)² = 25

(x2 — μ)² = 6² = 36

(x3 — μ)² = (-5)² = 25

(x4 — μ)² = 4² = 16

4. Сделать сумму полученных значений:

Σ (xi — μ)² = 25 + 36+ 25+ 16 = 102

5. Поделить на размер выборки (т.е. на n):

(Σ (xi — μ)²)/n = 102 / 4 = 25,5

6. Найти квадратный корень:

√((Σ (xi — μ)²)/n) = √ 25,5 ≈ 5,0498

Пример 2 (с S)

Задача усложняется, когда существуют сотни, тысячи или даже миллионы данных. В этом случае берётся только часть этих данных и анализируется методом выборки.

У Андрея 20 яблонь, но он посчитал яблоки только на 6 из них.

Популяция — это все 20 яблонь, а выборка — 6 яблонь, это деревья, которые Андрей посчитал.

Яблоня 1 Яблоня 2 Яблоня 3 Яблоня 4 Яблоня 5 Яблоня 6
9 2 5 4 12 7

Так как мы используем только выборку в качестве оценки всей популяции, то нужно применить эту формулу:

стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула

Математически она отличается от предыдущей формулы только тем, что от n нужно будет вычесть 1. Формально нужно будет также вместо μ (среднее арифметическое) написать X ср.

Применяем практически те же шаги:

1. Найти среднее арифметическое выборки:

Xср = (9 + 2 + 5 + 4 + 12 + 7) / 6 = 39 / 6 = 6,5

2. От каждого значения выборки отнять среднее арифметическое:

X1 – Xср = 9 – 6,5 = 2,5

X2 – Xср = 2 – 6,5 = –4,5

X3 – Xср = 5 – 6,5 = –1,5

X4 – Xср = 4 – 6,5 = –2,5

X5 – Xср = 12 – 6,5 = 5,5

X6 – Xср = 7 – 6,5 = 0,5

3. Каждую полученную разницу возвести в квадрат:

(X1 – Xср)² = (2,5)² = 6,25

(X2 – Xср)² = (–4,5)² = 20,25

(X3 – Xср)² = (–1,5)² = 2,25

(X4 – Xср)² = (–2,5)² = 6,25

(X5 – Xср)² = 5,5² = 30,25

(X6 – Xср)² = 0,5² = 0,25

4. Сделать сумму полученных значений:

Σ (Xi – Xср)² = 6,25 + 20,25+ 2,25+ 6,25 + 30,25 + 0,25 = 65,5

5. Поделить на размер выборки, вычитав перед этим 1 (т.е. на n–1):

(Σ (Xi – Xср)²)/(n-1) = 65,5 / (6 – 1) = 13,1

6. Найти квадратный корень:

S = √((Σ (Xi – Xср)²)/(n–1)) = √ 13,1 ≈ 3,6193

Дисперсия и стандартное отклонение

Стандартное отклонение равно квадратному корню из дисперсии (S = √D). То есть, если у вас уже есть стандартное отклонение и нужно рассчитать дисперсию, нужно лишь возвести стандартное отклонение в квадрат (S² = D).

Дисперсия — в статистике это «среднее квадратов отклонений от среднего». Чтобы её вычислить нужно:

  1. Вычесть среднее значение из каждого числа
  2. Возвести каждый результат в квадрат (так получатся квадраты разностей)
  3. Найти среднее значение квадратов разностей.

Ещё расчёт дисперсии можно сделать по этой формуле:

Дисперсия и стандартное отклонение расчёт дисперсии формула
Где:
S² — выборочная дисперсия,
Xi — величина отдельного значения выборки,
Xср (может появляться как X̅) — среднее арифметическое выборки,
n — размер выборки.

Правило трёх сигм

Это правило гласит: вероятность того, что случайная величина отклонится от своего математического ожидания более чем на три стандартных отклонения (на три сигмы), почти равна нулю.

Правило трёх сигм

Глядя на рисунок нормального распределения случайной величины, можно понять, что в пределах:

  • одного среднеквадратического отклонения заключаются 68,26% значений (Xср ± 1σ или μ ± 1σ),
  • двух стандартных отклонений — 95,44% (Xср ± 2σ или μ ± 2σ),
  • трёх стандартных отклонений — 99,72% (Xср ± 3σ или μ ± 3σ).

Это означает, что за пределами остаются лишь 0,28% — это вероятность того, что случайная величина примет значение, которое отклоняется от среднего более чем на 3 сигмы.

Стандартное отклонение в excel

Вычисление стандартного отклонения с «n – 1» в знаменателе (случай выборки из генеральной совокупности):

1. Занесите все данные в документ Excel.

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

2. Выберите поле, в котором вы хотите отобразить результат.

3. Введите в этом поле «=СТАНДОТКЛОНА(«

4. Выделите поля, где находятся данные, потом закройте скобки.

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

5. Нажмите Ввод (Enter).

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

В случае если данные представляют всю генеральную совокупность (n в знаменателе), то нужно использовать функцию СТАНДОТКЛОНПА.

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

Коэффициент вариации

Коэффициент вариации — отношение стандартного отклонения к среднему значению, т.е. Cv = (S/μ) × 100% или V = (σ/X̅) × 100%.

Стандартное отклонение делится на среднее и умножается на 100%.

Можно классифицировать вариабельность выборки по коэффициенту вариации:

  • при <10% выборка слабо вариабельна,
  • при 10% – 20 % — средне вариабельна,
  • при >20 % — выборка сильно вариабельна.

Узнайте также про:

  • Корреляции,
  • Метод Крамера,
  • Метод наименьших квадратов,
  • Теорию вероятностей
  • Интегралы.
  1. Image titled Calculate Standard Deviation Step 1

    1

    Look at your data set. This is a crucial step in any type of statistical calculation, even if it is a simple figure like the mean or median.[2]

    • Know how many numbers are in your sample.
    • Do the numbers vary across a large range? Or are the differences between the numbers small, such as just a few decimal places?
    • Know what type of data you are looking at. What do your numbers in your sample represent? this could be something like test scores, heart rate readings, height, weight etc.
    • For example, a set of test scores is 10, 8, 10, 8, 8, and 4.
  2. Image titled Calculate Standard Deviation Step 2

    2

    Gather all of your data. You will need every number in your sample to calculate the mean.[3]

    • The mean is the average of all your data points.
    • This is calculated by adding all of the numbers in your sample, then dividing this figure by the how many numbers there are in your sample (n).
    • In the sample of test scores (10, 8, 10, 8, 8, 4) there are 6 numbers in the sample. Therefore n = 6.

    Advertisement

  3. Image titled Calculate Standard Deviation Step 3

    3

    Add the numbers in your sample together. This is the first part of calculating a mathematical average or mean.[4]

    • For example, use the data set of quiz scores: 10, 8, 10, 8, 8, and 4.
    • 10 + 8 + 10 + 8 + 8 + 4 = 48. This is the sum of all the numbers in the data set or sample.
    • Add the numbers a second time to check your answer.
  4. Image titled Calculate Standard Deviation Step 4

    4

    Divide the sum by how many numbers there are in your sample (n). This will provide the average or mean of the data.[5]

    • In the sample of test scores (10, 8, 10, 8, 8, and 4) there are six numbers, so n = 6.
    • The sum of the test scores in the example was 48. So you would divide 48 by n to figure out the mean.
    • 48 / 6 = 8
    • The mean test score in the sample is 8.
  5. Advertisement

  1. Image titled Calculate Standard Deviation Step 5

    1

    Find the variance. The variance is a figure that represents how far the data in your sample is clustered around the mean.[6]

    • This figure will give you an idea of how far your data is spread out.
    • Samples with low variance have data that is clustered closely about the mean.
    • Samples with high variance have data that is clustered far from the mean.
    • Variance is often used to compare the distribution of two data sets.
  2. Image titled Calculate Standard Deviation Step 6

    2

    Subtract the mean from each of your numbers in your sample. This will give you a figure of how much each data point differs from the mean.[7]

    • For example, in our sample of test scores (10, 8, 10, 8, 8, and 4) the mean or mathematical average was 8.
    • 10 — 8 = 2; 8 — 8 = 0, 10 — 8 = 2, 8 — 8 = 0, 8 — 8 = 0, and 4 — 8 = -4.
    • Do this procedure again to check each answer. It is very important you have each of these figures correct as you will need them for the next step.
  3. Image titled Calculate Standard Deviation Step 7

    3

    Square all of the numbers from each of the subtractions you just did. You will need each of these figures to find out the variance in your sample.[8]

    • Remember, in our sample we subtracted the mean (8) from each of the numbers in the sample (10, 8, 10, 8, 8, and 4) and came up with the following: 2, 0, 2, 0, 0 and -4.
    • To do the next calculation in figuring out variance you would perform the following: 22, 02, 22, 02, 02, and (-4)2 = 4, 0, 4, 0, 0, and 16.
    • Check your answers before proceeding to the next step.
  4. Image titled Calculate Standard Deviation Step 8

    4

    Add the squared numbers together. This figure is called the sum of squares.[9]

    • In our example of test scores, the squares were as follows: 4, 0, 4, 0, 0, and 16.
    • Remember, in the example of test scores we started by subtracting the mean from each of the scores and squaring these figures: (10-8)^2 + (8-8)^2 + (10-8)^2 + (8-8)^2 + (8-8)^2 + (4-8)^2
    • 4 + 0 + 4 + 0 + 0 + 16 = 24.
    • The sum of squares is 24.
  5. Image titled Calculate Standard Deviation Step 9

    5

    Divide the sum of squares by (n-1). Remember, n is how many numbers are in your sample. Doing this step will provide the variance. The reason to use n-1 is to have sample variance and population variance unbiased. [10]

    • In our sample of test scores (10, 8, 10, 8, 8, and 4) there are 6 numbers. Therefore, n = 6.
    • n-1 = 5.
    • Remember the sum of squares for this sample was 24.
    • 24 / 5 = 4.8
    • The variance in this sample is thus 4.8.
  6. Advertisement

  1. Image titled Calculate Standard Deviation Step 10

    1

    Find your variance figure. You will need this to find the standard deviation for your sample.[11]

    • Remember, variance is how spread out your data is from the mean or mathematical average.
    • Standard deviation is a similar figure, which represents how spread out your data is in your sample.
    • In our example sample of test scores, the variance was 4.8.
  2. Image titled Calculate Standard Deviation Step 11

    2

    Take the square root of the variance. This figure is the standard deviation.[12]

    • Usually, at least 68% of all the samples will fall inside one standard deviation from the mean.
    • Remember in our sample of test scores, the variance was 4.8.
    • √4.8 = 2.19. The standard deviation in our sample of test scores is therefore 2.19.
    • 5 out of 6 (83%) of our sample of test scores (10, 8, 10, 8, 8, and 4) is within one standard deviation (2.19) from the mean (8).
  3. Image titled Calculate Standard Deviation Step 12

    3

    Go through finding the mean, variance and standard deviation again. This will allow you to check your answer.[13]

    • It is important that you write down all steps to your problem when you are doing calculations by hand or with a calculator.
    • If you come up with a different figure the second time around, check your work.
    • If you cannot find where you made a mistake, start over a third time to compare your work.
  4. Advertisement

Practice Problems and Answers

Add New Question

  • Question

    What is the standard deviation of 10 samples with a mean of 29.05?

    Community Answer

    Depends on the 10 samples of data. If all ten numbers were 29.05 then the standard deviation would be zero. Standard deviation is a measure of how much the data deviates from the mean.

  • Question

    How do I calculate the standard deviation of 5 samples with the mean of 26?

    Community Answer

    You take the average of 26 and 5, divide by b squared and multiply by deviation equation constant.

  • Question

    How do I find the standard deviation of 10 samples with a mean of 29.05?

    Community Answer

    Take each sample and subract the mean. Next, square each result, getting rid of the negative. Add the 10 results and divide the sun by 10 — 1 or 9. That is the standard deviation.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

Thanks for submitting a tip for review!

References

About This Article

Article SummaryX

To calculate standard deviation, start by calculating the mean, or average, of your data set. Then, subtract the mean from all of the numbers in your data set, and square each of the differences. Next, add all the squared numbers together, and divide the sum by n minus 1, where n equals how many numbers are in your data set. Finally, take the square root of that number to find the standard deviation. To learn how to find standard deviation with the help of example problems, keep reading!

Did this summary help you?

Thanks to all authors for creating a page that has been read 2,561,041 times.

Reader Success Stories

  • Lorie Jessup

    «This article was the best statistics instructor I have ever been taught by. I have learned more from this little…» more

Did this article help you?

  • Редакция Кодкампа

17 авг. 2022 г.
читать 2 мин


Среднее значение представляет собой среднее значение в наборе данных. Это дает нам хорошее представление о том, где находится центр набора данных.

Стандартное отклонение показывает, насколько разбросаны значения в наборе данных. Это дает нам представление о том, насколько близко наблюдения сгруппированы вокруг среднего значения.

Используя только эти два значения, мы можем многое понять о распределении значений в наборе данных.

Чтобы вычислить среднее значение набора данных в Excel, мы можем использовать функцию = СРЗНАЧ (диапазон) , где диапазон — это диапазон значений.

Чтобы вычислить стандартное отклонение набора данных, мы можем использовать функцию =STDEV.S(Range) , где Range — это диапазон значений.

В этом руководстве объясняется, как использовать эти функции на практике.

Техническое примечание

Обе функции СТАНДОТКЛОН() и СТАНДОТКЛОН.С() вычисляют стандартное отклонение выборки .

Вы можете использовать функцию STDEV.P() для вычисления стандартного отклонения совокупности , если ваш набор данных представляет всю совокупность значений.

Однако в большинстве случаев мы работаем с выборочными данными, а не со всей совокупностью, поэтому мы используем функцию СТАНДОТКЛОН.С().

Пример 1: Среднее и стандартное отклонение одного набора данных

На следующем снимке экрана показано, как рассчитать среднее значение и стандартное отклонение одного набора данных в Excel:

среднее значение и стандартное отклонение в Excel

Среднее значение набора данных составляет 16,4 , а стандартное отклонение — 9,13 .

Пример 2: Среднее и стандартное отклонение нескольких наборов данных

Предположим, у нас есть несколько наборов данных в Excel:

Чтобы вычислить среднее значение и стандартное отклонение первого набора данных, мы можем использовать следующие две формулы:

  • Среднее значение: =СРЗНАЧ(B2:B21)
  • Стандартное отклонение: =STDEV.S(B2:B21)

Затем мы можем выделить ячейки B22: B23 и навести указатель мыши на правый нижний угол ячейки B23, пока не появится крошечный +.Затем мы можем щелкнуть и перетащить формулы в следующие два столбца:

Среднее и стандартное отклонение нескольких наборов данных в Excel

Дополнительные ресурсы

Как рассчитать сводку из пяти чисел в Excel
Как рассчитать межквартильный диапазон (IQR) в Excel
Как рассчитать стандартную ошибку среднего в Excel

Написано

Редакция Кодкампа

Замечательно! Вы успешно подписались.

Добро пожаловать обратно! Вы успешно вошли

Вы успешно подписались на кодкамп.

Срок действия вашей ссылки истек.

Ура! Проверьте свою электронную почту на наличие волшебной ссылки для входа.

Успех! Ваша платежная информация обновлена.

Ваша платежная информация не была обновлена.

Определение стандартного отклонения

Стандартное отклонение измеряет величину вариации или дисперсии в наборе значений данных относительно его среднего значения (среднего). Это статистический инструмент, используемый для интерпретации надежности данных. Он представлен символом «σ».

Если отклонение меньше, точки данных близки к среднему значению, и данные считаются
надежный. Напротив, если отклонение велико, точки данных разбросаны дальше от среднего значения; такие данные считаются менее надежными. Стандартное отклонение используется при анализе общего риска и доходности портфеля.

Оглавление

  • Определение стандартного отклонения
    • Объяснение стандартного отклонения
    • Уравнение стандартного отклонения
    • Расчет
    • Пример
    • Интерпретация
    • Часто задаваемые вопросы (FAQ)
    • Рекомендуемые статьи
  • Стандартное отклонение — это статистический инструмент, который измеряет волатильность данных. Он указывает, в какой степени значения выборки отклоняются от средних значений. Он вычисляется как квадратный корень из дисперсии и обозначается символом «σ» (греческая буква).
  • σ не может быть отрицательным значением и может быть равен 0 только в том случае, если значения в наборе данных равны и не имеют вариаций.
  • В финансах этот математический инструмент применяется для определения уровня рисков, связанных с конкретными инвестициями или активами. Метод измеряет спред соответствующих цен и доходов. Более высокое отклонение отражает высокую волатильность и наоборот.
  • Если символ σ обозначает стандартное отклонение, n — общее количество наблюдений в наборе данных, xi — i-е количество наблюдений, а µ — выборочное среднее, то отклонение вычисляется по следующей формуле:

Формула отклонения

В большинстве случаев минимальное стандартное отклонение считается благоприятным. Если отклонение в предыдущих колебаниях цен для конкретной акции невелико, это считается надежной инвестиционной возможностью.

Этот статистический инструмент помогает исследователям и аналитикам понять распространение данных, чтобы
определить степень разброса данных. Этот математический аппарат показывает
разброс выборочных значений от среднего значения.

Стандартные ошибки подчеркивают точность среднего значения выборки по отношению к генеральной совокупности.
означает, когда данные обширны и широко распространены. На графике отклонение может лежать влево, вправо или в обе стороны — формирование колоколообразной кривойГрафик колоколообразной кривой изображает нормальное распределение, которое является типом непрерывной вероятности. Он получил свое название из-за формы графика, напоминающего колокол. читать далее.

График стандартных отклонений

Уравнение стандартного отклонения

Уравнение для определения стандартного отклонения ряда данных выглядит следующим образом:

SD-Формула-3

т.е. σ=√v

Также, µ =∑x/n

Здесь,

  • σ — это символ, обозначающий стандартное отклонение.
  • n — количество наблюдений в наборе данных.
  • xi — i-е количество наблюдений в наборе данных.
  • µ — среднее значение выборки.
  • V — дисперсия.
  • ∑x — сумма всех значений в наборе данных.

Расчет

Основные шаги, используемые для поиска и расчета стандартного отклонения, следующие:

  1. Сначала определите среднее значение набора данных.
  2. Затем подготовьте диаграмму со значениями выборки и разницей между выборкой.
    значения и средние значения.
  3. В следующем столбце найдите квадрат разностей.
  4. Чтобы получить дисперсию, сложите все квадраты и разделите результат на разницу между общим количеством наблюдений и 1.
  5. Наконец, найдите квадратный корень из дисперсии, чтобы получить стандартное отклонение.

Пример

Давайте рассмотрим несколько примеров, чтобы понять практические последствия:

Найти отклонение цен на сырую нефть за год, когда среднемесячные цены за литр были следующими:

МесяцСредняя цена за литр в долларахЯнварь0,83Февраль0,81Март0,78Апрель0,82Май0,79Июнь0,75Июль0,76Август0,79Сентябрь0,81Октябрь0,77Ноябрь0,76Декабрь0,75

Решение:

Расчет среднего:

µ = ∑x/n

µ = 9,42/12

= 0,785 доллара за литр

С. №МесяцСредняя цена за литр в $ (x)х – 0,785 доллара США(х – 0,785 долл. США)21January0.830.0450.0020252February0.810.0250.0006253March0.78-0.0050.0000254April0.820.0350.0012255May0.790.0050.0000256June0.75-0.0350.0012257July0.76-0.0250.0006258August0.790.0050.0000259September0.810.0250.00062510October0.77-0.0150.00022511November0. 76-0.0250.00062512декабрь0.75-0.0350.001225129.42 0,0085

Расчет стандартного отклонения :

Формула SD

  • σ = √ [0.0085 / (12-1)]
  • σ = √ (0,00077272727)
  • σ = 0,0277979724571285 долл. США

Таким образом, стандартное отклонение цен на нефть за литр для данного года равно
0,0277979724571285.

Интерпретация

Стандартное отклонение указывает на волатильность или дисперсию значений конкретного распределения. Он показывает, в какой степени значения выборки отклоняются от средних значений. Таким образом, эта мера облегчает сравнение и анализ.

Ниже приведены различные интерпретации полученного результата:

  • Если σ велико, то волатильность анализируемых данных также высока.
  • Точно так же, когда σ низкое, дисперсия между точками данных также незначительна.
  • В распределении σ может быть равно 0 только тогда, когда разница между точками данных равна нулю. Это также наименьшее значение отклонения, которое можно получить.
  • Невозможно получить отрицательное значение σ, так как числитель включает квадрат разности между выборочными значениями и средними значениями.
  • Кроме того, количество наблюдений всегда больше 1; следовательно, знаменатель должен быть положительным значением.
  • Стандартное отклонение измеряется в тех же единицах, что и значения распределения. Например, в приведенном выше примере σ выражается в долларах.
  • Выбросы (чрезвычайно высокие или низкие значения) существенно влияют на измерения отклонения.

Часто задаваемые вопросы (FAQ)

Что такое стандартное отклонение?

Стандартное отклонение — это статистический метод, используемый для нахождения разброса данных в распределении с использованием средних значений. Обозначается символом «σ».

Как рассчитать стандартное отклонение?

Стандартное отклонение рассчитывается как квадратный корень из дисперсии. Дисперсия — это сумма квадрата разности между каждым значением в наборе данных и их средними значениями, деленная на значение, полученное путем вычитания единицы из общего числа наблюдений.

Почему стандартное отклонение важно?

Он определяет степень изменчивости значений в выборочном распределении. Это широко используемый статистический инструмент в финансах, инвестициях и бизнесе для интерпретации величины риска, связанного с ценной бумагой или активом. В большинстве случаев минимальное отклонение считается благоприятным. Если отклонение в предыдущих колебаниях цен для конкретной акции невелико, это считается надежной инвестиционной возможностью.

Может ли стандартное отклонение быть равным нулю?

Единственный случай, когда он может быть равен нулю, — это когда все точки данных в распределении одинаковы. Нулевое отклонение указывает на нулевой разброс или изменчивость значений. Для реальных сценариев это практически невозможно.

Рекомендуемые статьи

Эта статья была руководством к тому, что такое стандартное отклонение в статистике и его определение. Мы объясняем его уравнение, расчеты, символы, статистику и его интерпретацию. Подробнее об этом вы можете узнать из следующих статей —

  • Стандартное отклонение в ExcelСтандартное отклонение в ExcelСтандартное отклонение показывает отклонение значений данных от среднего (среднего). В Excel СТАНДОТКЛОН и СТАНДОТКЛОН.С вычисляют стандартное отклонение выборки, а СТАНДОТКЛОН и СТАНДОТКЛОН.П вычисляют стандартное отклонение совокупности. СТАНДОТКЛОН доступен в Excel 2007 и предыдущих версиях. Однако СТАНДОТКЛОН.П и СТАНДОТКЛОН.С доступны только в Excel 2010 и последующих версиях. читать далее
  • Примеры стандартных отклоненийПримеры стандартных отклоненийПримеры стандартных отклонений помогут вам применить формулу стандартного отклонения для определения риска, связанного с волатильностью финансовых ценных бумаг.Подробнее
  • Формула стандартного отклоненияФормула стандартного отклоненияСтандартное отклонение (SD) — популярный статистический инструмент, обозначаемый греческой буквой «σ», для измерения вариации или дисперсии набора значений данных относительно их среднего (среднего) значения, таким образом интерпретируя надежность данных.Подробнее

стандартное отклонение калькулятор

Среднеквадратическое отклонение‭ (‬СО‭) ‬-‭ ‬это показатель рассеяния значений во множестве данных относительно их математического ожидания.‭ ‬Обозначается также как СО.‭ ‬Символом среднеквадратического отклонения является‭ ‬σ‭(‬сигма‭)‬.‭ ‬Можно также сказать,‭ ‬что это показатель изменчивости или дисперсии в этом множестве данных.‭
‬Находите математическое ожидание,‭ ‬дисперсию,‭ ‬среднеквадратическое отклонение данных чисел с помощью этих бесплатных арифметических онлайн-калькуляторов среднеквадратического отклонения.

Среднеквадратическое отклонение калькулятор

Для Рассчитать среднее значение, дисперсия, стандартное отклонение :

Введите все цифры, разделенные запятыми ‘,’.

E.g: 13,23,12,44,55

дисперсия(стандартное отклонение)

население стандартное отклонение

дисперсия(население стандартное отклонение)

Среднеквадратическое отклонение‭ (‬СО‭) ‬-‭ ‬это показатель рассеяния значений во множестве данных относительно их математического ожидания.‭ ‬Обозначается также как СО.‭ ‬Символом среднеквадратического отклонения является‭ ‬σ‭(‬сигма‭)‬.‭ ‬Можно также сказать,‭ ‬что это показатель изменчивости или дисперсии в этом множестве данных.‭
‬Находите математическое ожидание,‭ ‬дисперсию,‭ ‬среднеквадратическое отклонение данных чисел с помощью этих бесплатных арифметических онлайн-калькуляторов среднеквадратического отклонения.

формула :

означать :
Средняя = сумма значений X / N (количество значений)

дисперсия :
дисперсия = s2

Среднеквадратическое отклонение :
Среднеквадратическое отклонение формула
население Среднеквадратическое отклонение :
население Среднеквадратическое отклонение формула

пример:

Рассмотрим множество X цифр 5,10,15,20,25

шаг 1 :

Средняя = сумма значений X / N (количество значений)
= (5+10+15+20+25) / 5
= 75 / 5
= 15

шаг 2 :

Чтобы найти дисперсию,

Вычесть среднее из каждого из значений,
5-15 = -10
10-15 = -5
15-15 = 0
20-15 = 5
25-15 = 10

Теперь квадрат все ответы вы получили от вычитания.
(-10)2 = 100
(-5)2 = 25
(0)2 = 0
(5)2 = 25
(10)2 = 100

Добавить все квадраты чисел,
100 + 25 + 0 + 25 + 100 = 250

Разделите сумму квадратов (n-1)
250 / (5-1) = 250 / 4 = 62.5

Отсюда Разница = 62.5

шаг 3 :

Чтобы найти стандартное отклонение, найти квадратный корень из дисперсии,
√62.5 = 7.905
Следовательно Стандартное отклонение является 7.905

Чтобы найти минимальное и максимальное стандартное отклонение,

Минимальная CO = среднее — CO
= 15 — 7.905
= 7.094

Максимальная CO = среднее + CO
=15 + 7.905
= 22.906

шаг 4 :

Чтобы найти стандартный население отклонение,

Разделите сумму квадратов найденных на шаге 2 по n
250 / 5 = 50
Найти квадратный корень 50, √50 = 7.07

Этот инструмент поможет вам динамически вычислять статистические проблемы. Расчет среднее значение, дисперсия, стандартное отклонение легче.

Понравилась статья? Поделить с друзьями:
  • Составить предложение с союзом тогда как
  • Как найти визажиста в москве
  • Как найти клиента для бизнеса
  • Как найти вариант егэ по ответам
  • Как найти данные киви кошелька