Как найти степень иррационального числа

Возведение числа в степень является важнейшей математической операцией, часто используемой для различных вычислений. В зависимости от вида основания и показателя значение степени рассчитывается по-разному. Ниже будут подробно рассмотрены основные правила нахождения значений степеней.

Возведение числа в степень с натуральным показателем

Прежде чем приступить к изучению операции возведения в степень необходимо рассмотреть базовое понятие натуральной степени числа.

Определение

Натуральной степенью n числа а называют произведение, состоящее из n множителей, каждый из которых равен a.

[a^{n}=underbrace{a times a times ldots times a}_{text {п множсителей }}]

Таким образом, для натурального показателя степень представляет собой укороченную запись умножения одинаковых множителей. В данном случае чтобы найти значение степени, следует перемножить число, которое является основанием, само на себя указанное количество раз.

Пример 1

Рассмотрим возведение числа 3 в степень 5. Согласно приведенному выше базовому определению:

35 = 3 × 3 × 3 × 3 × 3 = 243

Для операций возведения во вторую и третью степень имеются устоявшиеся названия: возведение в квадрат и куб, соответственно. Таким образом, выражение «32» может быть прочитано как «три во второй степени» или «три в квадрате», оба варианта будут верными.

Значение степенных выражений с дробным основанием и натуральным показателем находится по той же схеме. В то же время, в соответствии с правилом умножения дробей, операция возведения дроби в степень может быть разбита на два действия, когда числитель и знаменатель возводятся в соответствующую показателю степень по отдельности.

Пример 2

Найдем, чему будут равны [ frac{2}{5} ] в степени 3:

[left(frac{2}{5}right)^{3}=frac{2}{5} times frac{2}{5} times frac{2}{5}=frac{2^{3}}{5^{3}}=frac{8}{125}]

Операция возведения в натуральную степень имеет определенные особенности при работе с отрицательными числами. Рассмотрим следующий пример:

Пример 3

Найдем значения степенных выражений (-5)3 и (-5)4. Для этого, согласно базовому определению, необходимо умножить основание само на себя 3 и 4 раза соответственно:

(-5)3 = (-5) × (-5) × (-5) = -125

(-5)4 =(-5) × (-5) × (-5) × (-5) = 625

Из приведенного примера можно видеть, что в первом случае полученный результат является отрицательным числом, а во втором – положительным. Это связано с правилом перемножения отрицательных чисел. Следствием из него является то, что если показатель степени отрицательного числа представляет собой четное число, результат будет положительным, если нечетное – отрицательным. Таким образом, степень с отрицательным основанием и четным показателем будет равна степени с таким же показателем и основанием, равным по модулю, но противоположным по знаку.

(-a)2n = a2n

Если требуется возвести в натуральную степень иррациональное число, то его необходимо предварительно округлить до той значащей цифры, которая позволит получить ответ с требуемой точностью. Рассмотрим данный случай на примере числа π.

Пример 4

Выполним возведение в степень 3 числа π.

π – это бесконечное иррациональное число. С точностью до 10 знаков после запятой оно записывается следующим образом:

π = 3,1415926536

Допустим, нам необходим результат с точностью два знака после запятой. Тогда число π может быть округлено до 3,14.

(3,14)3 = 3,14 × 3,14 × 3,14 ≈ 30,96

Отдельно следует отметить, чему будет равно число в степени 1. В соответствии с базовым определением

[a^{n}=underbrace{a times a times ldots times a}_{text {п множсителей }}]

вне зависимости от значения основания, число в степени 1 равно самому себе.

На практике возможны и более сложные случаи, когда требуется найти значение степенного выражения, в котором показатель не является натуральным числом. Ниже будут рассмотрены ситуации, когда показатель степени представляет собой целое, дробное, рациональное или иррациональное число.

Вычисление степеней с целым показателем

Все операции по возведению в целую степень можно разделить на три группы: когда показатель является целым положительным (натуральным) числом, когда он равен нулю, и когда он является отрицательным числом.

Случай с натуральным показателем был рассмотрен ранее, поэтому мы не будем к нему возвращаться.

В случае, когда показатель равен нулю, для любого не равного нулю основания значение степени будет равно единице. Если же и основание, и показатель степени равны нулю значение выражения будет не определено.

Пример 5

Рассмотрим возведение в нулевую степень натурального, дробного, иррационального чисел, а также нуля:

100 = 1

0,50 = 1

π0 = 1

00 – не определено.

Осталось рассмотреть нахождение значения степенного выражения с целым отрицательным показателем. Число а в степени -n представляет собой дробь, числитель которой равен единице, а знаменатель – числу а в степени n.

[a^{-n}=frac{1}{a^{n}}]

Можно видеть, что знаменатель дроби является натуральной степенью, вычисление которой было рассмотрено ранее. Таким образом, две степени, у которых основания одинаковы, а показатели противоположны по знаку, но равны по модулю, будут являться обратными числами. Рассмотрим возведение в отрицательную степень целого и дробного чисел:

Пример 6

Вычислим, чему равно 7 в степень -3:

[7^{-3}=frac{1}{7^{3}}=frac{1}{7 times 7 times 7}=frac{1}{343}]

Пример 7

Найдем значение степенного выражения [left(frac{2}{9}right)^{-2}]

При возведении дробного числа в отрицательную степень на определенном этапе осуществляется «переворот» дроби. Он может быть выполнен как в конце вычислений:

[left(frac{2}{9}right)^{-2}=frac{1}{left(frac{2}{9}right)^{2}}=frac{1}{frac{2}{9} times frac{2}{9}}=frac{1}{frac{4}{81}}=frac{81}{4}=20 frac{1}{4}]

так и в начале:

[left(frac{2}{9}right)^{-2}=left(frac{9}{2}right)^{2}=frac{81}{4}=20 frac{1}{4}]

Из-за указанного в примере «переворота», при возведении десятичной дроби в отрицательную степень рекомендуется предварительно преобразовать основание к форме обыкновенной дроби. Рассмотрим данную ситуацию на примере:

Пример 8

Найдем значение степенного выражения 0,5-2:

[0,5^{-2}=left(frac{5}{10}right)^{-2}=left(frac{10}{5}right)^{2}=frac{10^{2}}{5^{2}}=frac{100}{25}=4]

Отдельно следует упомянуть о выражениях с целым отрицательным показателем, основание которых равно нулю. Подобное выражение будет не определено, поскольку его преобразование будет приводить к дроби, знаменатель которой равен нулю.

[0^{-n}=frac{1}{0^{n}}] ‒ выражение не определено.

Возведение числа в дробную степень

Прежде чем приступить к вычислению, следует рассмотреть базовое определение степени с дробным показателем. В виде формулы оно может быть записано следующим образом:

[a^{m / n}=sqrt[n]{a^{m}}, text { где }]

a – положительное число;

m – целое число;

n – натуральное число.

Из указанного определения следует, что операция нахождения алгебраического корня любой степени также может быть представлена в форме возведения в дробную степень, когда числитель показателя равен единице, а знаменатель – основанию корня.

[sqrt[n]{a}=a^{1 / n}]

При этом не следует воспринимать данное свойство как способ преобразования иррационального числа в рациональное. Изменяется только форма записи. Например, если число √2 является иррациональным, то при записи его в форме [2^{1 / 2}] оно также останется иррациональным.

При нахождении значения степени с дробным показателем следует последовательно выполнить два математических действия: возведение основания в степень с целым показателем m и извлечение корня n-ной степени. При этом согласно свойству корней, указанные действия можно выполнить и в обратной последовательности, то есть можно сначала извлечь из основания корень n-й степени, а затем возвести полученный результат в степень m.

[sqrt[n]{a^{m}}=(sqrt[n]{a})^{m}]

Рассмотрим оба способа вычисления степеней с дробным показателем на конкретном примере.

Пример 9

Найдем значение степенного выражения [128^{5 / 7}].

Способ 1. Возведение в степень подкоренного выражения с последующим извлечением корня

[128^{5 / 7}=sqrt[7]{128^{5}}=sqrt[7]{34359738368}=32]

В данном случае из-за большого значения числа под корнем найти значение выражения, не прибегая к помощи калькулятора, невозможно.

Способ 2. Извлечение корня из основания с последующим возведением в степень.

[128^{5 / 7}=(sqrt[7]{128})^{5}=2^{5}=32]

Указанный способ нахождения значения степени существенно легче. При этом результат вычислений не отличается, то есть можно выбирать тот способ, который будет удобнее в конкретном случае.

Если показатель степени представлен в форме десятичной дроби, то удобнее будет записать его в виде обычной.

Пример 10

Вычислим значение степени [243^{0,4}]:

[243^{0,4}=243^{4 / 10}=243^{2 / 5}=(sqrt[5]{243})^{2}=3^{2}=9]

В случае, когда показатель представляет собой смешанное число, для удобства вычислений он может быть записан в виде неправильной дроби.

Пример 11

Вычислим значение выражения:

[left(12 frac{1}{4}right)^{1 frac{1}{2}}=left(frac{49}{4}right)^{3 / 2}=left(sqrt{frac{49}{4}}right)^{3}=left(frac{7}{2}right)^{3}=frac{343}{8}=42 frac{7}{8}]

Следует обратить внимание на математическую операцию возведения в отрицательную дробную степень. В этом случае вычисления производятся в три этапа: нахождение числа, обратного исходному, извлечение корня, степень которого соответствует значению знаменателя показателя, и возведение в степень, соответствующую числителю дробного показателя. Как и в случае с положительным дробным показателем, указанные действия могут выполняться в любой последовательности.

Пример 12

Найдем значение выражения [49^{-1 / 2}].

Выполним преобразование числа в обратное ему:

[49^{-1 / 2}=frac{1}{49^{1 / 2}}]

Найдем значение степени в знаменателе полученной дроби:

[frac{1}{49^{1 / 2}}=frac{1}{sqrt{49}}=frac{1}{7}]

Также необходимо рассмотреть случай, когда основанием степени является ноль, а показателем – дробное число. Как и в случае с целыми показателями, подобные выражения имеют смысл лишь в том случае, когда показатель больше нуля. В противном случае выражение будет не определено.

Нет времени решать самому?

Наши эксперты помогут!

Нахождение степеней с иррациональным показателем

Иногда возникает необходимость нахождения значения степени, показатель которой представляет собой иррациональное число. Проблема заключается в том, что найти точное значение подобного выражения невозможно. Однако для решения любой практической задачи, как правило, достаточно нахождения значения степенного выражения с определенной степенью точности. В этом случае иррациональный показатель округляется до требуемого десятичного знака, после чего вычисление осуществляется согласно правилам, принятым для дробного показателя.

Рассмотрим решение подобной задачи на конкретном примере:

Пример 13

Предположим, что нам необходимо найти значение выражения 2 в степени √2. Показатель степени является иррациональным числом. В виде бесконечной десятичной дроби оно может быть записано следующим образом:

√2 = 1,41421356…

Найдем значение выражения с различной степенью приближения.

Вариант 1.

Округлим значение иррационального числа до двух цифр после запятой и найдем приближенное значение степени:

[√2≈1,41]

[2^{sqrt{2}} approx 2^{1,41} approx 2,65737]

Вариант 2.

Округлим значение иррационального числа до четырех цифр после запятой и найдем приближенное значение степени:

[√2≈1,4142]

[2^{sqrt{2}} approx 2^{1,4142} approx 2,66512]

Можно видеть, что полученные значения различаются во втором знаке после запятой, при этом второе значение является более точным.

В большинстве случаев вычисление степеней с иррациональными показателями является сложной задачей, для решения которой используется вычислительная техника.

Понятие степени с иррациональным показателем.

Пусть

– иррациональное число, а
.

Определение.
Степенью
числа

с иррациональным показателем


называется действительное число
,
такое что для любых
,
таких что

выполняется неравенство
,
если
,
и
,
если
.
Если же
,
то полагаем
.

Обозначение:
.

Теорема
существования и единственности.

Каково бы ни было число

и
,
и каково бы ни было иррациональное число

существует число
,
являющееся степенью числа

с показателем

и оно единственно.

Доказательство
существования.

Докажем для случая
.

Пусть

– иррациональное число. Докажем, что
существует число
,
такое что для любых
,
таких что

выполняется неравенство
.

Рассмотрим
возрастающую последовательность
десятичных приближений числа

с недостатком

(1)

И убывающую
последовательность десятичных приближений
числа

с избытком

(2)

В силу возрастания
функции

()
на множестве рациональных чисел из
неравенства (1) следует

,
(3)

а из неравенства
(2)

.
(4)

Любой член
последовательности (1) удовлетворяет
неравенству

для любого натурального
.
Поэтому

для любого натурального
.
Это неравенство говорит о том, что
возрастающая последовательность (3)
ограничена сверху числом
.
Тогда по теореме о существовании предела
монотонной ограниченной последовательности
получаем, что последовательность (3)
имеет конечный предел. Обозначим его
через
,
то есть
.

Докажем, что
последовательность (4) имеет такой же
предел. Так как
,
то

(5)

Следовательно, по
свойству (5) показательной функции с
рациональным показателем получаем, что
.
Найдём
:

Итак


(6)

Известно, что если
последовательность стремится к своему
пределу, возрастая (убывая), то любой
член последовательности

()
своего предела. Поэтому для любого
натурального

, (7)

где

(8)

Докажем, что

– это степень числа

с показателем
.
Для этого надо показать, что неравенство
вида (7) верно не только для десятичных
приближений числа
,
но и для любых рациональных чисел

и
,
таких что

. (9)

Возьмём два
произвольных рациональных числа

и

из неравенства (9) и зафиксируем их на
момент рассуждений. Рассмотрим
последовательность отрезков, концы
которых берутся из последовательностей
(1) и (2):
.

Из равенства (%)
получаем, что длина
-го
отрезка стремится к нулю при
.
Значит среди этих отрезков найдётся
хотя бы один, длина которого меньше
расстояния от

до ближайшего конца отрезка
.
Обозначим этот отрезок
.

Так как оба отрезка

и

содержат внутри себя точку
,
то учитывая длину последнего отрезка
получаем, что весь отрезок
,
то есть выполняются неравенства

(10)

Из неравенства
(10) в силу возрастания функции

()
на множестве рациональных чисел получаем

. (11)

Так как неравенство
(7) справедливо для любых десятичных
приближений десятичных приближений
числа
,
то оно верно и для

и
,
то есть
.
Тогда учитывая неравенство (11) получаем,
что

. (*)

Итак, каковы бы ни
были рациональные числа

и

из неравенства (9), число

удовлетворяет неравенству
,
а это означает по определению степени,
что

– степень числа

с иррациональным показателем
.
Таким образом, существование доказано.

Доказательство
единственности.

Докажем для случая
.

Пусть наряду с
,
которое получено как предел
последовательностей (3) и (4), существует
другое число
,
удовлетворяющее неравенствам (12) для
любых
,
таких что
.

Так как неравенство
(*) верно для любых рациональных чисел,
то оно верно и для любых десятичных
приближений числа
,
то есть
.
Перейдём в этом неравенстве к пределу
при
:

С учётом (6) получаем
,
отсюда
,
то есть число

единственное.

В случае

доказательство аналогично. Ч.Т.Д.

Замечание 1.
В процессе доказательства существования
степени с иррациональным показателем
в силу (6) мы показали, что
,
где

и

– две последовательности десятичных
приближений числа

с недостатком и избытком. Покажем, что

(12)

Доказательство.
Из возрастания последовательности (1)
и ограниченности последовательности

сверху, а также из убывания последовательности
(2) и ограниченности последовательности

снизу, следует существование пределов
этих последовательностей. Так как в
силу (5)
,
то
.
Учитывая, что

для любого натурального
,
после перехода к пределу в последнем
неравенстве получаем равенство (12).

Следствие.
Для того чтобы число

было степенью числа

с иррациональным показателем

необходимо и достаточно, чтобы

для любой последовательности рациональных
чисел
,
сходящейся к
,
то есть если
,
где

для любых
,
то
.

Так как данное
условие является необходимым и
достаточным, то его можно принять за
определение степени числа

с иррациональным показателем
.

Замечание 2.
Определение степени с иррациональным
показателем можно применить и для случая
рационального показателя.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    07.06.2015771.58 Кб4ЭТ.doc

  • #

Возведение в степень – это такая же математическая операция, как сложение, вычитание, умножение или деление.

Сейчас объясню все человеческим языком на очень простых примерах. Будь внимателен. Примеры элементарные, но объясняющий важные вещи. Начнем со сложения.

Сложение

( 2+2+2+2+2+2+2+2=16 )

Объяснять тут нечего. Ты и так все знаешь: нас восемь человек. У каждого по две бутылки колы. Сколько всего колы? Правильно – 16 бутылок. Теперь умножение.

Умножение

Тот же самый пример с колой можно записать по-другому: (displaystyle 2cdot 8=16).

Математики — люди хитрые и ленивые. Они сначала замечают какие-то закономерности, а потом придумывают способ как быстрее их «считать».

В нашем случае они заметили, что у каждого из восьми человек одинаковое количество бутылок колы и придумали прием, который называется умножением

Согласись, (displaystyle 2cdot 8=16) считается легче и быстрее, чем (displaystyle 2+2+2+2+2+2+2+2=16).

И еще одна важная деталь. Ошибок при таком счете делается гораздо меньше. Математики из Стэнфорда, кстати, считают, что человек, знающий приемы счета, делает это в два раза легче и быстрее и совершает в два раза меньше ошибок. Работы меньше, а результат лучше. 

Круто, да?

Итак, чтобы считать быстрее, легче и без ошибок, нужно всего лишь запомнить таблицу умножения. Ты, конечно, можешь делать все медленнее, труднее и с ошибками, но лучше ее запомнить! Вот таблица умножения. Выучи ее наизусть.

И другая таблица, красивее:

А какие еще хитрые приемы счета придумали ленивые математики? Правильно – возведение числа в степень.

Далее, почему говорят «степень числа с натуральным показателем»?

Ты уже наверное, догадался: потому что показатель степени – это натуральное число. Да, но что такое натуральное число? Элементарно! Натуральные это те числа, которые используются в счете при перечислении предметов: один, два, три… Мы же когда считаем предметы не говорим: «минус пять», «минус шесть», «минус семь». Мы так же не говорим: «одна третья», или «ноль целых, пять десятых». Это не натуральные числа. А какие это числа как ты думаешь?

Числа типа «минус пять», «минус шесть», «минус семь» относятся к целым числам.

Вообще, к целым числам относятся все натуральные числа, числа противоположные натуральным (то есть взятые со знаком минус), и число (  displaystyle 0) . Ноль понять легко – это когда ничего нет.

А что означают отрицательные («минусовые») числа? А вот их придумали в первую очередь для обозначения долгов: если у тебя баланс на телефоне (  displaystyle -100) рублей, это значит, что ты должен оператору (  displaystyle 100) рублей.

Всякие дроби — это рациональные числа. Как они возникли, как думаешь? Очень просто. Несколько тысяч лет назад наши предки обнаружили, что им не хватает натуральных чисел для измерения длинны, веса, площади и т.п. И они придумали рациональные числа… Интересно, правда ведь?

Есть еще иррациональные числа. Что это за числа? Если коротко, то бесконечная десятичная дробь. Например, если длину окружности разделить на ее диаметр, то в получится иррациональное число (  displaystyle 3,141592…).

Итак…

Откуда взялись, например, первые два свойства? Сейчас покажу.

1. (  displaystyle {{a}^{n}}cdot {{a}^{m}}={{a}^{n+m}})

Посмотрим: что такое ( displaystyle {{a}^{n}})  и (  displaystyle {{a}^{m}}) ? 

По определению:

(  displaystyle left. begin{array}{l}{{a}^{n}}=underbrace{acdot acdot …cdot a}_{ntext{ множителей}}\{{a}^{m}}=underbrace{acdot acdot …cdot a}_{mtext{ множителей}}text{ }end{array} right|Rightarrow text{ }{{a}^{n}}cdot {{a}^{m}}=underbrace{acdot acdot …cdot a}_{ntext{ множителей}}cdot underbrace{acdot acdot …cdot a}_{mtext{ множителей}}text{ }leftarrow )

Сколько здесь множителей всего?

Очень просто: к (  displaystyle n) множителям мы дописали (  displaystyle m) множителей, итого получилось (  displaystyle n+m) множителей.

Итак, в правой части этого выражения получается такое произведение:

(  displaystyle {{a}^{n}}cdot {{a}^{m}}=underbrace{acdot acdot …cdot a}_{n+mtext{ множителей}})

Но по определению это степень числа (  displaystyle a) с показателем (  displaystyle n+m) , то есть: (  displaystyle {{a}^{n}}cdot {{a}^{m}}={{a}^{n+m}}) , что и требовалось доказать.

Пример: Упростите выражение (  displaystyle {{5}^{4}}cdot {{5}^{7}}cdot {{5}^{9}}) .

Решение: (  displaystyle {{5}^{4}}cdot {{5}^{7}}cdot {{5}^{9}}={{5}^{4+7+9}}={{5}^{20}})

Пример: Упростите выражение (  displaystyle {{3}^{5}}cdot {{3}^{8}}cdot {{5}^{7}}) .

Решение: 

Важно заметить, что в нашем правиле обязательно должны быть одинаковые основания!

Поэтому степени с основанием (  displaystyle 3) мы объединяем, а (  displaystyle {{5}^{7}})  остается отдельным множителем:

(  displaystyle {{3}^{5}}cdot {{3}^{8}}cdot {{5}^{7}}={{3}^{5+8}}cdot {{5}^{7}}={{3}^{13}}cdot {{5}^{7}})

Еще одно важное замечание: это правило – только для произведения степеней!

Ни в коем случае нельзя написать, что (  displaystyle {{2}^{4}}+{{2}^{6}}={{2}^{10}}).

Начнем с показателя, равного (  displaystyle 0) .

Любое число в нулевой степени равно единице:

(  displaystyle {{a}^{0}}=1, ane 0)

Как всегда, зададимся вопросом: почему это так?

Рассмотрим какую-нибудь степень с основанием (  displaystyle 3). Возьмем, например (  displaystyle {{3}^{5}}), и домножим на (  displaystyle {{3}^{0}}):

(  displaystyle {{3}^{5}}cdot {{3}^{0}}underset{text{по правилу умножения}}{mathop{=}},{{3}^{5+0}}={{3}^{5}})

Итак, мы умножили число (  displaystyle {{3}^{5}})  на (  displaystyle {{3}^{0}})  и получили то же, что и было – (  displaystyle {{3}^{5}}). А на какое число надо умножить, чтобы ничего не изменилось? Правильно, на (  displaystyle 1) . Значит (  displaystyle {{3}^{0}}=1) .

Можем проделать то же самое уже с произвольным числом (  displaystyle a):

(  displaystyle {{a}^{n}}cdot {{a}^{0}}underset{по правилу умножения}{mathop{=}},{{a}^{n+0}}={{a}^{n}}={{a}^{n}}cdot 1text{ }Rightarrow text{ }{{a}^{0}}=1)

Повторим правило:

Любое число в нулевой степени равно единице.

Но из многих правил есть исключения. И здесь оно тоже есть – это число (  displaystyle 0) (в качестве основания).

С одной стороны, (  displaystyle 0) в любой степени должен равняться (  displaystyle 0) – сколько ноль сам на себя ни умножай, все-равно получишь ноль, это ясно. Но с другой стороны, (  displaystyle {{0}^{0}}) , как и любое число в нулевой степени, должен равняться (  displaystyle 1) . Так что из этого правда? Математики решили не связываться и отказались возводить ноль в нулевую степень.

То есть теперь нам нельзя не только делить на ноль, но и возводить его в нулевую степень.

Поехали дальше. Кроме натуральных чисел и числа (  displaystyle 0) к целым относятся отрицательные числа.

Чтобы понять, что такое отрицательная степень, поступим как в прошлый раз: домножим какое-нибудь нормальное число на такое же в отрицательной степени:

(  displaystyle {{3}^{5}}cdot {{3}^{-5}}underset{text{по правилу умножения}}{mathop{=}},{{3}^{5+left( -5 right)}}={{3}^{5-5}}={{3}^{0}}=1)

Отсюда уже несложно выразить искомое (  displaystyle {{3}^{-5}}) :

(  displaystyle {{3}^{5}}cdot {{3}^{-5}}=1text{ }Rightarrow text{ }{{3}^{-5}}=frac{1}{{{3}^{5}}})

Теперь распространим полученное правило на произвольную степень:

(  displaystyle {{a}^{n}}cdot {{a}^{-n}}={{a}^{n+left( -n right)}}={{a}^{0}}=1text{ }Rightarrow text{ }{{a}^{-n}}=frac{1}{{{a}^{n}}})

Итак, сформулируем правило:

Число в отрицательной степени обратно такому же числу в положительной степени. Но при этом основание не может быть нулевым: (  displaystyle ane 0) (т.к. на (  displaystyle 0) делить нельзя).

(  displaystyle {{a}^{-n}}=frac{1}{{{a}^{n}}}, ane 0)

(  displaystyle {{a}^{-n}}=frac{1}{{{a}^{n}}}, ane 0)

(  displaystyle {{a}^{-n}}=frac{1}{{{a}^{n}}}, ane 0)

Подведем итоги:

I. Выражение (  {{0}^{k}}) не определено в случае (  kle 0) . Если (  k>0) , то (  {{0}^{k}}=0) .

II. Любое число в нулевой степени равно единице: (  displaystyle {{a}^{0}}=1, ane 0) .

III. Число, не равное нулю, в отрицательной степени обратно такому же числу в положительной степени: (  displaystyle {{a}^{-n}}=frac{1}{{{a}^{n}}}, ane 0).

(  displaystyle {{6}^{-1}}=frac{1}{6})

(  displaystyle {{left( frac{3}{2} right)}^{-2}}=frac{4}{9})

Чтобы понять, что такое «дробная степень», рассмотрим дробь (  displaystyle frac{1}{n}) :

пусть (  displaystyle {{3}^{frac{1}{n}}}=x) .

Возведем обе части уравнения в степень (  displaystyle n) :

(  displaystyle {{left( {{3}^{frac{1}{n}}} right)}^{n}}={{x}^{n}})

Теперь вспомним правило про «степень в степени»:

(  displaystyle {{x}^{n}}={{left( {{3}^{frac{1}{n}}} right)}^{n}}={{3}^{frac{1}{n}cdot n}}={{3}^{1}}=3)

Какое число надо возвести в степень (  displaystyle n) , чтобы получить (  displaystyle 3) ?

Эта формулировка – определение корня (  displaystyle n) -ой степени.

Напомню: корнем (  displaystyle n) -ой степени числа (  displaystyle a) ((  displaystyle sqrt[n]{a}) ) называется число, которое при возведении в степень (  displaystyle n) равно (  displaystyle a) .

То есть, корень (  displaystyle n) -ой степени – это операция, обратная возведению в (  displaystyle n) степень: (  displaystyle sqrt[n]{a}=btext{ }Leftrightarrow text{ }a={{b}^{n}}) .

Получается, что (  displaystyle x={{3}^{frac{1}{n}}}=sqrt[n]{3}) . Очевидно, этот частный случай можно расширить: (  displaystyle {{a}^{frac{1}{n}}}=sqrt[n]{a}) .

Теперь добавляем числитель: что такое (  displaystyle {{a}^{frac{m}{n}}}) ? Ответ легко получить с помощью правила «степень в степени»:

(  displaystyle {{a}^{frac{m}{n}}}={{a}^{frac{1}{n}cdot m}}={{left( {{a}^{frac{1}{n}}} right)}^{m}}={{left( sqrt[n]{a} right)}^{m}})  или (  displaystyle sqrt[n]{{{a}^{m}}}) .

Но может ли основание (  displaystyle a) быть любым числом? Ведь корень можно извлекать не из всех чисел.

Например, можно ли посчитать число (  displaystyle sqrt[4]{-16}) ? То есть, какое число нужно возвести в (  displaystyle 4) степень, чтобы получить (  displaystyle -16) ?

Никакое!

Вспоминаем правило: любое число, возведенное в четную степень – число положительное. То есть, извлекать корни четной степени из отрицательных чисел нельзя!

А это значит, что нельзя такие числа возводить в дробную степень с четным знаменателем, то есть выражение (  displaystyle {{left( -1 right)}^{frac{1}{2}}})  не имеет смысла.

А что насчет выражения (  displaystyle {{left( -1 right)}^{frac{1}{3}}}) ?

Его уже вроде бы можно посчитать: это (  displaystyle sqrt[3]{-1}=-1) .

Но тут возникает проблема.

Число (  displaystyle frac{1}{3}) можно представить в виде дргих, сократимых дробей, например, (  displaystyle frac{2}{6}) или (  displaystyle frac{4}{12}) .

И получается, что (  displaystyle {{left( -1 right)}^{frac{1}{3}}})  существует, но (  displaystyle {{left( -1 right)}^{frac{2}{6}}}) не существует, а ведь это просто две разные записи одного и того же числа.

Или другой пример: раз (  displaystyle sqrt[3]{-8}=-2) , то можно записать (  displaystyle {{left( -8 right)}^{frac{1}{3}}}=-2) . Но стоит нам по-другому записать показатель, и снова получим неприятность: (  displaystyle {{left( -8 right)}^{frac{1}{3}}}={{left( -8 right)}^{frac{2}{6}}}=sqrt[6]{{{left( -8 right)}^{2}}}=sqrt[6]{64}=2)  (то есть, получили совсем другой результат!).

Чтобы избежать подобных парадоксов, рассматриваем только положительное основание степени с дробным показателем.

Итак, если:

  • (  a>0);
  • (  m) – натуральное число;
  • (  n) – целое число;

Тогда:

(  {{a}^{frac{n}{m}}}=sqrt[m]{a^n})

Примеры:

(  {{a}^{frac{1}{2}}}=sqrt{a})

(  {{a}^{frac{1}{5}}}=sqrt[5]{a})

(  {{a}^{-frac{3}{4}}}=frac{1}{sqrt[4]{a^3}})

(  displaystyle frac{{{5}^{-frac{1}{2}}}cdot {{left( {{5}^{frac{5}{6}}} right)}^{frac{3}{10}}}cdot {{3}^{-frac{5}{4}}}}{{{3}^{-frac{3}{2}}}}={{5}^{-frac{1}{2}}}cdot {{5}^{frac{5}{6}cdot frac{3}{10}}}cdot {{3}^{left( -frac{5}{4}+frac{3}{2} right)}}=)

(  displaystyle={{5}^{left( -frac{1}{2}+frac{1}{4} right)}}cdot {{3}^{frac{1}{4}}}={{5}^{-frac{1}{4}}}cdot {{3}^{frac{1}{4}}}={{left( frac{3}{5} right)}^{frac{1}{4}}}=sqrt[4]{frac{3}{5}})

Степени с рациональным показателем очень полезны для преобразования выражений с корнями, например:

(  displaystyle frac{sqrt[9]{6}cdot sqrt[18]{6}}{sqrt[6]{6}}=frac{{{6}^{frac{1}{9}}}cdot {{6}^{frac{1}{18}}}}{{{6}^{frac{1}{6}}}}={{6}^{frac{1}{9}+frac{1}{18}-frac{1}{6}}}={{6}^{frac{2+1-3}{18}}}={{6}^{0}}=1)

При изучении степеней с натуральным, целым и рациональным показателем, мы каждый раз составляли некий «образ», «аналогию», или описание в более привычных терминах.

Например, степень с натуральным показателем – это число, несколько раз умноженное само на себя; число в нулевой степени – это как-бы число, умноженное само на себя (  0) раз, то есть его еще не начали умножать, значит, само число еще даже не появилось – поэтому результатом является только некая «заготовка числа», а именно число (  1) ; степень с целым отрицательным показателем – это как будто произошел некий «обратный процесс», то есть число не умножали само на себя, а делили.

Вообразить степень с иррациональным показателем крайне сложно (так же, как сложно представить 4-мерное пространство). Это, скорее, чисто математический объект, который математики создали, чтобы расширить понятие степени на все пространство чисел.

Между прочим, в науке часто используется степень с комплексным показателем, то есть показатель – это даже не действительное число. Но в школе мы о таких сложностях не думаем, постичь эти новые понятия тебе представится возможность в институте.

Итак, что мы делаем, если видим иррациональный показатель степени? Всеми силами пытаемся от него избавиться!:)

Например: (  {{3}^{sqrt{2}}}cdot {{3}^{1-sqrt{2}}}={{3}^{sqrt{2}+1-sqrt{2}}}=3)

Или: (  frac{{{2}^{3sqrt{3}}}}{{{8}^{sqrt{3}-1}}}=frac{{{2}^{3sqrt{3}}}}{{{2}^{3left( sqrt{3}-1 right)}}}={{2}^{3sqrt{3}-3sqrt{3}+3}}=8)

И еще: (  {{left( {{5}^{sqrt[3]{4}}} right)}^{sqrt[3]{2}}}={{5}^{sqrt[3]{8}}}={{5}^{2}}=25).

Определение степени

Степенью называется выражение вида: (  {{a}^{b}}), где (  a) – основание степени и (  b) – показатель степени.

Степень с натуральным показателем {n = 1, 2, 3,…}

  • (  {{a}^{1}}=a)
  • (  {{a}^{2}}=acdot a)
  • (  {{a}^{3}}=acdot acdot a)

Возвести число в натуральную степень n — значит умножить число само на себя (  n) раз:

  • (  {{a}^{n}}=underbrace{acdot acdot acdot …a}_{n})

Степень с целым показателем {0, ±1, ±2,…}

Если показателем степени является целое положительное число:

(  {{a}^{n}}={{a}^{n}}, n>0)

Возведение в нулевую степень:

(  {{a}^{0}}=1, ane 0) . (  {{0}^{0}}) – выражение неопределенное, т.к., с одной стороны, (  0) в любой степени – это (  0) , а с другой – любое число в (  0) -ой степени – это (  1) .

Если показателем степени является целое отрицательное число:

(  {{a}^{-n}}=frac{1}{{{a}^{n}}}, ane 0) (т.к. на (  0) делить нельзя).

Еще раз о нулях: выражение (  {{0}^{k}}) не определено в случае (  kle 0). Если (  k>0) , то (  {{0}^{k}}=0) .

Примеры:

(  {{6}^{-1}}=frac{1}{6})

(  {{left( frac{3}{2} right)}^{-2}}=frac{4}{9})

Степень с рациональным показателем

Если,

  • (  a>0);
  • (  m) – натуральное число;
  • (  n) – целое число;

Тогда:

  • (  {{a}^{frac{n}{m}}}=sqrt[m]{{{a}^{n}}})

Примеры:

(  {{a}^{frac{1}{2}}}=sqrt{a})

(  {{a}^{frac{1}{5}}}=sqrt[5]{a})

(  {{a}^{-frac{3}{4}}}=frac{1}{sqrt[4]{{{a}^{3}}}})

Свойства степеней

Произведение степеней (  {{a}^{n}}cdot {{a}^{m}}={{a}^{n+m}}) 
(  {{a}^{n}}cdot {{b}^{n}}={{left( acdot b right)}^{n}})
Деление степеней (  frac{{{a}^{n}}}{{{a}^{m}}}={{a}^{n-m}}) 
(  frac{{{a}^{n}}}{{{b}^{n}}}={{left( frac{a}{b} right)}^{n}})
Возведение степени в степень (  {{left( {{a}^{m}} right)}^{n}}={{a}^{mcdot n}})

Чтобы проще было решать задачи, попробуем понять: откуда эти свойства взялись? Докажем их.

Доказательства свойств степени

1. (  displaystyle {{a}^{n}}cdot {{a}^{m}}={{a}^{n+m}})

Посмотрим: что такое (  displaystyle {{a}^{n}}) и (  displaystyle {{a}^{m}}) ?

По определению:

(  displaystyle left. begin{array}{l}{{a}^{n}}=underbrace{acdot acdot …cdot a}_{ntext{ множителей}}\{{a}^{m}}=underbrace{acdot acdot …cdot a}_{mtext{ множителей}}text{ }end{array} right|Rightarrow text{ }{{a}^{n}}cdot {{a}^{m}}=underbrace{acdot acdot …cdot a}_{ntext{ множителей}}cdot underbrace{acdot acdot …cdot a}_{mtext{ множителей}})

Сколько здесь множителей всего? Очень просто: к (  displaystyle n) множителям мы дописали (  displaystyle m) множителей, итого получилось (  displaystyle n+m) множителей.

Итак, в правой части этого выражения получается такое произведение:

(  displaystyle {{a}^{n}}cdot {{a}^{m}}=underbrace{acdot acdot …cdot a}_{n+mtext{ множителей}})

Но по определению это степень числа (  displaystyle mathbf{a}) с показателем (  displaystyle mathbf{n}+mathbf{m}), то есть:

(  displaystyle {{a}^{n}}cdot {{a}^{m}}={{a}^{n+m}}) , что и требовалось доказать.

Пример: Упростите выражение (  displaystyle {{5}^{4}}cdot {{5}^{7}}cdot {{5}^{9}}) .

Решение: (  displaystyle {{5}^{4}}cdot {{5}^{7}}cdot {{5}^{9}}={{5}^{4+7+9}}={{5}^{20}}) .

Пример: Упростите выражение (  displaystyle {{3}^{5}}cdot {{3}^{8}}cdot {{5}^{7}}) .

Решение: Важно заметить, что в нашем правиле обязательно должны быть одинаковые основания. Поэтому степени с основанием (  displaystyle 3) мы объединяем, а (  displaystyle {{5}^{7}}) остается отдельным множителем:

(  displaystyle {{3}^{5}}cdot {{3}^{8}}cdot {{5}^{7}}={{3}^{5+8}}cdot {{5}^{7}}={{3}^{13}}cdot {{5}^{7}}) .

Еще одно важное замечание: это правило – только для произведения степеней!

Ни в коем случае нелья написать, что (  displaystyle {{2}^{4}}+{{2}^{6}}={{2}^{10}}) .

2. (  displaystyle {{a}^{n}}cdot {{b}^{n}}={{left( acdot b right)}^{n}})

Так же, как и с предыдущим свойством, обратимся к определению степени:

(  displaystyle left. begin{array}{l}{{a}^{n}}=underbrace{acdot acdot …cdot a}_{ntext{ множителей}}\{{b}^{n}}=underbrace{bcdot bcdot …cdot b}_{ntext{ множителей}}end{array} right|Rightarrow text{ }{{a}^{n}}cdot {{b}^{n}}=underbrace{acdot acdot …cdot a}_{ntext{ множителей}}cdot underbrace{bcdot bcdot …cdot b}_{ntext{ множителей}}) .

Перегруппируем это произведение так:

(  displaystyle {{a}^{n}}cdot {{b}^{n}}=underbrace{acdot acdot …cdot a}_{ntext{ множителей}}cdot underbrace{bcdot bcdot …cdot b}_{ntext{ множителей}}=underbrace{left( acdot b right)cdot left( acdot b right)cdot …cdot left( acdot b right)}_{ntext{ множителей}}).

Получается, что выражение (  displaystyle acdot b) умножается само на себя (  displaystyle n) раз, то есть, согласно определению, это и есть (  displaystyle n) -я степень числа (  displaystyle acdot b) :

(  displaystyle {{a}^{n}}cdot {{b}^{n}}={{left( acdot b right)}^{n}}), ч.т.д.

По сути это можно назвать «вынесением показателя за скобки». Но никогда нельзя этого делать в сумме: (  displaystyle {{2}^{4}}+{{3}^{4}}ne {{left( 2+3 right)}^{4}}) !

Вспомним формулы сокращенного умножения: сколько раз нам хотелось написать (  displaystyle {{left( a+b right)}^{2}}={{a}^{2}}+{{b}^{2}}) ? Но это неверно, ведь (  displaystyle {{left( a+b right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}) .

3. (  displaystyle frac{{{a}^{n}}}{{{a}^{m}}}={{a}^{n-m}})

И снова используем определение степени:

(  displaystyle left. begin{array}{l}{{a}^{n}}=underbrace{acdot acdot …cdot a}_{ntext{ множителей}}\{{a}^{m}}=underbrace{acdot acdot …cdot a}_{mtext{ множителей}}text{ }end{array} right|Rightarrow text{ }frac{{{a}^{n}}}{{{a}^{m}}}=frac{underbrace{acdot acdot …cdot a}_{ntext{ множителей}}}{underbrace{acdot acdot …cdot a}_{mtext{ множителей}}})

Здесь, очевидно, можем сократить. Но с одной оговоркой: чтобы степень получилась натуральная, нам придется предположить, что (  displaystyle n>m) (то есть, в числителе множителей должно быть больше, чем в знаменателе). Тогда (  displaystyle m) множителей числителя сокращаются со всеми (  displaystyle m) множителями знаменателя. Таким образом множители остаются только в числителе, причем в количестве (  displaystyle n-m) штук:

(  displaystyle frac{{{a}^{n}}}{{{a}^{m}}}=frac{underbrace{acdot acdot …cdot a}_{ntext{ множителей}}}{underbrace{acdot acdot …cdot a}_{mtext{ множителей}}}=frac{underbrace{acdot acdot …cdot a}_{n-mtext{ множителей}}}{1}={{a}^{n-m}}) , ч.т.д.

4. (  displaystyle frac{{{a}^{n}}}{{{b}^{n}}}={{left( frac{a}{b} right)}^{n}})

Все как обычно – записываем определение степеней (  displaystyle {{a}^{n}}) и (  displaystyle {{b}^{n}}) , делим их друг на друга, разбиваем на пары (  displaystyle frac{a}{b}) и получаем:

(  displaystyle left. begin{array}{l}{{a}^{n}}=underbrace{acdot acdot …cdot a}_{ntext{ множителей}}\{{b}^{n}}=underbrace{bcdot bcdot …cdot b}_{ntext{ множителей}}end{array} right|Rightarrow text{ }frac{{{a}^{n}}}{{{b}^{n}}}=frac{underbrace{acdot acdot …cdot a}_{ntext{ множителей}}}{underbrace{bcdot bcdot …cdot b}_{ntext{ множителей}}}=underbrace{frac{a}{b}cdot frac{a}{b}cdot …cdot frac{a}{b}}_{ntext{ множителей}}={{left( frac{a}{b} right)}^{n}}) , ч.т.д.

Прежде чем разобрать последнее правило, решим несколько примеров.

I actually made a big post about extending exponentiation: see Generalization of the root of a number

Essentially, just as @charlus said — you define a sequence of rational numbers that converges to the irrational number you are interested in, and take a limit of the principal values. For example, if we had ${pi}$, and a sequence of rational approximations of it ${pi_n}$:

$${pi_1 =frac{3}{1},pi_2 = frac{31}{10}, pi_3 = frac{314}{100}…}$$

By construction it converges to ${pi}$. Now, if we want to compute ${a^{pi}}$:

$${a^pi := lim_{nrightarrowinfty}a^{pi_n}}$$

(note: you take the principal, positive real roots in the limit). You can also do this with any irrational quantity you want!

Понравилась статья? Поделить с друзьями:
  • Как найти высоту трапеции cos
  • Как составить план текста 4 класс образец
  • Стикеры бтс в телеграмме как найти
  • Как составить концепция маркетинга
  • Как найти свой инстаграм в компьютере