Как найти степень сжатия газа

Изменение степени сжатия

После того как мы определились со степенью сжатия перед нами стоит вопрос как правильно добиться нужной нам степени сжатия. Для начала нужно рассчитать на сколько необходимо увеличить камеру сгорания. Это не сложно. Формула для вычисления степени сжатия имеет следующий вид:
Ɛ=(VP+VB)/VB
Где Ɛ— степень сжатия
VP — рабочий объём
VB — объём камеры сгорания

Преобразовав уравнение можно получить формулу для вычисления камеры сгорания при известной степени сжатия.
VB=VP1/Ɛ
Где VP1 — объём одного цилиндра

По этой формуле вычисляем объём имеющейся камеры сгорания и вычитаем из него объём желаемой (вычисленный по той же формуле), полученная разница и есть интересующее на значение на которое и нужно увеличить камеру сгорания.

Существуют разнообразнве способы увеличения камеры сгорания но далеко не все из них верные. Камера сгорания современного автомобиля спроектирована таким образом, что при достижении поршнем ВМТ топливо воздушная смесь вытесняется к центру камеры сгорания. Это пожалуй самая действенная разработка препятствующая детонации.

Самостоятельная доработка камеры в ГБЦ под силу далеко не многим. Это обусловлено тем, что вопервых вы можите нарушить спроектированную форму камеры, так же при доработке могут «вскрыться» стенки т.к. не известна их толщина. Так же не рекомендуется «расжимать мотор» толстыми прокладками т.к. Это нарушит процессы вытеснения в камере сгорания. Наиболее простым и правельным способом считается установка новых поршней в которых задан необходимый объём камеры. Для турбо-двигателя сферическая форма считается наиболее эффективной. Лучше использовать для этих целей специально разработанные и изготовленные поршни. Возможен вариант самостоятельной доработки стоковых поршней. Но сдесь нужно учесть что толщина дна поршня не должна быть меньше 6% от диаметра.

Степень сжатия в турбо двигателе

Одной из самых важных и пожалуй самой сложной задачей при проектировании турбодвигателя является принятие решения о степени сжатия. Этот параметр влияет на большое количество факторов в общей характеристике автомобиля. Мощность, экономичность, приёмистость, детонационная стойкость (параметр от которого сильно зависит эксплуатационная надёжность двигателя в целом), все эти факторы в значительной степени определяются степенью сжатия. Также это влияет на расход топлива и состав отработавших газов. В теории, степень сжатия для турбо-мотора рассчитать не составляет большого труда.

Сначала разберём понятие «Сжатие» или «Геометрическая степень сжатия». Оно представляет собой отношение полного объёма цилиндра (рабочий объём плюс пространство сжатия, остающееся над поршнем при положении в верхней мёртвой точки (ВМТ)), к чистому пространству сжатия. Формула имеет следующий вид: Ɛ=(VP+VB)/VB

Где Ɛ— степень сжатия
VP — рабочий объём
VB — объём камеры сгорания

Не нужно забывать о существенных расхождениях между геометрической и фактической степенью сжатия даже на атмосферных моторах. В турбодвигателях к этим же процессам добавляется и предварительно сжатая компрессором смесь. На сколько фактически от этого увеличиться степень сжатия, видно из следующей формулы:
Ɛeff=Egeom*k√(PL/PO)
Где Ɛeff — эффективное сжатие
Ɛgeom — геометрическая степень сжатия
Ɛ=(VP+VB)/VB, PL — Давление наддува (абсолютное значение),
PO — давление окружающей среды,
k — адиабатическая экспонента (числовое значение 1,4)

Эта упрощённая формула будет справедлива при условии, что температура в конце процесса сжатия для двигателей с наддувом и без наддува достигает одинакового значения. Иными словами, чем выше давление наддува, тем меньше возможное геометрическое сжатие. Итак, согласно нашей формуле для атмосферного двигателя со степенью сжатия 10:1 при давлении наддува 0.3 бара степень сжатия следует уменьшить до 8.3:1, при давлении 0.8 бара до 6.6:1. Но, слава богу, это теория. Все современные двигатели с турбонаддувом работают не с такими через мерно низкими значениями. Правильная степень сжатия для работы определяется сложными термодинамическими вычислениями и всесторонними испытаниями. Всё это из области высоких технологий и сложных расчётов, но много тюнинговых моторов собрано на основе некоторого опыта, как собственного, так и взятого за пример, от известных автомобильных производителей. Эти правила будут справедливы в большинстве случаев.

Есть несколько важных факторов влияющих на расчёт степени сжатия и их нужно принимать во внимание при проектировании. Я перечислю наиболее важные. Конечно, это желаемый наддув, октановое число топлива, форма камеры сгорания, эффективность промежуточного охладителя, и, безусловно те мероприятия которые вы в состоянии провести по снижению температурной напряжённости в камере сгорания. Углом опережения зажигания (УОЗ) так же можно частично компенсировать возросшие нагрузки. Но это темы для отдельной разговора, и мы безусловно затронем их позже в следующих статьях.

Совместными

усилиями

к общему успеху…

с_1997 года

«ИНТЕХ ГмбХ»

Сжатие и транспортировка газов. Компрессоры и вентиляторы

Изготовление, сборка, тестирование и испытание компрессоров и вентиляторов
производится на заводах в Швейцарии, Германии, Франции, Турции, США, Японии и Кореи

  • Общее описание транспортировки и сжатия газа. Использование сжатого газа.
  • Термодинамика компрессорного процесса. Уравнение состояния газа.
  • Идеальные и реальные газы. Изохорный, изобарный, изотермический, политропный
  • Типы оборудования для транспортировки газа (компрессоры, вентиляторы). Степень сжатия.
  • Классификация основных типов компрессоров.
  • Общее описание объемных компрессоров, процесс сжатия газа.
  • Общее описание поршневых компрессоров. Одноступенчатые и двухступенчатые.
  • Общее описание и применение поршневой компрессорной установки.
  • Общее описание и применение роторных компрессоров.
  • Общее описание динамических компрессоров и их применение. Турбогазодувки, турбокомпрессоры, осевые компрессоры.
  • Общее описание и применение винтовых компрессоров.
  • Общее описание и применения вакуумных насосов.
  • Общее описание и применение вентиляторов.

Общее описание транспортировки и сжатия газа. Использование сжатого газа

Процесс транспортировки газа протекает в герметичных трубопроводах и основывается на перепаде уровня давлений. Как правило, газ подается с избыточным уровнем давления, что и позволяет перемещать газ по трубам. В случаях, когда разность давлений ниже давления напора, подача газа обеспечивается методом всасывания.

В процессе сжатия газа при помощи компрессора, температура газа сильно повышается. Как результат, компрессор необходимо охлаждать. Когда в компрессоре уровень давления достигает определенного уровня, а температура падает, может произойти сжижение газа. Данное явление неблагоприятно для транспортировки газа из-за вероятности гидроударов. Минимальный уровень температуры, при котором возможно сжижение газа, называется критической температурой θ (тэта). В случаях, когда при критической температуре уровень давления превышает критическое давление П (пи), происходит сжижение газа. Различные газы имеют свои показатели критического давления и температуры. Например:

  • Кислород О2. Уровень критической температуры -118,5 °C, уровень критического давления 50,6 бар.
  • Водород H2. Уровень критической температуры -240,0 °C, уровень критического давления 13,0 бар.
  • Воздух. Уровень критической температуры -140,7 °C, уровень критического давления 37,7 бар.

Сжатие газов до высокого давления используется в целях транспортировки газа. Кроме того, активация пневматических сервоприводов и питание пневматических приборов происходит за счет энергии, которая аккумулирована в сжатом воздухе. На химическом производстве сжатые до максимальных давлений газы применяются как исходные вещества в реакциях высокого давления (например, при получении аммиака из азота и водорода).

Термодинамика компрессорного процесса. Уравнение состояния газа

Физическое состояние порции газа, имеющей определенную массу (m) зависит от таких параметров как объем (V), давление (p) и температура (T). Если изменяется один из перечисленных параметров, изменениям подвергаются и все прочие параметры состояния. Например, при усилении сжатия (т.е. росте уровня давления), объем порции газа сокращается, а уровень температуры растет. Повышение температуры газа в процессе его сжатия происходит в результате того, что часть работы сжатия преобразуется в тепловую энергию. Законы изменения состояния газов описываются уравнением состояния газов:

pV=(m/M).RT

В данном уравнении:

  • p-давление;
  • V-объем;
  • m-масса;
  • M-молярный вес;
  • R-молярная газовая постоянная (R=8,314 Дж/(моль K));
  • T-температура, K.

Газы, поведение которых соответствует данному уравнению, называются идеальными газами. Данная формула, также достаточно точно описывает поведение одно- и двухатомных газов (He, Ar, H2, N2, O2), при уровне давления около 20 бар. В данном случае, погрешность результата не превышает 1%.

Многоатомные газы (CO2, CH4, NH3) и одно- и двухатомные газы, при уровне давления более 20 бар, отклоняются от данного уравнения и называются реальными газами. Для того, чтобы уравнять отклонения, в уравнение состояние газов вводится коэффициент k:

PV=k.(m/M).RT

Идеальные и реальные газы. Изохорный, изобарный, изотермический, политропный, адиабатический процессы

Для отслеживания изменения того или иного состояния, можно установить в качестве постоянной величины один из параметров. Таким образом, будет возможно определить взаимозависимость других величин состояния. Заданный постоянный параметр определяет вид процесса:

  • Изотермический процесс (постоянная температура);
  • Изобарный процесс (постоянное давление);
  • Изохорный процесс (постоянный объем);
  • Адиабатический процесс (отсутствие теплообмена с окружающей средой);
  • Политропический процесс (общий вид термодинамического процесса, протекающий в компрессорах в зависимости от внешних и внутренних условий с показателем политропы n=1,15 ÷ 1,80).

Теория компрессорного процесса основана на термодинамике идеального газа, так как при работе компрессорных аппаратов осуществляется сжатие газа с изменением показателей его объема, температуры и давления:

p=ρRT

Если давлением на выходе из компрессорной машины превышает уровень 10 МПа, необходимо использовать уравнение состояния реального газа:

p=zρRT,

здесь z – коэффициент сжимаемости газа, значения которого содержатся в справочной литературе.

Типы оборудования для транспортировки газа (компрессоры, вентиляторы, газодувки). Степень сжатия

Сжатие и транспортировка большого объема газа при давлении, которое отличается от показателя атмосферного, широко применяется в химической отрасли и смежных с нею областях. Машины, которые осуществляют сжатие газа, называются компрессорами. Степенью сжатия газа называют отношение конечного давления, которое нагнетает компрессор, к начальному давлению на всасывании:

c = p2/p1

В зависимости от показателя степени сжатия, компрессионные агрегаты делятся на следующие типы:

  • Вентиляторы, которые транспортируют большие объемы газа при низких показателях давления (с < 1,15);
  • Газодувки, которые перемещают значительные объемы газа в условиях существенных гидравлических сопротивлений системы транспортировки (1,15 < c < 3,0);
  • Компрессоры, способные нагнетать высокое давление (c > 3,0).

Для создания вакуума могут применяться любые типы компрессоров, но чаще всего используются поршневые и ротационные вакуум-насосы, которые по принципу действия схожи с компрессорами.

Классификация основных типов компрессоров

Компрессоры это агрегаты, в которых в процессе сжатия газа рабочая среда охлаждается. Степень сжатия в компрессорах превышает 3,5. Компрессоры используются для интенсификации различных процессов, а также в качестве отдельного оборудования в ряде отраслей.

В зависимости от нагнетаемого рабочего давления все компрессоры разделяются на следующие типы:

  • Вакуумные машины, в которых уровень начального давления газа ниже атмосферного;
  • Низкого давления, где конечный уровень давления газа находится в пределах от 0,115 до 1,0 МПа;
  • Высокого давления, где конечное давление составляет от 10 до 100 МПа;
  • Сверхвысокого давления, в которых уровень конечного давления превышает 100 МПа.

Уровень конечного давления может нагнетаться компрессором, оснащенным одной ступенью (одноступенчатый агрегат), либо компрессор может иметь несколько последовательно работающих ступеней (многоступенчатый компрессор).

По принципу сжатия газа компрессоры бывают объемного и динамического типа. Объемные компрессоры сжимают газ за счет периодического уменьшения его объема. Данный тип компрессоров подразделяется на следующие группы:

  • Поршневые (свободно-поршневые, роторно-поршневые, с механизмом движения, с кривошипно-шатунным механизмом, с кулисным механизмом, с кулачковым механизмом);
  • Мембранные;
  • Роторные (пластинчатые, жидкостно-кольцевые, с катящимся ротором, винтовые, шестеренчатые, роторно-поршневые).

Динамические компрессоры сжимают газ посредством создания непрерывного ускорения в потоке газа. Согласно принципу действия такие компрессоры подразделяют на два типа:

  • Турбокомпрессоры (радиальные: центростремительные и центробежные, осевые, диагональные, вихревые);
  • Струйные.

Совершенствование компрессоров в области экономических показателей имеет большое значение в настоящее время. Основными параметры, характеризующими работу компрессоров являются производительность Q, начальное давление p1, конечное давление p2, степень сжатия c, а также мощность на валу компрессора Ne.

Общее описание объемных компрессоров, процесс сжатия газа

Объемные компрессоры сжимают газ за счет того, что периодически уменьшают его объем. Данный тип компрессоров подразделяется на три основные группы: поршневые, мембранные и роторные машины. Наиболее распространенными в данной группе являются поршневые и роторные агрегаты. Функционирование таких машин заключается во всасывании и вытеснении газа твердыми подвижными элементами механизма: поршнями, зубцами или пластинами, которые двигаются внутри цилиндров и корпусах специальных форм.

Общее описание поршневых компрессоров. Одноступенчатые и двухступенчатые. Вредное пространство

В соответствии с характером действия, поршневые компрессоры могут быть одинарного (или простого) действия и двойного действия. В агрегатах простого действия, за один ход поршня осуществляется одно всасывание или нагнетание. В компрессорах двойного действия, за один ход поршня осуществляется два всасывания или нагнетания.

По количеству ступеней сжатия поршневые компрессоры делятся на три типа: одноступенчатые, двухступенчатые и многоступенчатые. Ступенью сжатия принято называть часть компрессора, в которой газ сжимается до промежуточного или конечного давления.

Конструктивно, одноступенчатые компрессоры могут быть вертикальными или горизонтальными. Как правило, компрессоры с горизонтальной конструкцией являются машинами двойного действия, а компрессоры с вертикальной конструкцией относятся к агрегатам простого действия.

В одноступенчатом компрессоре простого действия с горизонтальным типом конструкции, поршень перемещается внутри цилиндра. Цилиндр оснащен крышкой, которая имеет всасывающий и нагнетательный клапаны. Поршень компрессора соединяется с шатуном и кривошипом. На валу кривошипа располагается маховик. В процессе хода поршня слева направо, в зоне между поршнем и цилиндром возникает разрежение. Разность давления в линии всасывания и цилиндре заставляет открываться клапан, в результате чего газ поступает в цилиндр. Когда поршень совершает обратное движение справа налево, всасывающий клапан закрывается, и газ в цилиндре сжимается до уровня давления p2. Далее, через клапан газ вытесняется в линию нагнетания. Цикл завершается и повторяется снова.

Одноступенчатый компрессор двойного действия оснащен четырьмя клапанами (двумя всасывающими и двумя нагнетательными). Такие машины устроены сложнее, но уровень производительности у них в два раза выше. В целях охлаждения цилиндр и крышки могут оснащаться водяными рубашками. Чтобы увеличить показатель производительности данные машины могут изготавливаться многоцилиндровыми конструкциями. Одноступенчатые компрессоры с вертикальным типом конструкции являются более производительными и быстроходными, чем горизонтальные. Кроме того, они занимают меньшую производственную площадь и более долговечны.

Двухступенчатые компрессоры с горизонтальным типом конструкции, как правило, оснащены одним цилиндром и ступенчатым или дифференциальным типом поршня. Газ подвергается сжатию в цилиндре левой стороной поршня, после чего проходит сквозь холодильник и подается в цилиндр с другой стороны, где сжимается до уровня p2.

Многоступенчатые конструкции оснащены цилиндрами, которые располагаются последовательно (система тандем) или параллельно (система компаунд). Существуют также оппозитные конструкции компрессоров, где поршни двигаются взаимно противоположно. Цилиндры в конструкциях данного типа располагаются по обе стороны вала.

Следует отметить, что реальный процесс сжатия газа в компрессоре отличается от теории. Так, между поршнем, когда он находится в крайнем положении и крышкой цилиндра есть некий свободный объем. Данный зазор носит название вредного пространства. В данном зазоре, по завершению нагнетания, сжатый газ расширяется при обратном ходе поршня. По этой причине всасывающий клапан открывается только после снижения уровня давления до уровня давлении на всасывании. Таким образом, поршень совершает холостое движение, что снижает производительность компрессора.

Общее описание и применение поршневой компрессорной установки

Поршневой компрессор извергает пульсирующий поток конденсата, который представляет собой газ, загрязненный остатками смазочного масла. Компрессорная установка оснащается рядом дополнительных устройств, которые способны сделать данный поток газа пригодным для употребления.

Технологическая схема двухступенчатой компрессорной установки.

Подсасываемый воздух проходит очистку в фильтре, после чего последовательно подается в ступени сжатия. Сжатый газ подвергается охлаждению, а конденсат, который выделяется из напорного трубопровода, осаждается. После этого, сжатый газ подается в котел с наддувом, который выступает как ресивер для пульсирующего потока газа. Обратный клапан не дает сжатому газу вернуться, в случае остановки компрессора.

Поршневые компрессорные установки широко используются во многих отраслях промышленности. Их функция состоит в подаче сжатого воздуха как источника энергии в технологических процессах. Так, сжатый воздух применяется для транспортировки сыпучих веществ, активации пневматических систем, в области производства стекла и пластиковой тары и т.п.

Общее описание и применение роторных компрессоров

В процессе вращения массивного ротора, газ захватывается в пространства между лопастями и перемещается от всасывающего патрубка к нагнетательному патрубку. После чего газ вытесняется в трубопровод. Вал роторного компрессора может соединяться с валом приводного двигателя через редуктор или без него. Благодаря этому установка отличается компактностью и небольшой массой.

В корпусе такого агрегата располагается ротор, оснащенный двумя лопатками. Перед запуском агрегата, его наполовину заполняют водой. По мере того, как ротор совершает вращательные движения, вода отбрасывается к периферии и образуется ровное водяное кольцо. В пространстве между лопатками ротора и водяным кольцом возникают ячейки, объем которых увеличивается во время первого оборота ротора и уменьшается во время второй половины. Патрубок засасывает газ, который затем сжимается компрессором. Поршень играет роль водяного кольца, при помощи которого меняется объем рабочих камер компрессора. Данный компрессор не способен нагнетать высокий уровень давления, поэтому данный тип машин часто применяют как вакуумный насос или газодувку.

Роторные компрессоры получили широкое применение в химической промышленности, а также в процессах дутья в некоторых металлургических печах.

Общее описание динамических компрессоров и их применение. Турбогазодувки, турбокомпрессоры, осевые компрессоры

К динамическим компрессорам принято относить такие агрегаты как центробежные, струйные и осевые машины.

Принцип действия центробежных компрессоров аналогичен центробежным насосным установкам. К данному типу относятся турбогазодувки, турбокомпрессоры и осевые компрессоры.

Турбогазодувки одноступенчатого типа относятся к разновидностям вентиляторов высокого давления и способны сжимать газ до 3·104 Па. Колесо, оснащенное лопатками, совершает вращательные движения внутри направляющего аппарата. Направляющий аппарат размещен внутри корпуса, выполненного в виде спирали. Кинетическая энергия газа преобразуется в потенциальную энергию давления, газ сжимается и выходит через патрубок.

Газодувки многоступенчатого типа оснащаются 3 или 4 колесами с лопатками, газ между ступенями охлаждению не подвергается. Благодаря тому, что диаметры колес одинаковы, а ширина снижается к каждому последующему колесу, газ сжимается без изменения числа оборотов вала и формы лопаток. Показатель степени сжатия газа варьируется в рамках 3-3,5.

Турбокомпрессоры (или центробежные компрессоры) имеют устройство схожее с турбогазодувками, но они способны создавать более высокую степень сжатия. Данный тип машин работает по динамическому принципу, т.е. они создают статическое давление посредством преобразования кинетической энергии в статическую энергию. Турбокомпрессоры оснащены большим числом колес, диаметр и ширина колеса уменьшается к каждому последующему. Довольно часто колеса располагаются в разных корпусах. В пределах одного корпуса, диаметр колес одинаковый, но ширина колес отличается. Промежуточные холодильники между корпусами охлаждают газ. Центробежные турбокомпрессоры способны нагнетать давление от 2,5 до 3,0 МПа. В зависимости от формы рабочего колеса, выделяют радиальные или осевые компрессоры.

Корпус осевого компрессора выполнен в форме цилиндрического патрубка. Внутри корпуса вращается рабочее колесо, которое оснащено лопатками. Воздух перемещается вдоль оси вала, что обеспечивает высокий КПД. Осевые компрессоры являются компактными конструкциями. Давление, которое они создают, не превышает 0,5-0,6 МПа.

Динамические компрессоры работают в составе двигателей самолетов и вертолетов, в составе систем нагнетающих воздух, системах вентиляции и перекачивания газа.

Общее описание и применение винтовых компрессоров

Винтовые компрессоры широко применяются для сжатия воздуха и газов под давлением не более 2 МП. К преимуществам винтовых компрессоров принято относить надежность, небольшую массу и габариты. Данные машины часто применяют на передвижных компрессорных станциях взамен поршневых. Показатель производительности таких станций не превышает 0,1 м3/с, давление в пределах 0,8 МПа. Винтовые компрессоры целесообразно применять для сжатия легких газов (гелий, водород и т.п.) вместо центробежных машин.

Общее описание и применения вакуумных насосов

Вакуумные насосы представляют собой машины для генерации вакуума, т.е. создания давления уровня ниже атмосферного. Принцип действия таких агрегатов основывается на том, что газ в резервуаре должен быть вытеснен.

Для генерации низкого вакуума от 101 300 Па до 133,3 Па, в качестве вакуумных насосов могут использоваться обычные компрессоры и воздуходувки. Данные агрегаты соединяются с откачиваемым резервуаром при помощи всасывающего патрубка. Чтобы откачать газ из больших емкостей, применяют:

  • Вакуумные турбонасосы;
  • Вакуумные винтовые насосы;
  • Вакуумные поршневые насосы;
  • Большие роторно-щелевые вакуумные насосы.

Чтобы откачать газ из небольших емкостей, применяют малые ротационно-щелевые вакуумные насосы.

Для генерации среднего вакуума (в области давления от 133,3 до 0,1333 Па) используются:

  • Винтовые вакуумные насосы;
  • Ротационно-щелевые вакуумные насосы;
  • Молекулярные турбонасосы.

Вакуумные насосы широко используются в таких отраслях промышленности как производство алюминия, керамики, кирпича. В химической, электронной промышленности, микробиологии и других областях исследования.

Общее описание и применение вентиляторов

Вентиляторы используются для проветривания рабочих помещений или производственных зданий, т.е. в целях транспортировки воздуха между помещениями. Уровень давления подачи, которое генерируют вентиляторы, не превышает 10 000 Па. Вентиляторы оснащаются рабочим колесом, которое совершает вращательные движения. Различают осевые и радиальные (центробежные) вентиляторы в зависимости от направления потока воздуха.

Конструкция радиального вентилятора аналогична конструкции радиальной турбогазодувки.

Вентиляторы данного типа оснащаются рабочим колесом с лопастями, которые расположены по ходу движения или против него. Во всасывающем патрубке подсасывается воздух и ускоряется в радиальном направлении, после чего задерживается в спиральном коллекторе и вытесняется в вытяжной канал. Данный тип вентиляторов используется в случаях, когда необходимо прогонять большие объемы воздуха через несколько аппаратов (удаление дымовых газов в двигателях внутреннего сгорания, при подаче дутьевого воздуха в доменные печи).

Устройство осевого вентилятора.

Осевые (пропеллерные) вентиляторы при наличии небольшого напора могут перемещать большие объемы воздуха. Они имеют рабочее колесо, которое состоит из ступицы и сидящих на ней пропеллерных вентиляторов. В процессе вращения, они сообщают воздуху импульс в направлении рабочего колеса. Малогабаритные вентиляторы работают в составе производственных систем, настенные вентилируют здания.

Пример предложения на компрессор

Описание

  • Компрессор
  • манометры на всасе и нагнетании блока компрессора оснащены огнестойким шаровым клапаном
  • Манометр на картере двигателя (масло)
  • Одно реле давления (на всасывающей стороне компрессора) взрывобезопасного исполнения в соответствии с Европейской директивой ATEX: Ex II 2G EEx ed IIC T6, технологическое соединение ¼» NPT/F. Рабочее давление 30 бар изб.
  • Электродвигатель взрывоопасного исполнения (одобрен CENELEC / EURONORM / ATEX) 40 л.с. — (30 кВт, 400/690 В, 50 Гц, 1500 об/мин, B3) клеммная коробка с 3 кабельными вводами со взрывобезопасными зажимами.  Модель EEx»d» раздел II BT 4 – защита IP55, класс изоляции F. Двигатель оснащен защитой PTC. 
  • Приводное колесо двигателя 300.5V Ø 300 мм с 5 пазами
  • Антистатические клиновые ремни (5 шт.)
  • Ограждение ремня в соответствии с нормами Европейского комитета
  • каплеуловитель в соответствии с кодами CODAP / CE с двумя (2) реле электронного уровня (взрывобезопасного исполнения)  240 В, макс. нагрузка 5 A (одобрен CENELEC).  Реле низкого уровня как предварительное оповещение (со временем световое) и реле более высокого уровня для останова компрессора, если жидкость достигнет этого уровня. Объем каплеуловителя 42 л. Каплеуловитель оснащен манометром с огнестойким шаровым клапаном, предохранительным клапаном и дренажным клапаном.
  • Фильтр грубой очистки (0.5 мм Ø 2″ 300 lbs) из нержавеющей стали
  • 4-ходовой шаровой клапан (полнопроходной) Ø 2″, огнестойкий и антистатический, с фланцами 2″ 300 lbs
  • перепускной клапан на нагнетательной линии 1-1/4″ x 2-1/2″ NPT, под давление 18 бар. Может разгрузить весь объем компрессора.
  • Соединительный трубопровод
  • Все эти элементы установлены на скиде из арматурной стали с 8 установочными отверстиями

Устройства управления

  • Два реле уровня жидкости в каплеуловителе , EExd IIC T6
  • реле давления Eexd IIC T6 на всасывающей стороне компрессора (диапазон 0,8-6,0 бар)

Комплектация

Что такое степень сжатия газа, как происходит разделение на ступени, на что ориентироваться при выборе компрессора – тема сегодняшней статьи.


Что такое степень сжатия?

Производительность компрессора напрямую зависит от степени сжатия рабочей среды: чем больше степень, тем меньше производительность у аппарата. Поэтому очень часто при выборе компрессора обращают внимание на эту характеристику. Рассчитывается степень сжатия (R) следующим образом:

R = Pd / Ps, где

Pd – абсолютное давление нагнетания

Ps – абсолютное давление на всасывании.

Степень сжатия — безразмерная величина, которая показы¬вает, во сколько раз повышается давление воздуха в компрессоре по сравнению с давлением воздуха на всасывании.

Рассмотрим на примере степень сжатия воздуха в одноступенчатом компрессоре. Аппарат на входе имеет давление 101 кПа. Поступающий атмосферный воздух следует сжать с давлением нагнетания до 1520 кПа (то есть от 1 до 16 атм). Таким образом, степень сжатия будет равна: 1520 / 101 = 16.

Чтобы увеличить производительность компрессора и не терять показатели по давлению используют многоступенчатое сжатие. Известно, что в процессе сжатия газа выделяется тепло. Чтобы сохранить стабильную температуру внутри аппарата, выделяемое тепло следует отводить. Для этого вокруг камер сжатия предусмотрены специальные отсеки с охлажденной водой.

В процессе сжатия воздуха при повышении давления до 4 атмосфер (405 кПа) и выше, становится все труднее полностью вывести выделяемое тепло. Поэтому для снижения температуры процесс сжатия разделяют на ступени.

Процесс разделения на ступени происходит следующим образом:

На начальном этапе сжатия (первая ступень) газ сжимается до 304-405 кПа (3-4 атмосфер), и поступает в специальную камеру для охлаждения до первоначальной температуры. На втором этапе газ отводится в другую камеру, где сжимается до следующего промежуточного давления (вторая ступень), затем газ поступает на охлаждение, и так далее. Такое многоступенчатое сжатие будет задействовано до тех пор, пока показатели давления не достигнут требуемой величины.

Если взять предыдущие значения по давлению (из примера расчета степени у одноступенчатого компрессора), то в двухступенчатом компрессоре в первой ступени давление достигнет величины 4 атм (405 кПа), а на второй ступени – уже 16 атмосфер (1620 кПа). Степень сжатия в данном случае в каждой камере будет равняться 4, а производительность компрессора увеличится.

Что нужно знать при выборе компрессора по степени сжатия?

Одноступенчатый компрессор имеет только одно значение степени сжатия (R). Тогда как у двухступенчатого аппарата таких значений уже будет три: R = общая степень сжатия компрессора, R1 = степень сжатия первой ступени, R2 = степень сжатия второй ступени.

Степень сжатия рабочей среды в каждой ступени компрессора будет составлять от 2,5 до 3,5. С увеличением количества ступеней сжатия, конструкция компрессора усложняется – ввиду добавления новых камер и трубопроводов. Свыше 5-6 ступеней сжатия увеличивается стоимость аппарата и затраты на его обслуживание.

При выборе компрессора по степени сжатия, можно ориентироваться на данные Таблицы 1:

Расчетное значение степени сжатия (R): Количество ступеней
1-3 Одноступенчатый агрегат
3-5 Одноступенчатый компрессор (в некоторых исполнениях – двухступенчатый)
5-7 Двухступенчатый компрессор (редко – одноступенчатый)
7-10 Двухступенчатый
10-15 Двух- или трехступенчатый
15+ Трехступенчатый компрессор

При степени сжатия более 150 количество ступеней может достигнуть 6 и более. Однако в современных компрессорах с водяным охлаждением степени повышения давления выше 7 встречаются редко.

На рисунке ниже изображен процесс четырехступенчатого сжатия:

Ступени сжатия воздуха

Преимущества одноступенчатых компрессоров

Одноступенчатый компрессорный аппарат представляет собой самый простой вид компрессора – с одной камерой, где происходит сжатие рабочей среды. Например, принцип работы одноступенчатого компрессора довольно прост: поршень, работающий от энергии двигателя внутреннего сгорания, возвратно-поступательными движениями сжимает газ с требуемым давлением. Несмотря на то, что ступень сжатия воздуха в нем одна, аппарат находит широкое применение во многих сферах. Его популярность обусловлена следующими факторами:

  1. Компактные размеры и небольшой вес.
  2. Для работы достаточно задействовать двигатель небольшой мощности.
  3. Простое управление, обслуживание и ремонт.
  4. Занимает мало места.

При этом, стоит помнить, что коэффициент сжатия одноступенчатого агрегата редко достигает 16 атмосфер. По этой причине их не используют в сложных пневматических сетях, или для производства больших объемов сжатого воздуха под высоким давлением.

Двухступенчатые компрессоры – баланс производительности и мощности

Двухступенчатые компрессоры представляют собой универсальные аппараты для широкого спектра применения. Конструкция агрегата имеет уже две ступени сжатия, соответственно, нагрузка по сжатию равномерно распределяется на две камеры.

За счет экономии мощности, потраченной на сжатие воздуха, КПД компрессора увеличивается. Двухступенчатые компрессоры имеют небольшие размеры по сравнению с многоступенчатыми моделями. Срок эксплуатации у двухступенчатых компрессоров гораздо дольше, чем у одноступенчатых.

Многоступенчатые агрегаты: нюансы

Многоступенчатые компрессоры представляют собой мощные промышленные аппараты, которые используют в сложных и крупных пневмосетях для получения больших объемов сжатого воздуха. Особенности их эксплуатации заключаются в следующем:

  • Многоступенчатые агрегаты производят сжатый воздух для крупных предприятий.
  • По сравнению с одно- и двухступенчатыми моделями, многоступенчатый компрессор гарантирует бОльшую плавность распределения и перехода нагрузок на рабочие узлы и трубопровод.
  • Готовый сжатый воздух на выходе имеет относительно низкую температуру, что увеличивает срок эксплуатации осушителей и фильтров.
  • При правильном подборе компрессора и сопутствующих аппаратов риск возникновения поломок или самовозгорания – минимален.

Что выбрать?

При выборе компрессора, ресивера и другого оборудования неизменно встает вопрос о проведении расчетов технических параметров, гарантированно удовлетворяющих потребности технологического процесса. В частности, рассматривая и сопоставляя технические характеристики одноступенчатых, двухступенчатых и многоступенчатых компрессоров, можно на начальном этапе подбора оборудования понять, подходит ли аппарат для конкретного производства или нет.

Например, для пищевых предприятий или медицинских целей, предпочтительнее использовать безмасляные компрессоры низкого давления, которые выдают сухой чистый сжатый воздух, соответствующего Класса чистоты по ГОСТ. Тогда как для работы промышленного пневматического инструмента (шлифовальные машины, гайковерты, дрели) потребуется двухступенчатый компрессор среднего давления от 6-7 бар с расходом воздуха 180-450 л/мин. Но такие показатели являются усредненными данными.


Цена по запросу

Предлагаем электрические винтовые компрессоры Dalgakiran давлением от 4 до 15 бар и производительностью 3,2 — 62,3 м3/мин. Подберем под вашу конкретную задачу нужную модель, рассчитаем и организуем пневмосеть на вашем предприятии. Есть модели в наличии со склада. Перейти в раздел >>>


Для полноценной работы пневмосети необходимо произвести полноценный расчет параметров компрессора, а также учесть следующие факторы:

  1. Цели применения сжатого газа.
  2. Целесообразность подбора компрессора с двумя или выше ступенями сжатия.
  3. Требуемый Класс чистоты сжатого воздуха для конкретного технологического процесса.
  4. Продолжительность работы пневмосети.
  5. Потребность в осушении или дополнительной очистке сжатого газа перед использованием.
  6. Климатическое исполнение (место установки компрессора).

    Получить консультацию в подборе компрессора и другого оборудования для сжатого воздуха вы можете у нашего специалиста, для этого свяжитесь с ним одним из способов:

    • По телефону: 8-800-555-95-28 (звонок бесплатный)
    • По электронной почте: to@novatecs.ru
    • Заполнив заявку в нашем онлайн-чате.

Почему для двигателей так важна степень сжатия, и на что она влияет.


 

Вы наверняка слышали термин «степень сжатия» в двигателях внутреннего сгорания. Но вы когда-нибудь задумывались, что он означает? Итак, пришло время точно объяснить, что же такое коэффициент сжатия (степень) в двигателях автомобиля и почему сегодня все автопроизводители одержимы этим показателем, как будто этот параметр представляет собой Святой Грааль для будущих продаж автоновинок. 

Сразу хотим отметить, что разобраться в том, что такое степень сжатия двигателя, не так просто, как кажется на первый взгляд. Вы наверняка заметили в различных рекламных проспектах и каталогах, а также в описании на сайтах автопроизводителей, что автобренды пытаются привлечь наше внимание такой характеристикой, как степень сжатия двигателей. Особенно стараются нам рассказать о степени сжатия менеджеры автосалонов. Мы обычно делаем вид, что понимаем, о чем идет речь, пропуская мимо ушей эту информацию. И причина такого поведения в том, что многие автолюбители просто не представляют, что такое степень сжатия двигателей, равно как и на что она влияет. Но тем не менее мы считаем, что все автолюбители должны знать, что же это за показатель двигателей внутреннего сгорания, о котором недавно вспомнили многие автопроизводители. 

Мы знаем, что высокое сжатие двигателя – это хорошо, а низкое – плохо. Мы также знаем, что новый мотор Mazda Skyactiv-X имеет высокую степень сжатия. Не отстает от Mazda и Toyota со своими моторами «Dynamic Force», которые имеют высокую степень сжатия. Эти компании рекламируют новые двигатели с большим коэффициентом сжатия, заявляя, что они не только стали мощнее, но и получили большую экономичность. Но при чем здесь высокая степень сжатия и увеличение мощности с уменьшением расхода топлива? Сейчас объясним.

 

Двигатель Toyota «Dynamic Force»

Мы живем в эпоху, когда инженеры не могут просто дать двигателю больше энергии за счет укрупнения, как, например, это было раньше, когда автопроизводители на многие свои автоновинки устанавливали моторы с увеличенным объемом. К тому же это приводило к неминуемому увеличению расхода топлива и росту уровня вредных выбросов в выхлопе автомобиля. Сегодня в связи с дороговизной топлива по всему миру и сложной экологической обстановкой подобный способ увеличения мощности мотора не подходит. Особенно если учитывать жесткие экологические нормы, предъявляемые автопроизводителям рядом развитых западных стран. 

В итоге автопроизводители стали улучшать эффективность нынешних моторов за счет применения турбин и увеличения степени сжатия современных двигателей. 

Как определяется степень сжатия, и что это такое?

Степень сжатия – это показатель, при котором устанавливается, какой максимальный объем цилиндра двигателя может быть сжат в минимальный объем цилиндра. Этот показатель степени сжатия определяется как соотношение. 

Например, обычно степень сжатия записывают вот таким образом: 9:1 (коэффициент сжатия двигателя «девять к одному»).  


 

Теперь представьте цилиндр двигателя. Внутри цилиндра двигателя, как вы знаете, перемещается поршень: вверх и вниз. Когда поршень находится в самой нижней точке цилиндра двигателя, это называется «нижней мертвой точкой». Именно в этом положении поршня сверху него находится наибольший объем цилиндра. Когда поршень находится в самой высокой точке внутри цилиндра двигателя, это положение поршня называется «верхней мертвой точкой». В этом положении объем цилиндра находится в наименьшем значении. Вот сравнение этих двух объемов цилиндров над поршнями двигателя и образует соотношение степени сжатия. Обратите внимание, что когда поршень находится в верхней мертвой точке, все-таки над ним есть объемное пространство, где и происходит сжатие топливно-воздушной смеси.

Для тех, кто любит больше смотреть, чем читать, внизу мы публикуем GIF-картинку, на которой демонстрируется, как работает четырехтактный двигатель. Обратите внимание, как поршень движется вверх во время такта сжатия топливной смести (топливо + кислород), которая подается клапанами головки блока двигателя. Напомним, что воздух и топливо, поступаемые в цилиндр двигателя, сжимаются поршнем, чтобы затем воспламенить эту смесь с помощью свечи зажигания (в бензиновых моторах) или за счет сильного сжатия (в дизельных моторах). 

Если двигатель имеет высокую степень сжатия, это означает, что заданный объем воздуха и топлива в цилиндре сжимается в гораздо меньшем пространстве, чем в двигателях с небольшой степенью сжатия. 

А теперь математический пример соотношения степени сжатия в ДВС. 

Предположим, что у нас есть двигатель, объем цилиндра и камер сгорания которого в момент нахождения поршня в нижней мертвой точке составляет 10 куб. см. После того как впускной клапан головки блока двигателя закрывается и поршень поднимается вверх, начав такт сжатия, он сжимает воздух и топливную смесь в пространство 1 куб. см. Этот двигатель имеет коэффициент сжатия (степень) 10:1. 

Также часто производители любят вычислять итоговую степень сжатия, деля большее значение объема цилиндра над поршнем на меньший объем цилиндра. В итоге во многих технических характеристиках автомобилей вместо соотношения производители указывают результат деления этих значений. 

Таким образом вычисляется, во сколько раз сжимается топливно-воздушная смесь при движении из нижней мертвой точки поршня в верхнюю мертвую точку. Разделив большее значение на меньшее, мы и получим итоговое значение степени сжатия без соотношения большего объема к меньшему.

Почему производители стараются увеличить степень сжатия?

Но не все так просто со степенью сжатия. Одно дело – понимать, что такое степень сжатия. И это не менее важно по сравнению с пониманием, почему так важна высокая степень сжатия для современных двигателей. К сожалению, объяснить простыми словами, почему высокая степень сжатия в двигателях современных автомобилей – это отличное решение на ближайшие годы, не получится. Тем не менее мы попытаемся.

Вы знаете, что мощность двигателя появляется в тот момент, когда сгорание топливной смеси оказывает силу на поршень внутри цилиндра двигателя. Эта сила толкает поршень вниз по цилиндру. И чем выше поршень находится в цилиндре в момент сжигания топливно-воздушной смеси, тем больше сил будет приложено на поршень. 

Как мы уже сказали, чем больше степень сжатия, тем выше находится поршень в верхней мертвой точке. В итоге это позволяет вырабатывать больше мощности в момент сгорания топлива. Также помимо увеличения мощности для вырабатывания силы, толкающей поршень вниз по цилиндру двигателя, необходимо меньше топлива, что в конечном итоге влияет на топливную эффективность мотора. Это простое объяснение. Но оно неполное, поскольку при увеличении степени сжатия двигателей возникает ряд проблем, для решения которых необходимо в идеале знать термодинамику.

Итак, мы знаем, что высокая степень сжатия означает, что двигатель получает больше силы и мощности из того же количества топлива по сравнению с мотором с меньшим коэффициентом сжатия. Как мы выяснили, это хорошо для динамики автомобиля, а также для достижения хороших показателей его экономичности.


 

Чтобы объяснить вам точнее, почему более высокая степень сжатия дает больше экономии топлива, мы не будем погружаться слишком глубоко в науку о термодинамике. Тем не менее без нее нам также не объяснить вам в деталях, почему моторы с большой степенью сжатия более экономичные. Да, это нелегко понять. Но все же этот раздел термодинамики очень и очень интересен.

Более высокое сжатие в двигателе означает больше мощности, но больше давления

На приведенном выше рисунке показана диаграмма PV давления – объема для идеального типичного бензинового двигателя. Этот график наглядно демонстрирует, что происходит в двигателе, когда он сжигает воздушно-топливную смесь (в нашем примере бензин + кислород). 

На приведенном выше графике кривая 1-2 показывает ход сжатия. 

Линия 2-3 показывает сгорание топлива. 

Верхняя кривая 3-4 показывает ход расширения.

И линия 4-1 показывает отвод тепла, когда открывается выпускной клапан в головке блока цилиндров двигателя. 

Если описать все более техническим языком, то эту диаграмму следует понимать так:

На диаграмме кривая 1-2 показывает ход сжатия, при котором давление (ось Y) возрастает, а объем (ось Х) падает, когда поршень сжимает воздушно-топливную смесь внутри цилиндра, приближаясь к верхней мертвой точке. 

Линия 2-3 показывает тепло, выделяемое во время горения топливной смеси. Эта линия показывает, как быстро увеличивается давление и температура сгораемого топлива. 

Кривая 3-4 показывает увеличение объема цилиндра двигателя и падение давления, когда газ, полученный в процессе сгорания топливной смеси, оказывает силу на поршень, который начинает свое движение вниз по цилиндру двигателя (такт расширения). 

Линия 4-1 показывает отвод тепла от газов, образованных в процессе сгорания топлива. Когда давление внутри цилиндра возвращается к давлению окружающей среды, открывается выпускной клапан. 

Наконец, линия 1-5 демонстрирует нам ход выхлопа (выхлопной цикл мотора), в процессе которого поршень снова движется внутри цилиндра вверх (к верхней мертвой точке), чтобы снова сжать топливно-воздушную смесь для повторения цикла. 

Область в пределах линий 1-2-3-4 показывает нам, сколько работы было проделано двигателем в рамках одного лишь только цикла. Более высокая степень сжатия двигателя означает, что две вертикальные линии на графике выше будут двигаться влево и вверх, оставляя больший диапазон хода поршня, что влияет на получение большей мощности по сравнению с двигателем, имеющим низкий коэффициент сжатия. То есть двигатель с высокой степенью сжатия сделает больше работы за один цикл, чем мотор с небольшой степенью сжатия. 

И все дело в том, что в двигателях с высокой степенью сжатия в процессе сгорания топлива образуется больше давления, которое с большей силой двигает поршень вниз по цилиндру. Правда, в этом случае внутри двигателя выделяется больше тепла. 

Более высокое сжатие в двигателе также означает более высокую тепловую эффективность


 

Важно отметить, что образование тепла и потеря тепла в течение цикла работы двигателя напрямую связаны с его эффективностью (речь идет о коэффициенте полезного действия – КПД). Причем на КПД главное влияние оказывает степень сжатия двигателя. Все дело в двух идеях. Во-первых, любая тепловая энергия, поступающая в систему, должна быть преобразована в механическую или отработанную. Во-вторых, тепловая эффективность – это просто результат работы двигателя (мощность и сила), разделенный на теплопередачу.

Таким образом, с помощью уравнения можно вычислять взаимосвязь между тепловым КПД и степенью сжатия. 

Вот как выглядит уравнение этой взаимосвязи (nтепловой КПД, rстепень сжатия, а γ (гамма)свойство жидкости):


Теперь вернемся к нашей диаграмме выше. Когда вы обеспечиваете больший ход поршня между верхней и нижней мертвой точкой, вы увеличиваете степень сжатия. За счет этого вы смещаете на диаграмме PV вверх и влево и увеличиваете температуру (Qh на графике выше). Причем увеличение температуры будет больше, чем потери тепла (Ql). 

Иными словами, вы добываете в процессе сгорания топливной смеси больше энергии за один цикл работы двигателя. Кстати, вот один интересный ролик видеоблогера Джейсона Фенске, который рассказывает более простыми словами о взаимосвязи между степенью сжатия, теплопередачей и эффективностью (экономичностью двигателя):

 Для тех, кто не знает английский, включите субтитры и их машинный перевод на русский язык.

Так что, как вы, наверное, уже поняли, тепловая эффективность двигателя возрастает по мере увеличения степени сжатия двигателя. Таковы законы физики, а именно законы термодинамики. Особенно это становится ясно из уравнения, приведенного выше. 

Соответственно, чем выше степень сжатия мотора, тем больше он выдает лошадиных сил и меньше потребляет топлива. Для нас это означает более тяжелый кошелек за счет сэкономленных денег на заправке и больше адреналина при разгоне.

Чтобы это понять, вам нужно взять на прокат какой-нибудь старый американский неэффективный автомобиль с бензиновым V8 атмосферным двигателем, который имеет низкую степень сжатия. Поездив на таком автомобиле несколько дней, вы поймете, что автомобиль «жрет», как слон, но взамен не выдает хорошую мощность, которую сегодня показывают современные четырехцилиндровые и даже трехцилиндровые моторы. 


Например, знаменитый двигатель Skyactiv-G от Mazda является очень эффективным в плане не только мощности, но и хорошей экономичности. Во многом это благодаря большой степени сжатия. Также ряд и других производителей стали выпускать современные моторы с высоким коэффициентом сжатия. Так, сегодня компании Mazda, Nissan / Infiniti и Toyota и другие начали выпускать двигатели с очень высокой степенью сжатия – 14:1. 

Вы не поверите, но двигатели с такой степенью сжатия еще недавно казались фантастикой. Кстати, благодаря такой степени сжатия автопроизводителям нет необходимости оснащать двигатели турбинами, для того чтобы добиться соответствия современным стандартам экономичности, экологическим нормам, а также требованиям к мощности. 

Почему более высокая степень сжатия означает, что автомобиль должен заправляться топливом с высоким октановым числом

Но почему большинство автопроизводителей сегодня не перешли на выпуск двигателей с высокой степенью сжатия, если такие силовые агрегаты позволяют без турбокомпрессоров добиваться таких выдающихся результатов эффективности силовых агрегатов? Все дело в законах физики.

Многие двигатели с высоким коэффициентом сжатия нуждаются в премиальном топливе или в высокооктановом бензине. 

Тем, кто не знает или не помнит, что такое октан бензина и как он помогает избежать детонации в двигателе, советуем почитать наши следующие материалы:

Какой бензин лучше?

Почему премиум бензин является пустой тратой денег для большинства автомобилей

Сколько энергии в различных видах топлива

Топливо с низким октановым числом по сравнению с топливом с высоким октаном, скорее всего, будет самопроизвольно воспламеняться из-за более высоких температур и давления воздуха в двигателях с высокой степенью сжатия. Мы знаем, что воспламенение топливно-воздушной смеси должно происходить, когда это действительно нужно, а не наоборот. Такое неконтролируемое воспламенение топлива называется детонацией. Это очень вредно для любых двигателей внутреннего сгорания. Дело в том, что излишняя детонация уменьшает крутящий момент и может нанести непоправимый урон двигателю автомобиля. 

Высокая степень сжатия увеличивает риск сильной детонации двигателя. Вот почему моторы с большим коэффициентом сжатия, как правило, работают на высококачественном или высокооктановом бензине. 

Главная причина риска самовоспламенения топливно-воздушной смеси в двигателях с высокой степенью сжатия – это превышение допустимого давления, которое приводит к резкому нагреву топливной смеси. В итоге это вызывает преждевременное сжигание топлива еще до того, как свеча зажигания с помощью искры зажжет его. Повторяем, преждевременное воспламенение топлива – это очень плохо для любого двигателя. 


Для того чтобы снизить риск преждевременного воспламенения топлива, компания Mazda много работала над поршневыми и выпускными конструкциями бензиновых двигателей с высокой степенью сжатия (соотношение степени сжатия в цилиндрах двигателя 14:1). Например, мотор Skyactiv-X оснастили специальными поршнями, имеющими полость посередине, которая позволила предотвращать всплеск богатого кислородом топлива вокруг области воспламенения топливной смеси от свечи зажигания.

Именно проблема самовоспламенения топлива в двигателях с высокой степенью сжатия и препятствует сегодня массовому распространению данного типа моторов во всей автопромышленности. Подробнее об двигателе Mazda можно почитать здесь

Существуют ли ограничения по увеличению степени сжатия в двигателях

 

Интересно, почему автопроизводители не стараются сделать степень сжатия своих двигателей еще больше? Почему сегодня коэффициент сжатия 14:1 уже считается много? Неужели нельзя сделать двигатель с еще большим коэффициентом сжатия? Ведь в таком случае автомобили получили бы еще больше мощности и одновременно стали бы еще экономичней.

Например, почему бы не сделать двигатель со степенью сжатия 60:1? Но на самом деле это невозможно в сегодняшнем мире. 

Такую степень сжатия не выдержит ни один металл внутри двигателя. Да дело даже не в металле. Даже если бы у нас был такой крепкий дешевый металл, способный выдержать степень сжатия 60:1, все равно бы мы не смогли построить подобный рабочий мотор. Просто такая степень сжатия привела бы к чрезмерно высокой температуре внутри двигателя. В итоге мотор стал бы настолько горячим, что это вызвало бы его самоуничтожение (двигатель взорвался бы от высоких температур). 

Также, в принципе, нас не должна так сильно заботить высокая степень сжатия в современных автомобилях, если речь идет, конечно, не о спортивных мощных автомобилях, где каждая лишняя лошадиная сила на вес золота. Сегодня в рамках массового рынка нас больше волнует не мощность, а экономичность обычных повседневных автомобилей. Особенно во времена немалой стоимости топлива, где вопрос экономии топлива напрямую влияет на наши кошельки. Также сегодня более остро стоит вопрос экологии. А мы знаем, что чем менее экономичен автомобиль, тем меньше он загрязняет окружающую среду выхлопными газами. Так что, в принципе, увеличение степени сжатия в современных двигателях необходимо в первую очередь для улучшения экологической обстановки на всей планете. Но для того чтобы этого добиться, нет смысла существенно увеличивать в современных моторах степень сжатия. 

Вот мы и подошли к концу темы о степени сжатия двигателей внутреннего сгорания. Надеемся, что теперь вы не просто знаете, что такое степень сжатия силовых агрегатов, но и понимаете, какую важную роль она играет в современных двигателях. 


Download Article


Download Article

An engine’s compression ratio is essential to know so that you can tune your car to get the most horsepower out of it. To find the compression ratio, divide the total volume of the engine (i.e. the swept volume plus the clearance volume) by the clearance volume of the engine ({displaystyle CR=(Vsw+Vcl)/Vcl}).[1]
Begin with a clean, disassembled engine and take your measurements very carefully to ensure you get an accurate reading.

  1. Image titled Calculate Compression Ratio Step 1

    1

    Measure the bore in centimeters. Use a bore gauge to measure the cylinder bore’s diameter. Remember that the diameter refers to the width of the cylinder. Write this number down so you can refer back to it later.[2]

    Tip: Many of the measurements you need are provided in the manufacturer specs. These numbers are more precise than the ones you’d get by measuring by hand, so check the specs first and only measure for the variables not listed.

  2. Image titled Calculate Compression Ratio Step 2

    2

    Find the stroke in centimeters. The stroke refers to how far the piston travels within the cylinder.[3]
    If you don’t have the specs, measure this using a deck bridge and dial calipers.[4]

    • Position the dial calipers on the deck bridge so the jaws are upward. Move the piston to top dead center, then position the bridge over the cylinder. Zero out the calipers, then put the piston at bottom dead center by rotating the crankshaft. Open up the calipers until the depth rod is touching the piston deck, then read the number.

    Advertisement

  3. Image titled Calculate Compression Ratio Step 3

    3

    Determine the deck height in centimeters. Ensure the piston is at top dead center, then measure between the top of the cylinder and the flat surface at the top of the piston.[5]

    • If your piston is above deck, it takes away from the clearance volume. If your piston is below deck, it adds to the clearance volume.[6]
  4. Image titled Calculate Compression Ratio Step 4

    4

    Figure out the piston top volume in cubic centimeters. Use the manufacturer specs for this one or look up the part number online to find the volume.[7]
    Keep in mind that a piston with a dome takes away from the clearance volume, while a piston with a dish adds to the clearance volume.[8]

    • Note that cubic centimeters are abbreviated as cc.
  5. Image titled Calculate Compression Ratio Step 5

    5

    Measure the head gasket volume in cubic centimeters. You may be able to find this information online or in the specs. If not, measure the sealing ring distance in inches and divide that by 3.1416. Square the answer then multiply it by the compressed gasket thickness in thousandths of inches. Take your answer and multiply it by 12.87 to find the head gasket volume in cubic centimeters.[9]

    • For example, say the head gasket is 13 inches long and 0.041 inches thick. Divide 13 by 3.1416, which is 4.138. Square this number to get 17.123. Multiply this by 0.041, which is 0.702, then multiply that by 12.87. The head gasket volume is 9.04 cubic centimeters.
  6. Image titled Calculate Compression Ratio Step 6

    6

    Determine the combustion chamber volume in cubic centimeters. Use the specs from the manufacturer to find this measurement. If you need to convert from cubic inches to cubic centimeters, multiply the number by 16.387.[10]

  7. Advertisement

  1. Image titled Calculate Compression Ratio Step 7

    1

    Use the formula (cylinder diameter / 2)2 x π x stroke to find the swept volume. Divide the cylinder diameter by 2. Then, square the result and multiply it by π, which is 3.14. Finally, multiply the result by the stroke to determine the swept volume of the engine.[11]

    • For instance, if your cylinder diameter is 8.1 cm and your stroke is 8.9 cm, divide 8.1 by 2, which is 4.05. Square 4.05, which is 16.4025. Multiply this by 3.14, which is 51.50385, then multiply that by 8.09. The answer is 458.38 cc.[12]

    Tip: If you don’t want to do the math by hand, search online for a compression ratio calculator.

  2. Image titled Calculate Compression Ratio Step 8

    2

    Find the clearance volume using the formula Vcombustion chamber + Vpiston + Vgasket + Vdeck clearance. Simply add the volume of the combustion chamber, the piston top volume, the gasket thickness, and the deck height or clearance.[13]

    • For example, if the volume of the combustion chamber is 38.6, the piston volume is 9.0, the gasket volume is 4.5, and deck clearance is 1.6, the clearance volume is 53.7 cc.
  3. Image titled Calculate Compression Ratio Step 9

    3

    Plug your numbers into the formula CR = (Vsw + Vcl) / Vcl. Now that you know the swept volume and clearance volume, simply insert those numbers into the formula and solve it. Add the swept volume and cylinder volume together first. Then, divide the result by the cylinder volume to find the compression ratio.[14]

    • For instance, if the swept volume is 458.38 and the clearance volume is 53.7, start by adding 458.38 and 53.7, which is 512.08. Divide 512.08 by 53.7, which is 9.5359. So, the compression ratio is 9.54:1.
  4. Advertisement

Add New Question

  • Question

    How do I convert cubic centimeters to horsepower?

    Community Answer

    You cannot. There is really no relationship between cubic centimeters and horsepower. While bigger engines tend to have more power, there are a lot more factors contributing to power output. You could have a 100cc engine with the same amount of power as a 50cc engine because of the other factors.

  • Question

    How do I calculate engine capacity?

    ali mokhtari

    ali mokhtari

    Community Answer

    First, measure the cylinder bore and then its height. The engine volume is as follows: number of engine cylinders x 3.1415 x (cylinder bore)^2. Another method is to inverse the cylinder block on a flat metal surface and use a graduated container to fill the cylinder space with a liquid (as you keep track of the amount of liquid you pour inside) until all engine cylinders are full. The volume of liquid required to fill up all engine cylinders amounts for engine capacity.

  • Question

    What is the compression ratio for petrol engines?

    Community Answer

    Diesel engines are designed to operate at higher compression ratios (usually between 15 to 20), while petrol engines have lower compression ratios (usually between 8 to 10).

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • Take proper precautions when working on your car’s engine. Make sure that the engine parts are cool before beginning and wear protective gear such as safety glasses, close-toed shoes, and gloves.

Advertisement

Things You’ll Need

  • Manufacturer specs
  • Measuring tape
  • Paper
  • Pencil
  • Bore gauge
  • Deck bridge
  • Dial calipers
  • Calculator

References

About This Article

Thanks to all authors for creating a page that has been read 318,626 times.

Did this article help you?

Get all the best how-tos!

Sign up for wikiHow’s weekly email newsletter

Subscribe

You’re all set!

Понравилась статья? Поделить с друзьями:
  • Как размотать скотч найти конец
  • Как найти лампу для сидоровича
  • Молярная масса hbr как найти
  • Как исправить блины с содой
  • Найти как прочитать смс сообщение