Как найти степень трехчлена


Download Article


Download Article

Polynomial means «many terms,» and it can refer to a variety of expressions that can include constants, variables, and exponents. For example, x — 2 is a polynomial; so is 25. To find the degree of a polynomial, all you have to do is find the largest exponent in the polynomial.[1]
If you want to find the degree of a polynomial in a variety of situations, just follow these steps.

  1. Image titled Find the Degree of a Polynomial Step 1

    1

    Combine like terms. Combine all of the like terms in the expression so you can simplify it, if they are not combined already. Let’s say you’re working with the following expression: 3x2 — 3x4 — 5 + 2x + 2x2 — x. Just combine all of the x2, x, and constant terms of the expression to get 5x2 — 3x4 — 5 + x.[2]

  2. Image titled Find the Degree of a Polynomial Step 2

    2

    Drop all of the constants and coefficients. The constant terms are all of the terms that are not attached to a variable, such as 3 or 5. The coefficients are the terms that are attached to the variable. When you’re looking for the degree of a polynomial, you can either just actively ignore these terms or cross them off. For instance, the coefficient of the term 5x2 would be 5. The degree is independent of the coefficients, so you don’t need them.

    • Working with the equation 5x2 — 3x4 — 5 + x, you would drop the constants and coefficients to get x2 — x4 + x.

    Advertisement

  3. Image titled Find the Degree of a Polynomial Step 3

    3

    Put the terms in decreasing order of their exponents. This is also called putting the polynomial in standard form.[3]
    . The term with the highest exponent should be first, and the term with the lowest exponent should be last. This will help you see which term has the exponent with the largest value. In the previous example, you would be left with
    -x4 + x2 + x.

  4. Image titled Find the Degree of a Polynomial Step 4

    4

    Find the power of the largest term. The power is simply number in the exponent. In the example, -x4 + x2 + x, the power of the first term is 4. Since you’ve arranged the polynomial to put the largest exponent first, that will be where you will find the largest term.

  5. Image titled Find the Degree of a Polynomial Step 5

    5

    Identify this number as the degree of the polynomial. You can just write that the degree of the polynomial = 4, or you can write the answer in a more appropriate form: deg (3x2 — 3x4 — 5 + 2x + 2x2 — x) = 4. You’re all done.[4]

  6. Image titled Find the Degree of a Polynomial Step 6

    6

    Know that the degree of a constant is zero. If your polynomial is only a constant, such as 15 or 55, then the degree of that polynomial is really zero. You can think of the constant term as being attached to a variable to the degree of 0, which is really 1. For example, if you have the constant 15, you can think of it as 15x0, which is really 15 x 1, or 15. This proves that the degree of a constant is 0.

  7. Advertisement

  1. Image titled Find the Degree of a Polynomial Step 7

    1

    Write the expression. Finding the degree of a polynomial with multiple variables is only a little bit trickier than finding the degree of a polynomial with one variable. Let’s say you’re working with the following expression:

    • x5y3z + 2xy3 + 4x2yz2
  2. Image titled Find the Degree of a Polynomial Step 8

    2

    Add the degree of variables in each term. Just add up the degrees of the variables in each of the terms; it does not matter that they are different variables. Remember that the degree of a variable without a written degree, such as x or y, is just one. Here’s how you do it for all three terms:[5]

    • deg(x5y3z) = 5 + 3 + 1 = 9
    • deg(2xy3) = 1 + 3 = 4
    • deg(4x2yz2) = 2 + 1 + 2 = 5
  3. Image titled Find the Degree of a Polynomial Step 9

    3

    Identify the largest degree of these terms. The largest degree of these three terms is 9, the value of the added degree values of the first term.[6]

  4. Image titled Find the Degree of a Polynomial Step 10

    4

    Identify this number as the degree of the polynomial. 9 is the degree of the entire polynomial. You can write the final answer like this: deg (x5y3z + 2xy3 + 4x2yz2) = 9.

  5. Advertisement

  1. Image titled Find the Degree of a Polynomial Step 11

    1

    Write down the expression. Let’s say you’re working with the following expression: (x2 + 1)/(6x -2).[7]

  2. Image titled Find the Degree of a Polynomial Step 12

    2

    Eliminate all coefficients and constants. You won’t need the coefficients or constant terms to find the degree of a polynomial with fractions. So, eliminate the 1 from the numerator and the 6 and -2 from the denominator. You’re left with x2/x.

  3. Image titled Find the Degree of a Polynomial Step 13

    3

    Subtract the degree of the variable in the denominator from the degree of the variable in the numerator. The degree of the variable in the numerator is 2 and the degree of the variable in the denominator is 1. So, subtract 1 from 2. 2-1 = 1.

  4. Image titled Find the Degree of a Polynomial Step 14

    4

    Write the result as your answer. The degree of this rational expression is 1. You can write it like this: deg [(x2 + 1)/(6x -2)] = 1.

  5. Advertisement

Add New Question

  • Question

    What is the degree of a polynomial?

    Community Answer

    In the case of a polynomial with only one variable (such as 2x³ + 5x² — 4x +3, where x is the only variable),the degree is the same as the highest exponent appearing in the polynomial (in this case 3). In the case of a polynomial with more than one variable, the degree is found by looking at each monomial within the polynomial, adding together all the exponents within a monomial, and choosing the largest sum of exponents. That sum is the degree of the polynomial. For example, in the expression 2x²y³ + 4xy² — 3xy, the first monomial has an exponent total of 5 (2+3), which is the largest exponent total in the polynomial, so that’s the degree of the polynomial.

  • Question

    What is degree of 1/x^4 + x^2?

    Donagan

    1 / (x^4) is equivalent to x^(-4). So the highest (most positive) exponent in the polynomial is 2, meaning that 2 is the degree of the polynomial.

  • Question

    What about a polynomial with multiple variables that has one or more negative exponents in it?

    Donagan

    Combine the exponents found within a given monomial as you would if all the exponents were positive, but you would subtract the negative exponents.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • This just shows the steps you would go through in your mind. You don’t have to do this on paper, though it might help the first time. If you do it on paper, however, you won’t make a mistake.

  • By convention, the degree of the zero polynomial is generally considered to be negative infinity.

  • For the third step, linear terms like x can be written as x1 and non-zero constant terms like 7 can be written as 7x0

Thanks for submitting a tip for review!

Advertisement

References

About This Article

Article SummaryX

To find the degree of a polynomial with one variable, combine the like terms in the expression so you can simplify it. Next, drop all of the constants and coefficients from the expression. Then, put the terms in decreasing order of their exponents and find the power of the largest term. The power of the largest term is the degree of the polynomial. To find the degree of a polynomial with multiple variables, write out the expression, then add the degree of variables in each term. The power of the largest term is your answer! If you want to learn how to find the degree of a polynomial in a rational expression, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 873,695 times.

Did this article help you?

Степень многочлена




Что такое степень многочлена? Как определить степень одночлена?

Определение.

Степенью многочлена  называют наибольшую из степеней входящих в него одночленов.

Обычно, прежде чем искать степень многочлена, его приводят к многочлену стандартного вида, хотя, вообще говоря, это не обязательно.

Итак, чтобы найти степень многочлена:

1) Можно привести многочлен к стандартному виду.

2) Найти степень всех входящих в него одночленов — членов многочлена.

3) Выбрать наибольшую из этих степеней.

Примеры.

Найти степень многочлена:

    [1)7{x^2}y - 11xy + 4y - 9;]

    [2)10{x^2}{y^3} + 32{x^4} - 12{x^2}{y^2};]

    [3)14a{a^2} - 3{a^3}b + 8ab cdot 2{b^2} - 2{a^3}b;]

    [4)1,7x + 2y - 12;]

    [5)20.]

Решение:

    [1)7{x^2}y - 11xy + 4y - 9;]

Данный многочлен записан в стандартном виде. Степень первого члена многочлена — одночлена 7x²y — равна 2+1=3. Степень второго члена многочлена — -11xy — равна 1+1=2. Степень третьего члена многочлена — 4y — равна 1. -9 — одночлен нулевой степени.

Наибольшая из степеней одночленов — 3. Таким образом, это — многочлен третьей степени.

    [2)10{x^2}{y^3} + 32{x^4} - 12{x^2}{y^2};]

Здесь 10x²y³ — одночлен 5-й степени, 32x⁴ — 4-й, -12x²y² — также одночлен 4-й степени. Наибольшая из степеней одночленов — 5. Следовательно, это — многочлен 5-й степени.

3) Сначала приведем данный многочлен к стандартному виду:

    [14a{a^2} - 3{a^3}b + 8ab cdot 2{b^2} - 2{a^3}b = ]

    [ = 14{a^3}underline { - 3{a^3}b} + 16a{b^3}underline { - 2{a^3}b} = ]

    [ = 14{a^3} - 5{a^3}b + 16a{b^3}.]

14a³ — одночлен 3-й степени, -5a³b — 4-й, 16ab³ — также одночлен 4-й степени. Наибольшая из степеней входящих в многочлен одночленов — 4. Таким образом, данный многочлен имеет четвертую степень.

Хотя в алгебре принято упрощать многочлен, приводя его к стандартному виду, степень можно искать и для многочлена, не записанного в стандартном виде.

    [4)1,7x + 2y - 12;]

1,7x — одночлен 1-й степени, 2y — одночлен 1-й степени, -12 — одночлен 0-й степени. Значит,  это — многочлен первой степени.

    [5)20]

Одночлен считают многочленом, состоящим из одного члена. 20 — одночлен 0-й степени. Следовательно, 20  является многочленом нулевой степени.

Часто путают понятия одночлена и многочлена.

Давайте разберемся, что называют одночленом, а что многочленом.
Прежде всего, вспомним, что называли одночленом в уроке «Одночлены».

Обратите внимание, что «внутри» одночлена (между буквами и числовым коэффициентом) есть только знак умножения.
Например, в одночлене:
3ab = 3 · a · b

Запомните!
!

Многочленом называется алгебраическая сумма нескольких одночленов.

Одночлены, из которых составлен многочлен, называют членами многочлена.

Примеры многочленов:
a + 2b2 − c;
 3t5 − 4b;
  4 − 6xy

Несложно заметить, что любой многочлен состоит из нескольких одночленов.

Рассмотрим многочлен подробнее.

пример многочлена

Возникает вопрос, почему многочленом называют алгебраическую сумму
одночленов, если в многочлене присутствует
знак минуса.

Это объясняется тем, что на самом деле знак «» относится к числовому коэффициенту одночлена,
который стоит справа от знака.

многочлен как сумма одночленов

Любой многочлен можно записать
по правилу знаков
как сумму одночленов.

многочлен как сумма одночленов с коэффициентов

В многочлене знак, который стоит слева от одночлена относится к числовому коэффициенту самого одночлена.

Как найти степень многочлена

Запомните!
!

Степенью многочлена называют наибольшую из степеней входящих в него одночленов.

То есть, чтобы найти степень многочлена, нужно сначала найти
степень каждого одночлена, который входит в
состав многочлена.

Степени многочленов

Многочлен Степень
многочлена

a2
− 3a2b
+ x =

a2(степень одночлена 2)
− 3a2b(степень одночлена 3)
+ x(степень одночлена 1)

3

1
3

x2y2
+ 4x2 =

1
3

x2y2(степень одночлена 4)
+ 4x2(степень одночлена 2)

4

8x2
− 3a
+ 4 =

8x2(степень одночлена 2)
− 3a(степень одночлена 1)
+ 4(степень одночлена 0)


2

Любой одночлен является многочленом.
В самом деле, любой одночлен, по сути, является многочленом, который состоит всего из одного одночлена.

Примеры таких многочленов: 2a2b; 
−3d3;  a.

Число «0» называют нулевым многочленом.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Возведение двучлена в степень

Двучлен — это многочлен, состоящий из двух членов. В прошлых уроках мы возводили двучлен во вторую и третью степень, тем самым получили формулы сокращенного умножения:

(a + b)2 = a+ 2ab + b2

(a + b)3 = a+ 3a2b + 3abb3

Но двучлен можно возводить не только во вторую и третью степень, но и в четвёртую, пятую или более высокую степень.

К примеру, возведём двучлен a + b в четвертую степень:

(a + b)4

Представим это выражение в виде произведения двучлена a + b и куба этого же двучлена

(a + b)(a + b)3

Сомножитель (a + b)3 можно заменить на правую часть формулы куба суммы двух выражений. Тогда получим:

(a + b)(a+ 3a2b + 3abb3)

А это обычное перемножение многочленов. Выполним его:

тпм рис 1

То есть при возведении двучлена a + b в четвертую степень получается многочлен a+ 4a3b + 6a2b+ 4abb4

(a + b)4 = a+ 4a3b + 6a2b+ 4abb4

Возведение двучлена a + b в четвертую степень можно выполнить ещё и так: представить выражение (a + b)4 в виде произведения степеней (a + b)2(a + b)2

(a + b)2(a + b)2

Но выражение (a + b)2 равно a+ 2ab + b2. Заменим в выражении (a + b)2(a + b)2 квадраты суммы на многочлен a+ 2ab + b2

(a+ 2ab + b2)(a+ 2ab + b2)

А это опять же обычное перемножение многочленов. Выполним его. У нас получится тот же результат, что и раньше:

тпм рис 2


Возведение трёхчлена в степень

Трёхчлен — это многочлен, состоящий из трёх членов. Например, выражение a + b + c является трёхчленом.

Иногда может возникнуть задача возвести трёхчлен в степень. Например, возведём в квадрат трехчлен a + b + c

(a + b + c)2

Два члена внутри скобок можно заключить в скобки. К примеру, заключим сумму b в скобки:

((a + b) + c)2

В этом случае сумма a + b будет рассматриваться как один член. Тогда получается, что в квадрат мы возводим не трёхчлен, а двучлен. Сумма a + b будет первым членом, а член c — вторым членом. А как возводить в квадрат двучлен мы уже знаем. Для этого можно воспользоваться формулой квадрата суммы двух выражений:

(a + b)2 = a+ 2ab + b2

Применим эту формулу к нашему примеру:

тпм рис 3

Таким же способом можно возвести в квадрат многочлен, состоящий из четырёх и более членов. Например, возведем в квадрат многочлен a + b + c + d

(a + b + c + d)2

Представим многочлен в виде суммы двух выражений: a + b и c + d. Для этого заключим их в скобки:

((a + b) + (c + d))2

Теперь воспользуемся формулой квадрата суммы двух выражений:

тпм рис 4


Выделение полного квадрата из квадратного трёхчлена

Ещё одно тождественное преобразование, которое может пригодиться при решении задач это выделение полного квадрата из квадратного трёхчлена.

Квадратным трехчленом называют трёхчлен второй степени. Например, следующие трехчлены являются квадратными:

дм рис 7

Идея выделения полного квадрата из таких трехчленов заключается в том, чтобы представить исходный квадратный трехчлен в виде выражения (a + b)c, где (a + b)2 полный квадрат, а c некоторое числовое или буквенное выражение.

Например, выделим полный квадрат из трёхчлена 4x+ 16+ 19.

Для начала нужно построить выражение вида a+ 2ab b2. Строить мы его будем из трехчлена 4x+ 16+ 19. Для начала определимся какие члены будут играть роли переменных a и b

Роль переменной a будет играть член 2x, поскольку первый член трехчлена 4x+ 16+ 19, а именно 4x2 получается если 2x возвести в квадрат:

(2x)2 = 4x2

Итак, переменная a равна 2x

a = 2x

Теперь возвращаемся к исходному трёхчлену и сразу обращаем внимание на выражение 16x. Это выражение является удвоенным произведением первого выражения a (в нашем случае это 2x) и второго пока неизвестного нам выражения b. Временно поставим на его место вопросительный знак:

2 × 2x × ? = 16x

Если внимательно посмотреть на выражение 2 × 2x × ? = 16x, то интуитивно станет понятно, что членом b в данной ситуации является число 4, поскольку выражение 2 × 2x равно 4x, и чтобы получить 16x нужно домножить 4x на 4.

2 × 2x × 4 = 16x

Отсюда делаем вывод, что переменная b равна 4

b = 4

Значит, нашим полным квадратом будет выражение (2x)+ 2 × 2x × 4 + 42

Теперь у нас всё готово для выделения полного квадрата из трёхчлена 4x+ 16+ 19.

Итак, возвратимся к исходному трехчлену 4x+ 16+ 19 и попробуем аккуратно внедрить в него полученный нами полный квадрат (2x)+ 2 × 2× 4 + 42

4x+ 16+ 19 =

Вместо 4x2 записываем (2x)2

4x+ 16+ 19 = (2x)2

Далее вместо 16x записываем удвоенное произведение, а именно 2 × 2x × 4

4x+ 16+ 19 = (2x)2 + 2 × 2x × 4

Далее прибавляем квадрат второго выражения:

4x+ 16+ 19 = (2x)2 + 2 × 2x × 4 + 42

А член 19 пока переписываем как есть:

4x+ 16x + 19 = (2x)2 + 2 × 2x × 4 + 42 + 19

Теперь обратим внимание на то, что полученный нами многочлен (2x)+ 2 × 2× 4 + 4+ 19 не тождественен изначальному трёхчлену 4x+ 16+ 19. Убедиться в этом можно приведя многочлен (2x)+ 2 × 2× 4 + 4+ 19 к стандартному виду:

(2x)+ 2 × 2× 4 + 4+ 19 = 4x+ 16x + 42 + 19

Видим, что получается многочлен 4x+ 16+ 4+ 19, а должен был получиться 4x+ 16+ 19. Это по причине того, что член 42 был искусственно внедрён в изначальный трёхчлен с целью организовать полный квадрата из трёхчлена 4x+ 16+ 19.

Чтобы сохранить значение исходного многочлена, нужно после прибавления члена 42 сразу же вычесть его

4x+ 16x + 19 = (2x)2 + 2 × 2x × 4 + 42 − 42 + 19

Теперь выражение (2x)2 + 2 × 2x × 4 + 42 можно свернуть, то есть записать в виде (a + b)2. В нашем случае получится выражение (2+ 4)2

тпм рис 5

4x+ 16x + 19 = (2x)2 + 2 × 2x × 4 + 42 − 42 + 19 = (2x + 4)2 − 42 + 19

Оставшиеся члены −42 и 19 можно сложить. −42 это −16, отсюда −16 + 19 = 3

4x+ 16x + 19 = (2x)2 + 2 × 2x × 4 + 42 − 42 + 19 = (2x + 4)2 − 42 + 19 = (2+ 4)+ 3

Значит, 4x+ 16+ 19 = (2x + 4)2 + 3


Пример 2. Выделить полный квадрат из квадратного трёхчлена x+ 2+ 2

Сначала построим выражение вида a+2ab + b2. Роль переменной a в данном случае играет x, поскольку xx2.

Следующий член исходного трёхчлена 2x перепишем в виде удвоенного произведение первого выражения (это у нас x) и второго выражения b (это будет 1).

2 × x × 1 = 2x

Если b = 1, то полным квадратом будет выражение x+ 2+ 12.

Теперь вернёмся к исходному квадратному трёхчлену и внедрим в него полный квадрата x+ 2+ 12

x+ 2+ 2 = x+ 2+ 12 − 12 + 2 = (+ 1)+ 1

Как и в прошлом примере член b (в данном примере это 1) после прибавления сразу был вычтен с целью сохранения значения исходного трёхчлена.

Рассмотрим следующее числовое выражение:

9 + 6 + 2

Значение этого выражения равно 17

9 + 6 + 2 = 17

Попробуем выделить в этом числовом выражении полный квадрат. Для этого сначала построим выражение вида a+ 2ab b2. Роль переменной a в данном случае играет число 3, поскольку первый член выражения 9 + 6 + 2, а именно 9 можно представить как 32.

Второй член 6 представим в виде удвоенного произведения первого члена 3 и второго 1

2 × 3 × 1 = 6

То есть переменная b будет равна единице. Тогда полным квадратом будет выражение 3+ 2 × 3 × 1 + 12. Внедрим его в исходное выражение:

32 + 6 + 2 = 3+ 2 × 3 × 1 + 12 − 12 + 2

Свернем полный квадрат, а члены −12 и 2 слóжим:

32 + 6 + 2 = 3+ 2 × 3 × 1 + 12 − 12 + 2 = (3 + 1)+ 1

Получилось выражение (3 + 1)+ 1, которое по прежнему равно 17

(3 + 1)2+1 = 42 + 1 = 17

Допустим, у нас имеются квадрат и два прямоугольника. Квадрат со стороной 3 см, прямоугольник со сторонами 2 см и 3 см, а также прямоугольник со сторонами 1 см и 2 см

три пр шаг 2

Вычислим площадь каждой фигуры. Площадь квадрата будет составлять 3= 9 см2, площадь розового прямоугольника — 2 × 3 = 6 см2, площадь сиреневого — 1 × 2 = 2 см2

три пр шаг 3

Запишем сумму площадей этих прямоугольников:

9 + 6 + 2

Это выражение можно понимать как объединение квадрата и двух прямоугольников в единую фигуру:

три пр шаг 4

Тогда получается фигура, площадь которой 17 см2. Действительно, в представленной фигуре содержится 17 квадратов со стороной 1 см.

Попробуем из имеющейся фигуры образовать квадрат. Причем максимально большой квадрат. Для этого будем использовать части от розового и сиреневого прямоугольника.

Чтобы образовать максимально большой квадрат из имеющейся фигуры, можно желтый квадрат оставить без изменений, а половину от розового прямоугольника прикрепить к нижней части желтого квадрата:

три пр шаг 5

Видим, что до образования полного квадрата не хватает еще одного квадратного сантиметра. Его мы можем взять от сиреневого прямоугольника. Итак, возьмем один квадрат от сиреневого прямоугольника и прикрепим его к образуемому большому квадрату:

три пр шаг 6

Теперь внимательно посмотрим к чему мы пришли. А именно на желтую часть фигуры и розовую часть, которая по сути увеличила прежний жёлтый квадрат. Не означает ли это то, что была сторона квадрата равная 3 см, и эта сторона была увеличена на 1 см, что привело в итоге к увеличению площади?

три пр шаг 9

(3 + 1)2

Выражение (3 + 1)2 равно 16, поскольку 3 + 1 = 4, а 42 = 16. Этот же результат можно получить, если воспользоваться формулой квадрата суммы двух выражений:

(3 + 1)2 = 32 + 6 + 1 = 9 + 6 + 1 = 16

Действительно, в образовавшемся квадрате содержится 16 квадратов.

Оставшийся один квадратик от сиреневого прямоугольника можно прикрепить к образовавшемуся большому квадрату. Ведь речь изначально шла о единой фигуре:

три пр шаг 7

(3 + 1)+ 1

Прикрепление маленького квадратика к имеющемуся большому квадрату описывается выражением (3 + 1)+ 1. А это есть выделение полного квадрата из выражения 9 + 6 + 2

9 + 6 + 2 = 3+ 6 + 2 = 3+ 2 × 3 × 1 + 1− 1+ 2 = (3 + 1)+ 1

Выражение (3 + 1)2 + 1, как и выражение 9 + 6 + 2 равно 17. Действительно, площадь образовавшейся фигуры равна 17 см2.

три пр шаг 8


Пример 4. Выполним выделение полного квадрата из квадратного трёхчлена x+ 6x + 8

x+ 6x + 8 = x+ 2 × x × 3 + 3− 3+ 8 = (x + 3)− 1


В некоторых примерах при построении выражения a+ 2ab b2 не бывает возможным сразу определить значения переменных a и b.

Например, выполним выделение полного квадрата из квадратного трёхчлена x+ 3+ 2

Переменной a соответствует x. Второй член 3x нельзя представить в виде удвоенного произведения первого выражения и второго. В этом случае второй член следует умножить на 2, и чтобы значение исходного многочлена не изменилось, сразу же выполнить деление на 2. Выглядеть это будет так:

тпм рис 6

Получившаяся дробь тпм рис 7 и содержит значения переменных a и b. Наша задача суметь правильно их распознать. Перепишем эту дробь в виде произведения множителя 2, дроби три вторых и  переменной x

тпм рис 8

Теперь второй член представлен в виде удвоенного произведения первого выражения и второго. Переменная a, как было сказано ранее, равна x. А переменная b равна дроби три вторых

тпм рис 9

Возвращаемся к нашему примеру и прибавляем квадрат второго выражения, и чтобы значение выражения не изменилось, сразу же вычитаем его:

тпм рис 10

Прибавляем оставшийся член 2

тпм рис 11

Свернём полный квадрат:

тпм рис 12

Оставшийся квадрат второго выражения и число 2 можно сложить. В итоге получим:

тпм рис 13


Пример 6. Выполним выделение полного квадрата из квадратного трёхчлена 9x+ 18x + 7

тпм рис 14


Пример 7. Выполним выделение полного квадрата из квадратного трёхчлена x2 − 10x + 1

В данном трёхчлене первые два члена связаны знаком «минус». В этом случае как и раньше нужно выделить полный квадрат, но это будет квадрат разности. Проще говоря, нужно построить выражение вида a− 2ab + b2.

тпм рис 15


Пример 8. Выполним выделение полного квадрата из квадратного трёхчлена 16x+ 4x + 1

тпм рис 16


Пример 9. Разложить многочлен x+ 6+ 8 на множители при помощи выделения полного квадрата.

Сначала выделим полный квадрат:

тпм рис 17

Получившийся многочлена (+ 3)− 1 является разностью квадратов, поскольку единица может быть представлена в виде 12. Воспользуемся формулой разности квадратов и разложим многочлен (+ 3)− 1 на множители:

тпм рис 18


Задания для самостоятельного решения

Задание 1. Выполните возведение многочлена в степень:

Решение:

Задание 2. Выполните возведение многочлена в степень:

Решение:

Задание 3. Выполните возведение многочлена в степень:

Решение:

Задание 4. Выделите полный квадрат из квадратного трёхчлена:

Решение:

Задание 5. Выделите полный квадрат из квадратного трёхчлена:

Решение:

Задание 6. В следующем выражении выделите полный квадрат:

Решение:

Задание 7. В следующем выражении выделите полный квадрат:

Решение:

Задание 8. В следующем выражении выделите полный квадрат:

Решение:

Задание 9. В следующем выражении выделите полный квадрат:

Решение:

Задание 10. В следующем выражении выделите полный квадрат:

Решение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


План урока:

Многочлен, вычисление значений многочлена

Стандартный вид многочлена

Сложение и вычитание многочленов

Умножение одночлена на многочлен

Умножение многочлена на многочлен

Многочлен, вычисление значений многочлена

В предыдущем уроке мы познакомились с понятием одночлена. При записи одночленов не используется операция сложения. Если же возникает необходимость сложить несколько одночленов, то в результате получается многочлен.

1 opredelenie

В качестве примера многочленов можно привести следующие выражения:

2 formula

Стоит обратить внимание, что в записи многочлена может использоваться и знак минус, при этом его всё равно можно считать суммой одночленов, а не разностью. Дело в том, что можно условно считать, что знак минус относится к коэффициенту одночлена, например:

3 formula

Для некоторых видов многочленов существуют особые названия. Если многочлен состоит из двух одночленов, то его называют двучленом. Многочлен, состоящий из 3 одночленов, называют трехчленом.

Иногда в литературе используются такие термины, как «моном» (синоним «одночлена»), «бином» (синоним «двучлена»), «полином» (синоним «многочлена»).

Если известно значение переменных, входящих в полином, то возможно вычисление значения многочлена.

Пример. Найдем значение полинома x3+2x2+5y+1 при значении x=2 и y = 3.

Решение.

4 formula

Пример. Вычислим значение полинома v4– d4при значении переменных v = 4 и d = 3.

Решение.

5 formula

Стандартный вид многочлена

Иногда некоторые мономы, входящие в состав полинома, имеют одинаковую буквенную часть. Например, в выражении

6 formula

первый и третий мономы отличаются лишь своими коэффициентами. Такие слагаемые называются подобными.

7 opredelenie

У подобных слагаемых одинаковый набор переменных, и при этом они возведены в одинаковые степени. Так, подобными являются мономы:

  • 7a2s3 и 2a2s3, так как совпадает буквенная часть a2s3;
  • 5v9m7t5 и – 4v9m7t5, так как у них одинаковая буквенная часть – 4v9m7t5;
  • a2 и 1000a2, так как есть одинаковая буквенная часть a2.

Также подобными слагаемыми можно считать и числа без буквенной части, например 8 и 2.

В качестве примеров неподобных слагаемых можно привести:

  • 7a2s3и 2a2s4 – у переменной s разные степени (3 и 4) в этих мономах;
  • 4x2yи 5x2– в буквенной части первого монома есть переменная y, а у второго его нет.

У подобных слагаемых может быть изменен порядок множителей. Так, подобными являются мономы 5p2u4и 9u4p2, так как у одних и тех же переменных стоят одинаковые показатели.

Подобные слагаемые можно складывать друг с другом. В этом случае буквенная часть останется неизменной, а коэффициенты сложатся друг с другом. Например:

8 formula

Такое действие называется приведением подобных слагаемых.

Пример. Приведите подобные слагаемые полинома:

9 formula

Решение. В данном полиноме есть три пары подобных слагаемых:

10 formula

Сгруппируем подобные слагаемые друг с другом, после чего сложим их:

11 formula

Если в полиноме нет подобных слагаемых, а все входящие в него мономы записаны в стандартном виде, то его называют многочленом стандартного вида.

12 opredelenie

Что такое одночлен стандартного вида, можно узнать из ранее изученного урока. Примерами полиномов стандартного вида являются:

13 formula

Далее рассмотрим понятие степени многочлена. Каждый из входящих в полином мономов имеет свой показатель степени(см. урок 3). Степенью полинома стандартного вида называется наибольшая из всех степеней одночленов, входящих в его состав.

14 opredelenie

Рассмотрим пример. Дан трехчлен 2y2 + x3y + 5y2x, требуется найти его степень.

Решение. Рассматриваемый трехчлен находится в стандартном виде. Он состоит из трех мономов:

15 formula

Найдем степень каждого из них:

  • 2y2 – степень равна 2;
  • x3y – степень равна 4 = (3+1);
  • 5y2x – степень равна 3 = (2+1).

Получается, что максимальную степень, равную 4, имеет моном x3y. Соответственно, и степень трехчлена также равна 4.

Ответ: 4.

Если же рассматривается полином, не находящийся в стандартном виде, то для вычисления его степени сначала надо привести полином к этому виду.

Пример. Найдите степень полинома с6 + ac2 + 9 – с6.

Решение. На первый взгляд может показаться, что она равна 6, так как один из его мономов, с6, имеет показатель, равный 6. Но это не так. Приведем полином к стандартному виду:

16 formula

Оказалось, что подобные мономы c6 и – с6 сократились. Получившийся полином состоит из двух мономов, ac2 и 9, чьи степени равны 3 и 0 соответственно. Значит, и степень всего двучлена равна трём.

Ответ: 3.

Определение степени полинома потребуется для решения уравнений в старших классах. Если в одной части уравнения стоит полином, например, третьей степени, в другой части – ноль, то его называют уравнением третьей степени:

17 formula

Аналогично выделяют уравнения первой, второй, четвертой и любой другой степени.

В зависимости от степени уравнения используются различные методы их решения. Ранее (ссылка на урок уравнения) мы уже научились решать линейные уравнения, которые являются уравнениями 1-ой степени. Обычно чем выше степень уравнения, тем сложнее его решать. Также существует интересная зависимость – количество корней уравнения не превышает его степень (за исключением одного частного случая, при котором есть бесконечное множество решений).

Особое значение в алгебре имеют те полиномы, в которых содержится только одна переменная, например:

  • m2 + 4m4 + 5m3 +9(здесь переменная m);
  • c6 + 1(единственная переменная – с);
  • 3x + 10(запись содержит только x);
  • – y4 + 89y10– 2,56y100(используется только y).

Их называют полиномами с одной переменной. Обычно их принято записывать по мере убывания степеней одночленов. То есть впереди пишется моном с максимальной степенью, а в самом конце – число без буквенной части:

18 formula

То число, которое стоит перед одночленом в наибольшей степени, называют старшим коэффициентом, а число, не имеющее буквенной части – свободным членом (реже свободным коэффициентом):

19 formula

Для некоторых полиномов с одной переменной есть особое название. Так, многочлен второй степени называют квадратным трехчленом. Дело в том, вторую степень в математике часто называют квадратом, а состоит квадратный трехчлен из трех монов. В качестве примера можно привести:

20 formula

21 formula

Конечно, квадратный многочлен может содержать и меньше трех одночленов:

22 formula

В этом случае иногда бывает удобно добавить «недостающее» слагаемое, поставив перед ним коэффициент, равный нулю:

23 formula

В общем случае квадратным трехчленом называют выражение вида

24 formula

где x – произвольная переменная, а, b и c являются произвольными действительными числами. При этом a не должно равняться нулю, иначе получится полином уже только 1-ой степени.

Квадратные трехчлены будут изучены подробнее в старших классах при изучении темы «Квадратные уравнения».

Сложение и вычитание многочленов

Полиномы можно складывать друг с другом, а также вычитать. При этом, возможно, придется приводить подобные слагаемые.

Пример. Произведите сложение многочленов 8z2 + 3z +12 и 2z4 + 9z.

Решение. Запишем интересующую нас сумму:

25 formula

Если перед скобками стоит знак «+», то можно просто опустить скобки:

26 formula

Осталось привести полином к стандартному виду. Здесь есть лишь одна пара подобных одночленов, 3z и 9z:

27 formula

При вычитании многочленов надо учитывать следующее правило:

28 opredelenie

Пример. Вычтите из полинома x5 + 3x3– 7y3 + 9x2 + 17 трехчлен 2y4 + 0,4y3– 25.

Решение:

Запишем разность полиномов:

29 formula

Первые скобки можно опустить, так как перед ними нет никакого знака. Перед вторыми скобками стоит минус, а потому для раскрытия скобок знаки слагаемых в них надо поменять на противоположные. Вместо 2y4 надо написать – 2y4, вместо 0,4y3 поставим – 0,4y3, а – 25 заменим на + 25:

30 formula

Осталось привести подобные слагаемые:

31 formula

Стоит заметить, что при сложении и вычитании полиномов их степени не могут увеличиться. Так, если складываются два полинома 5-ой и 4-ой степени, то в результате получится многочлен, чья степень будет не больше 5.

Рассмотрим более сложный пример с вложенными (внутренними) скобками. Необходимо упростить выражение

32 formula

33 formula

Решение. Раскроем первые скобки. Перед ними стоит минус, поэтому знаки слагаемых должны поменяться на противоположные. Однако обратите внимание, что здесь есть вложенные скобки (2a2b – ab) и (ab2 + 2a2b). Менять следует только знак перед ними, а знаки внутри вложенных скобок не меняются! Они рассматриваются как единые, неизменяемые слагаемые:

34 formula

Теперь раскроем оставшиеся две скобки:

35 formula

Приведем подобные слагаемые. Для наглядности пары подобных мономов подчеркнуты. Одной чертой подчеркнуты мономы с буквенной частью ab2, двумя чертами – мономы с a2b, а штриховой линией выделены мономы с буквенной частью ab:

36 formula

Умножение одночлена на многочлен

Напомним распределительный закон умножения:

37 formula

Используя этот закон, можно производить умножение одночлена на многочлен.

Пример. Перемножьте выражения 5v2 и 9v3 + 2t4.

Решение: Запишем произведение выражений:

38 formula

Такое раскрытие скобок можно объяснить с помощью «метода фонтанчика»:

39 formula

От множителя 5v2 строят линии (синего цвета к) КАЖДОМУ слагаемому в скобке. Каждой такой линии соответствует отдельное произведение в получаемом полиноме.

После раскрытия скобок получили два произведения одночлена на одночлен, которые считаем по отдельности (см. урок 3):

40 formula

Можно сформулировать следующее правило умножения многочлена на одночлен:

41 opredelenie

Ещё один пример. Перемножьте полином 2x2y + 4xy2 – 1 и моном – 3ху.

Решение:

42 formula

Здесь метод «фонтанчика» будет выглядеть так:

43 formula

Можно заметить, что после умножения монома на полином получится столько одночленов, сколько их было в исходном полиноме. Это правило можно использовать для самоконтроля.

Умножение многочлена на многочлен

Пусть нам надо перемножить два полинома, a+bи c+d. Запишем их произведение:

44 formula

Заменим выражение a + b переменной k:

45 formula

Теперь исходное произведение можно выразить как произведение монома и полинома:

46 formula

Проведем обратное преобразование, заменив k на a + b:

47 formula

Наконец, раскроем скобки в этом выражении:

48 formula

Эту формулу можно проиллюстрировать геометрически. Рассмотрим прямоугольник со сторонами a + b и c + d:

49 raschety

Площадь этого прямоугольника, как и любого другого, равна произведению его сторон, то есть(a + b)(c + d).С другой стороны, она состоит из 4 прямоугольников, чьи площади также вычисляются как произведения их сторон, и составляют ac, bc, ad и bd. Поэтому можно записать равенство

50 formula

Получается, что для умножения многочлена на многочлен нужно перемножать попарно все мономы, входящие в их состав, после чего сложить их.

51 opredelenie

Если в одном полиноме содержится m слагаемых, а в другом n, то результатом их перемножения окажется новый полином, содержащий m•n мономов (до приведения подобных слагаемых). Для перемножения многочленов также используется метод «фонтанчика».

Пример. Найдем произведение выражений 3a2 – 4ab + b2и 2a– b.

Решение: В первом полиноме содержится 3 монома, а во втором – 2, поэтому после их перемножения мы получим сумму 3•2 = 6 одночленов:

52 formula

Раскрытие скобок «фонтанчиком» будет выглядеть так:

53 formula

В результате действительно получилась сумма 6 мономов. Осталось вычислить каждый из них, после чего привести подобные слагаемые:

54 formula

Заметим, что при перемножении полиномов происходит сложение степеней многочленов. Действительно, в рассмотренном выше примере мы умножили полином второй степени 3a2 – 4ab + b2 на полином первой степени 2a– b, и получили в результате многочлен 3-ей (2+1) степени.

Также возможно умножение многочленов в столбик. Особенно это удобно делать в случае с полиномами с одной переменной.

Пример. Найдите произведение выражений 2x3 + 3x2 +5x + 9 и x2 + 4x + 7.

Решение: Запишем полиномы в столбик, один под другим:

55 formula

Далее умножим самый правый моном второго многочлена, то есть число 7, на первый полином, и запишем его ниже:

56 raschety

Далее умножим следующий моном, 4х, на первый полином, и запишем результат ещё ниже, причем сместим запись чуть влево, чтобы подобные члены оказались друг под другом:

57 raschety

Также умножим последний одночлен, x2, на первый полином:

58 raschety

Осталось сложить подобные слагаемые (то есть переменные х с одинаковыми степенями), которые записаны друг под другом:

59 raschety

Ещё раз цветом выделим подобные слагаемые и результаты их суммирования:

60 raschety

Ответ: 2х5 + 11х4 + 31х3 + 50х2 + 71х +63.

Понравилась статья? Поделить с друзьями:
  • Как составить схематическую задачу 2 класс
  • Как найти уплаченную госпошлину
  • Как найти дополнение инфинитив
  • Как составить декларацию по специальной оценке условий труда
  • Как составить информационное письмо для рассылки