Вычисление правильного восьмиугольника (многоугольник с восемью вершинами). Эта форма хорошо нам знакома, так как используется на некоторых дорожных знаках.
.
Поделиться расчетом:
Калькулятор восьмиугольника, введите одно известное значение
Длина стороны(a)
Меньшая диагональ(d1)
Средняя диагональ(e)
Большая диагональ(d3)
Периметр(p)
Площадь(S)
Радиус описанной окружности(R)
Радиус вписанной окружности(r)
Вычислить
Очистить
Формулы:
d = a * √4 + 2 * √2
e = a * ( 1 + √2 )
f = a * √2 + √2
Высота = e = 2 * r
Р = 8 * а
S = 2 * a2 * ( 1 + √2 )
R = a / 2 * √4 + 2 * √2
r = a / 2 * ( 1 + √2 )
Угол: 135°, 20 диагоналей.
В публикации представлены онлайн-калькуляторы и формулы для расчета длины стороны правильного многоугольника через радиус вписанной или описанной окружности.
-
Расчет длины стороны
- Через радиус вписанной окружности
- Через радиус описанной окружности
Расчет длины стороны
Инструкция по использованию: введите радиус вписанной (r) или описанной (R) окружности, укажите количество вершин правильного многоугольника (n), затем нажмите кнопку “Рассчитать”. В результате будет вычислена длина стороны фигуры (a).
Через радиус вписанной окружности
Формула расчета
Через радиус описанной окружности
Формула расчета
Длина стороны правильного многоугольника
Определение длины стороны правильного многоугольника по радиусу вписанной окружности
От нашего нового пользователя поступил вот такой запрос:
«Калькулятор должен вычислять длину стороны правильного многоугольника (шестиугольник, пятигольник) по указанному диаметру (или радиусу) описанной окружности».
Удовлетворяем запрос оперативно. Заметим, что для решения задачи нужно найти длину третьей стороны треугольника, исходящего из центра описанной окружности и опирающегося на две соседние вершины правильного многоугольника. Про этот треугольник известно многое: длины двух сторон — это радиусы описанной окружности, и угол, как нетрудно заметить, — это 360, деленное на число вершин правильного многоугольника. Далее используется соотношение из теоремы синусов — две стороны относятся друг к другу также как и синусы противолежащих им углов. Поскольку треугольник равнобедренный и сумма углов в треугольнике равна 180 градусам, угол, противолежащий радиусу вычисляется тривиально. Результат — ниже.
Калькулятор расчета стороны правильного многоугольника через радиусы окружностей
В публикации представлены онлайн-калькуляторы и формулы для расчета длины стороны правильного многоугольника через радиус вписанной или описанной окружности.
Расчет длины стороны
Инструкция по использованию: введите радиус вписанной (r) или описанной (R) окружности, укажите количество вершин правильного многоугольника (n), затем нажмите кнопку “Рассчитать”. В результате будет вычислена длина стороны фигуры (a).
Восьмиугольник, виды, свойства и формулы
Формулы расчёта параметров правильного восьмиугольника
- t — длина стороны восьмиугольника
- r — радиус вписанной окружности
- R — радиус описанной окружности
- S — площадь восьмиугольника
- k — константа, равная (1+2)<displaystyle (1+<sqrt <2>>)> ≈ 2,414213562373095
Так как правильный восьмиугольник можно получить соответствующим отсечением углов квадрата со стороной kt<displaystyle kt>, радиус вписанной окружности, радиус описанной окружности и площадь правильного восьмиугольника можно вычислить и без использования тригонометрических функций:
Радиус вписанной окружности правильного восьмиугольника:
Радиус описанной окружности правильного восьмиугольника:
Площадь правильного восьмиугольника:
Через сторону восьмиугольника
Через радиус описанной окружности
Через апофему (высоту)
Правильный восьмиугольник (понятие и определение):
Правильный восьмиугольник (октагон) – это правильный многоугольник с восемью сторонами.
В свою очередь правильный многоугольник – это многоугольник, у которого все стороны и углы одинаковые.
Правильный восьмиугольник – это восьмиугольник, у которого все стороны равны, а все внутренние углы равны 135°.
Рис. 3. Правильный восьмиугольник
Правильный восьмиугольник имеет 8 сторон, 8 углов и 8 вершин.
Углы правильного восьмиугольника образуют восемь равнобедренных треугольников.
Правильный восьмиугольник можно построить с помощью циркуля и линейки: проведя к сторонам квадрата серединные перпендикуляры и соединив точки их пересечения с описанной окружностью квадрата с его сторонами.
Литература
- Pierre Wantzel. Recherches sur les moyens de Reconnaître si un Problème de géométrie peau se résoudre avec la règle et le compas // Journal de Mathématiques. — 1837. — С. 366–372.
- W. W. Rose Ball, H. S. M.Coxeter. Mathematical recreations and Essays. — Thirteenth edition. — New York: The MacMillan company, 1947. — С. 141.
Перевод: Математические эссе и развлечения / перевод Н.И. Плужниковой, А.С.Попова, Г.М. Цукерман, под редакцией И.М.Яглома. — Москва: «Мир», 1986. — С. 156.
Применение восьмиугольников
Дорожный знак «Движение без остановки запрещено»
Восьмиугольный план Купола Скалы
В странах, принявших Венскую конвенцию о дорожных знаках и сигналах (в том числе в России), а также во многих других странах, знак «Движение без остановки запрещено» имеет вид красного восьмиугольника.
Восьмиугольные формы часто используются в архитектуре. Купол Скалы имеет восьмиугольный план. Башня Ветров в Афинах — ещё один пример восьмиугольной структуры. Восьмиугольный план встречается также в архитектуре церквей, таких как Собор Святого Георгия (Аддис-Абеба), Сан-Витале (в городе Равенна, Италия), Замок Кастель-дель-Монте (Апулия, Италия), Флорентийский баптистерий и . Центральное пространство в Ахенский собор, Капелла Карла Великого имеют планы в виде правильного восьмиугольника.
Построение
Точное построение
Проводим большую окружность k₁ (будущую описанную окружность семнадцатиугольника) с центром O.
Проводим её диаметр AB.
Строим к нему перпендикуляр m, пересекающий k₁ в точках C и D.
Отмечаем точку E — середину DO.
Посередине EO отмечаем точку F и проводим отрезок FA.
Строим биссектрису w₁ угла ∠OFA.
Строим w₂ — биссектрису угла между m и w₁, которая пересекает AB в точке G.
Проводим s — перпендикуляр к w₂ из точки F.
Строим w₃ — биссектрису угла между s и w₂. Она пересекает AB в точке H.
Строим окружность Фалеса (k₂) на диаметре HA. Она пересекается с CD в точках J и K.
Проводим окружность k₃ с центром G через точки J и K. Она пересекается с AB в точках L и N
Здесь важно не перепутать N с M, они расположены очень близко.
Строим касательную к k₃ через N.
Точки пересечения этой касательной с исходной окружностью k₁ — это точки P₃ и P₁₄ искомого семнадцатиугольника. Если принять середину получившейся дуги за P₀ и отложить дугу P₀P₁₄ по окружности три раза, все вершины семнадцатиугольника будут построены.
Примерное построение
Следующее построение хоть и приблизительно, но гораздо более удобно.
- Ставим на плоскости точку M, строим вокруг неё окружность k и проводим её диаметр AB;
- Делим пополам радиус AM три раза по очереди по направлению к центру (точки C, D и E).
- Делим пополам отрезок EB (точка F).
- строим перпендикуляр к AB в точке F.
Вкратце: строим перпендикуляр к диаметру на расстоянии 9/16 диаметра от B.
Точки пересечения последнего перпендикуляра с окружностью являются хорошим приближением для точек P₃ и P₁₄.
При этом построении получается относительная ошибка в 0,83%. Углы и стороны получаются таким образом немного больше, чем нужно. При радиусе 332,4 мм сторона получается длиннее на 1 мм.
Признаки и свойства
Не всегда получается верно идентифицировать пятиугольник. Для этого математики предлагают признаки, которые применимы только к правильной фигуре. К ним можно отнести следующие:
Стороны равны между собой.
Любой угол правильного пятиугольника равен остальным его углам.
Следует отметить, что признаки справедливы для любого правильного многогранника. Пять осей симметрии имеет правильный пятиугольник (сколько сторон, столько и осей). Пентагон обладает некоторыми свойствами, которые будут очень полезны при решении задач. К ним можно отнести следующие:
Равенство сторон.
Углы равны по 108 градусов.
Центры вписанной и описанной окружностей совпадают.
Сумма внутренних углов равна 180 * (5 – 2) = 540 (градусов), а внешних – 360.
Количество диагоналей соответствует 5.
Значение площади кольца, которое образуется между вписанным и описанным кругами, эквивалентно произведению квадрата длины стороны на константу Pi / 4.
Биссектрисы, проведенные через центр, равны.
Диагонали — трисектрисы внутренних углов. Одна диагональ делит его на 1/3 и 2/3 части.
Отношение диагонали к стороне эквивалентно «золотому сечению» и равно [1 + 5^(1/2)] / 2.
Другие восемнадцатиугольники фигуры
Звёздчатые 18<displaystyle 18>-угольники имеют символы <18n><displaystyle <18/n>>. Существует два правильных звёздчатых многоугольника: 185<displaystyle <18/5>> и <187><displaystyle <18/7>>. Они используют те же самые вершины, но соединяют каждую пятую или седьмую вершину. Имеются также составные восемнадцатиугольники: <182><displaystyle <18/2>> эквивалентен 2<9><displaystyle 2<9>> (двум девятиугольникам), <183><displaystyle <18/3>> эквивалентен 3<6><displaystyle 3<6>> (трём шестиугольникам), <184><displaystyle <18/4>> и <188><displaystyle <18/8>> эквивалентны 2<92><displaystyle 2<9/2>> и 2<94><displaystyle 2<9/4>> (двум эннеаграммам), <186><displaystyle <18/6>> эквивалентен 6<3><displaystyle 6<3>> (6 <displaystyle 6>равносторонним треугольникам), и, наконец, <189><displaystyle <18/9>> эквивалентен 9<2><displaystyle 9<2>> (девять двуугольников).
От нашего нового пользователя поступил вот такой запрос:
«Калькулятор должен вычислять длину стороны правильного многоугольника (шестиугольник, пятигольник) по указанному диаметру (или радиусу) описанной окружности».
Удовлетворяем запрос оперативно. Заметим, что для решения задачи нужно найти длину третьей стороны треугольника, исходящего из центра описанной окружности и опирающегося на две соседние вершины правильного многоугольника. Про этот треугольник известно многое: длины двух сторон — это радиусы описанной окружности, и угол, как нетрудно заметить, — это 360, деленное на число вершин правильного многоугольника. Далее используется соотношение из теоремы синусов — две стороны относятся друг к другу также как и синусы противолежащих им углов. Поскольку треугольник равнобедренный и сумма углов в треугольнике равна 180 градусам, угол, противолежащий радиусу вычисляется тривиально. Результат — ниже.
Определение длины стороны правильного многоугольника по радиусу описанной окружности
Радиус описанной окружности
Число сторон правильного многоугольника
Точность вычисления
Знаков после запятой: 2
Длина стороны правильного многоугольника
P.S. В комментариях некто Александр поинтересовался, а как же найти длину стороны по радиусу вписанной окружности?
Отвечаю — с вписанной окружностью все гораздо проще. Надо рассмотреть треугольник, образованный перпендикуляром к точке касания окружности и многоугольника, половиной стороны многоугольника и линией от центра окружности до ближайшей к перпендикуляру вершины многоугольника. Этот треугольник перпендикулярный, и острый угол его равен 360, деленное на число вершин правильного многоугольника и еще пополам. Половина длины стороны находится легко — это радиус (прилежащий катет), умноженный на тангенс острого угла. Домножаем затем на два — получаем искомую длину стороны. Результат — ниже.
Определение длины стороны правильного многоугольника по радиусу вписанной окружности
Радиус вписанной окружности
Число сторон правильного многоугольника
Точность вычисления
Знаков после запятой: 2
Длина стороны правильного многоугольника
Формулы:
d = a * √ 4 + 2 * √2
e = a * ( 1 + √ 2 )
f = a * √ 2 + √2
p = 8 * a
S = 2 * a² * ( 1 + √2 )
re = a / 2 * √ 4 + 2 * √2
ri = a / 2 * ( 1 + √2 )
Длина, высота, периметр и радиус имеют одинаковые метрические единицы (например, метры), площадь — те же единицы, возведенные в квадрат (например, квадратный метр).