Содержание
- Определение стороны окружности
- Формулы стороны окружности
- Ⅰ. Через диаметр и центральный угол
- Ⅱ. Через площадь и центральный угол
- Ⅲ. Через периметр и центральный угол
- Пример решения задач по теме сторона окружности
Определение стороны окружности
Сторона окружности — это длина дуги окружности.
Длина дуги численно равна стороне
окружности, поэтому более распространено
понятие дуги окружности.
На рисунке 1, изображена окружность,
обладающая следующими величинами:
- O — точка, являющаяся
центром окружности; - R — радиус
окружности; - α — центральный
угол окружности; - L — сторона
окружности;
Длину стороны L, окружности,
с центром в точке O, можно
найти следующим образом:
Ⅰ. Умножить радиус окружности на π,
получившееся разделить на 180 градусов.
Ⅱ. Полученный результат умножить на угол.
Также, все это можно сделать, зная одну из
известных формул стороны окружности:
[ L = frac{ pi R}{180} cdot alpha ]
Формулы стороны окружности
Ⅰ. Через диаметр и центральный угол
Сторону окружности L, можно найти, разделив
произведение половины диаметра и π на 180 градусов.
Затем умножить полученное значение на угол.
[ L = frac{ frac{D}{2} cdot pi}{180} cdot a ]
Ⅱ. Через площадь и центральный угол
[ L = frac{ sqrt{frac{S}{pi}} cdot pi}{180} cdot alpha ]
Эта формула, примечательна тем, что
для нахождения длины, не обязательно
знать радиус — главное знать площадь.
Ⅲ. Через периметр и центральный угол
[ L = frac{frac{P}{2pi}cdot pi}{180} cdot alpha ]
Самая краткая запись формулы
стороны окружности.
Пример решения задач по теме сторона окружности
Возьмем для удобства π равное 3.14.
Ⅰ.
Дано: Диаметр равен 6, центральный равен 180.
Найти: Длина стороны окружности — ?
Решение:
( L = frac{frac{6}{180} cdot pi}{180} cdot 180 = frac{3 pi}{180} cdot 180 = 3pi = 9.42 )
Ⅱ.
Дано: Периметр равен 100, центральный угол равен 60.
Найти: Длина стороны окружности — ?
Решение:
( L = frac{100}{180} cdot 60 = 0.55 cdot 60 = 33 )
Сторона окружности
Определение стороны окружности
Сторона окружности — это длина дуги окружности.
Длина дуги численно равна стороне
окружности, поэтому более распространено
понятие дуги окружности.
На рисунке 1, изображена окружность,
обладающая следующими величинами:
- O — точка, являющаяся
центром окружности; - R — радиус
окружности; - α — центральный
угол окружности; - L — сторона
окружности;
Длину стороны L, окружности,
с центром в точке O, можно
найти следующим образом:
Ⅰ. Умножить радиус окружности на π,
получившееся разделить на 180 градусов.
Ⅱ. Полученный результат умножить на угол.
Также, все это можно сделать, зная одну из
известных формул стороны окружности:
Формулы стороны окружности
Ⅰ. Через диаметр и центральный угол
Сторону окружности L, можно найти, разделив
произведение половины диаметра и π на 180 градусов.
Затем умножить полученное значение на угол.
Ⅱ. Через площадь и центральный угол
Эта формула, примечательна тем, что
для нахождения длины, не обязательно
знать радиус — главное знать площадь.
Ⅲ. Через периметр и центральный угол
Самая краткая запись формулы
стороны окружности.
Пример решения задач по теме сторона окружности
Возьмем для удобства π равное 3.14.
Ⅰ.
Дано: Диаметр равен 6, центральный равен 180.
Найти: Длина стороны окружности — ?
Решение:
( L = frac<frac<6> <180>cdot pi> <180>cdot 180 = frac<3 pi> <180>cdot 180 = 3pi = 9.42 )
Ⅱ.
Дано: Периметр равен 100, центральный угол равен 60.
Найти: Длина стороны окружности — ?
Решение:
( L = frac<100> <180>cdot 60 = 0.55 cdot 60 = 33 )
Как найти сторону окружности если известен радиус
Сторона окружности
Определение стороны окружности
Сторона окружности — это длина дуги окружности.
Длина дуги численно равна стороне
окружности, поэтому более распространено
понятие дуги окружности.
На рисунке 1, изображена окружность,
обладающая следующими величинами:
- O — точка, являющаяся
центром окружности; - R — радиус
окружности; - α — центральный
угол окружности; - L — сторона
окружности;
Длину стороны L, окружности,
с центром в точке O, можно
найти следующим образом:
Ⅰ. Умножить радиус окружности на π,
получившееся разделить на 180 градусов.
Ⅱ. Полученный результат умножить на угол.
Также, все это можно сделать, зная одну из
известных формул стороны окружности:
Формулы стороны окружности
Ⅰ. Через диаметр и центральный угол
Сторону окружности L, можно найти, разделив
произведение половины диаметра и π на 180 градусов.
Затем умножить полученное значение на угол.
Ⅱ. Через площадь и центральный угол
Эта формула, примечательна тем, что
для нахождения длины, не обязательно
знать радиус — главное знать площадь.
Ⅲ. Через периметр и центральный угол
Самая краткая запись формулы
стороны окружности.
Пример решения задач по теме сторона окружности
Возьмем для удобства π равное 3.14.
Ⅰ.
Дано: Диаметр равен 6, центральный равен 180.
Найти: Длина стороны окружности — ?
Решение:
( L = frac cdot pi> cdot 180 = frac cdot 180 = 3pi = 9.42 )
Ⅱ.
Дано: Периметр равен 100, центральный угол равен 60.
Найти: Длина стороны окружности — ?
Решение:
( L = frac cdot 60 = 0.55 cdot 60 = 33 )
Калькулятор расчета стороны правильного многоугольника через радиусы окружностей
В публикации представлены онлайн-калькуляторы и формулы для расчета длины стороны правильного многоугольника через радиус вписанной или описанной окружности.
Расчет длины стороны
Инструкция по использованию: введите радиус вписанной (r) или описанной (R) окружности, укажите количество вершин правильного многоугольника (n), затем нажмите кнопку “Рассчитать”. В результате будет вычислена длина стороны фигуры (a).
Как найти радиус окружности
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Основные понятия
Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.
Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.
Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.
Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.
Возможно тебе интересно узнать — как найти длину окружности?
Формула радиуса окружности
Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.
Если известна площадь круга
R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.
Если известна длина
R = P : 2 * π, где P — длина (периметр круга).
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).
Если известен диаметр окружности
R = D : 2, где D — диаметр.
Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.
Если известна диагональ вписанного прямоугольника
R = d : 2, где d — диагональ.
Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:
d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.
Если известна сторона описанного квадрата
R = a : 2, где a — сторона.
Сторона описанного квадрата равна диаметру окружности.
Если известны стороны и площадь вписанного треугольника
R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.
Если известна площадь и полупериметр описанного треугольника
R = S : p, где S — площадь треугольника, p — полупериметр треугольника.
Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.
Если известна площадь сектора и его центральный угол
R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.
Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.
Если известна сторона вписанного правильного многоугольника
R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.
В правильном многоугольнике все стороны равны.
Скачать онлайн таблицу
У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.
Треугольник. Соотношения между сторонами треугольника и радиусами вписанного и описанного кругов.
По двум сторонам a и b треугольника ABC и радиусу R описанного круга вычислить третью сторону x треугольника.
Применяя к этому четырехугольнику теорему Птоломея будем иметь:
откуда легко найдем x .
Задача будет иметь другое решение, если предположим, что стороны a и b лежат по одну сторону от центра. Применяя к этому случаю теорему Птоломея, мы получим следующее уравнение:
Теорема.
Произведение двух сторон треугольника равно:
1. произведению диаметра описанного круга на высоту, проведенную к третьей стороне.
2. квадрату биссектрисы угла, заключенного между этими сторонами, сложенному с произведением отрезков третьей стороны.
1.Обозначим стороны треугольника ABC через a, b и с, высоту, опущенную на сторону a через ha , а радиус описанного круга через R.Проведем диаметр AD и соединим D с B.
Треугольники ABD и AEC подобны, потому что углы B и E прямые и D= С , как углы вписанные, опирающиеся на одну и ту же дугу.
Из этой формулы легко определить величину радиуса R описанного круга.
По первой теореме мы имеем: bс = 2Rha , где b и с есть две стороны треугольника, ha — высота, опущенная на третью сторону треугольника, и R — радиус описанного круга.
Из этого равенства выводим:
Исключим из этой формулы высоту ha: для этого умножим числитель и знаменатель дроби на a. Тогда, заменив произведение ha a удвоенной площадью треугольника (которую обозначим S), получим:
,
Чтобы найти радиус r внутреннего вписанного круга рассмотрим треугольник АВС со вписанной в него окружностью. Отметим центр вписанной окружности и примем во внимание, что прямые OA, OB и OС разделяют данный треугольник на три других треугольника, у которых основаниями служат стороны данного треугольника, а высотой — радиус r.
Поэтому: S=1/2ar + 1/2br + 1/2cr = r ½ (a+b+c) = rp.
http://b4.cooksy.ru/articles/kak-nayti-storonu-okruzhnosti-esli-izvesten-radius
http://www.calc.ru/Treugolnik-Sootnosheniya-Mezhdu-Storonami-Treugolnika-I-Radi.html
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Определение окружности
Окружность – геометрическое место точек, равноудаленных от данной точки.
Эта точка называется центром окружности.
Отрезки в окружности
Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.
Хорда a – отрезок, соединяющий две точки на окружности.
Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).
O A – радиус, D E – хорда, B C – диаметр.
Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.
Касательная к окружности – прямая, имеющая с окружностью одну общую точку.
Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.
Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).
Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.
Дуга в окружности
Часть окружности, заключенная между двумя точками, называется дугой окружности.
Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .
Теорема 4:
Равные хорды стягивают равные дуги.
Если A B = C D , то ∪ A B = ∪ C D
Углы в окружности
В окружности существует два типа углов: центральные и вписанные.
Центральный угол – угол, вершина которого лежит в центре окружности.
∠ A O B – центральный.
Центральный угол равен градусной мере дуги, на которую он опирается. ∪ A B = ∠ A O B = α
Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.
Градусная мара всей окружности равна 360 ° .
Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.
∠ A C B – вписанный.
Вписанный угол равен половине градусной меры дуги, на которую он опирается. ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α
Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны.
∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2
Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .
M N – диаметр.
∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °
Длина окружности, длина дуги
Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .
Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .
∪ A B = ∪ C D = α
Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.
Длина окружности находится по формуле:
l = 2 π R
Длина дуги окружности, на которую опирается центральный угол α равна:
l α = π R 180 ∘ ⋅ α
Площадь круга и его частей
Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.
Круг – часть пространства, которая находится внутри окружности.
Иными словами, окружность – это граница, а круг – это то, что внутри.
Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.
Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.
Площадь круга находится по формуле: S = π R 2
Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Примеры сектора в реальной жизни: кусок пиццы, веер.
Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α
Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.
Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.
Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.
S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α
Теорема синусов
Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с окружностями.
Окружность вписана в n-угольник, если она касается всех сторон этого n-угольника (рис. 8.106).
Окружность описана около n-угольника, если все вершины n-угольника лежат на окружности (рис. 8.107).
Свойства вписанной окружности
1. Окружность можно вписать в любой треугольник.
2. Окружность можно вписать в четырехугольник, если суммы длин его противолежащих сторон равны.
Например, на рисунке 8.106 .
Так, окружность можно вписать в квадрат и в ромб, но нельзя вписать в параллелограмм и в прямоугольник.
Свойства описанной окружности
1. Окружность можно описать около любого треугольника.
2. Окружность можно описать около четырехугольника, если суммы его противолежащих углов равны.
Например, на рисунке 8.107 .
Так, окружность можно описать около квадрата и прямоугольника, но нельзя описать около параллелограмма и ромба.
Расположение центров окружностей, описанных около треугольника:
1) центр окружности расположен на пересечении серединных перпендикуляров к сторонам треугольника;
2) если треугольник остроугольный, то центр окружности расположен в этом треугольнике:
а) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника (центры вписанной и описанной окружностей совпадают (рис. 8.108);
б) в равнобедренном треугольнике центр окружности расположен на биссектрисе, проведенной из вершины треугольника к его основанию (рис. 8.109);
3) если треугольник прямоугольный, то центр окружности расположен на середине гипотенузы (рис. 8.110);
4) если треугольник тупоугольный, то центр окружности расположен вне треугольника (рис. 8.111).
Расположение центров окружностей, вписанных в треугольник:
1) центр окружности, вписанной в треугольник, расположен в этом треугольнике (рис. 8.112 – 8.115);
2) центром окружности является точка пересечения биссектрис треугольника;
3) в равностороннем треугольнике центром окружности является точка пересечения высот, биссектрис, медиан треугольника.
Формулы для вычисления радиусов вписанной и описанной окружностей
Радиус окружности, описанной около многоугольника, как правило, обозначают , а радиус окружности, вписанной в многоугольник, обозначают :
1) для равностороннего треугольника со стороной :
, (8.34)
; (8.35)
2) для произвольного треугольника со сторонами и площадью :
, (8.36)
; (8.37)
3) для прямоугольного треугольника с катетами и гипотенузой :
, (8.38)
; (8.39)
4) для квадрата со стороной и диагональю :
, (8.40)
; (8.41)
5) для прямоугольника с диагональю :
; (8.42)
6) для ромба с высотой :
; (8.43)
7) для трапеции с высотой , при условии, что в трапецию можно вписать окружность:
. (8.44)
Если около трапеции можно описать окружность, то, проведя диагональ трапеции и рассмотрев один из полученных треугольников со сторонами и площадью , по формуле найдем радиус окружности описанной около треугольника, а значит и около трапеции (рис. 8.116);
для правильного шестиугольника со стороной :
, (8.45)
. (8.46)
Правильный шестиугольник состоит из шести правильных треугольников (рис. 8.117) и точка является центром вписанной в него и описанной около него окружностей.
Пример 1. Найдите сторону квадрата, если известно, что разность между площадью квадрата и площадью вписанного в него круга равна .
Решение. Так как площадь круга радиуса находят по формуле 8.32, а площадь квадрата со стороной находят по формуле , то согласно условию задачи запишем: , .
А так как , то , , , , .
Ответ: .
Пример 2. Площадь прямоугольника равна 4, а разность длин его смежных сторон рана 3. Найдите радиус окружности, описанной около этого прямоугольника.
Решение. Площадь прямоугольника со смежными сторонами и находят по формуле .
Пусть , тогда (рис. 8.118).
Получим: , , откуда , следовательно, , .
По теореме Пифагора найдем диагональ прямоугольника: , . Согласно формуле 8.42 .
Ответ: .
Пример 3. Найдите радиус окружности, вписанной в ромб, если его диагонали равны 6 и 8.
Решение. По теореме Пифагора найдем сторону ромба (рис. 8.119):
, , .
По формуле найдем площадь ромба: .
Но площадь ромба можно найти и по формуле , а так как , то . Тогда , а .
Ответ: 2,4.
Пример 4. Найдите длину окружности, вписанной в правильный треугольник, если его площадь равна .
Решение. Площадь правильного треугольника со стороной находят по формуле: .
Зная площадь треугольника, найдем его сторону: , , .
По формуле 8.35 найдем радиус окружности, вписанной в этот треугольник: .
По формуле 8.30 найдем длину окружности: .
Ответ: .
Пример 5. Радиус окружности, описанной около равнобедренного прямоугольного треугольника равен 2. Найдите радиус окружности, вписанной в этот треугольник.
Решение. Радиус окружности, описанной около прямоугольного треугольника с гипотенузой находят по формуле 8.38. Тогда .
Так как треугольник равнобедренный, то его катеты и раны и по теореме Пифагора , откуда , .
Радиус окружности, вписанной в прямоугольный треугольник, находят по формуле 8.39. В нашем случае , .
Ответ: .
Пример 6. Один из катетов прямоугольного треугольника равен 8, а радиус окружности, вписанной в треугольник равен 3. Найдите площадь треугольника.
Решение. Рассмотрим прямоугольный треугольник . Точка является центром вписанной в треугольник окружности (рис. 8.120).
Так как радиусы вписанной в треугольник окружности перпендикулярны сторонам треугольника в точках касания, то имеем квадрат со стороной 3. Если катет , а сторона квадрата , то .
Пусть отрезок . По свойству касательных и .
Тогда по теореме Пифагора или , откуда , .
Найдем катет : .
Найдем площадь треугольника: , .
Ответ: 60.
Пример 7. Окружность, центр которой расположен на большей стороне треугольника, делит эту сторону на отрезки 4 и 8 и касается двух других его сторон, длина одной из которых равна 6. Найдите радиус окружности, вписанной в этот треугольник (рис.8.121).
Решение. Согласно свойству биссектрисы треугольника запишем: , откуда .
Радиус окружности, вписанной в треугольник, найдем по формуле 8.37.
В свою очередь по формуле Герона найдем площадь треугольника. Так как , то .
Тогда .
Ответ: .
Пример 8. В прямоугольную трапецию вписана окружность радиуса 3, которая в точке касания делит ее боковую сторону на отрезки 4 и 5. Найдите площадь трапеции.
Решение. Согласно условию задачи и рисунку 8.122, запишем: , .
По свойству четырехугольника, описанного около окружности, получим: , , .
Согласно формуле найдем площадь трапеции: .
Ответ: 45.
Пример 9. Длины оснований равнобедренной трапеции относятся как , а длина ее высоты равна 17. Вычислите площадь круга, описанного около трапеции, если известно, что средняя линия трапеции равна ее высоте.
Решение. Рассмотрим равнобедренную трапецию (рис. 8.123) и проведем диагональ трапеции .
Радиус окружности, описанной около треугольника , найдем по формуле 8.36:
, .
Зная, что и вводя коэффициент пропорциональности , получим , .
Так как длина средней линии трапеции равна высоте трапеции, то , откуда . Тогда , .
Поскольку четырехугольник является прямоугольником, то , тогда .
Согласно теореме Пифагора запишем:
, ;
, .
По формуле 8.36 найдем радиус окружности, описанной около треугольника , а, следовательно, и около трапеции :
.
Согласно формуле 8.32 найдем площадь круга: .
Ответ: .
Пример 10. В правильный шестиугольник вписана окружность и около него описана окружность. Найдите площадь образовавшегося кольца, если сторона шестиугольника равна .
Решение. По формуле 8.45 найдем радиус окружности, описанной около правильного шестиугольника: .
По формуле 8.46 найдем радиус окружности, вписанной в этот шестиугольник. Так как , то .
Площадь круга находят по формуле 8.32. Тогда , а .
Найдем площадь кольца: , .
Ответ: .
1. В любой треугольник можно вписать окружность и около любого треугольника можно описать окружность.
2. Не во всякий четырехугольник можно вписать окружность. Например, окружность можно вписать в ромб и квадрат, но нельзя вписать в параллелограмм и прямоугольник.
3. Не около всякого четырехугольника можно описать окружность. Например, окружность можно описать около квадрата и прямоугольника, но нельзя описать около параллелограмма и ромба.
4. Не во всякую трапецию можно писать окружность и не около всякой трапеции можно описать окружность. Описать окружность можно только около равнобедренной трапеции.
5. Если многоугольник правильный (все его стороны и все его углы равны между собой), то в него всегда можно вписать окружность и около него всегда можно описать окружность. Причем, центры этих окружностей совпадают.
Длину окружности радиуса находят по формуле:
. (8.30)
Площадь круга радиуса находят по формуле:
. (8.32)
Содержание
- Основные определения и свойства
- Чем круг отличается от окружности: объяснение
- Круг и окружность: примеры, фото
- Свойства окружности
- Свойство 1
- Свойство 2
- Свойство 3
- Формулы
- Формулы для площади круга и его частей
- Формулы для длины окружности и её дуг
- Формула длины окружности и площади круга: сравнение
- Площадь круга
- Длина окружности
- Как найти длину окружности через диаметр
- Как найти длину окружности через радиус
- Как вычислить длину окружности через площадь круга
- Как найти длину окружности через диагональ вписанного прямоугольника
- Как вычислить длину окружности через сторону описанного квадрата
- Как найти длину окружности через стороны и площадь вписанного треугольника
- Как найти длину окружности через площадь и полупериметр описанного треугольника
- Как вычислить длину окружности через сторону вписанного правильного многоугольника
- Длина дуги
- Площадь сектора
- Площадь сегмента
- Уравнение окружности
- Касательная окружности и ее свойства
- Основные свойства касательных к окружности
- Секущая окружности и ее свойства
- Основные свойства секущих
- Хорда окружности ее длина и свойства
- Длина хорды
- Основные свойства хорд
- Центральный угол, вписанный угол и их свойства
- Основные свойства углов
- Вписанная окружность
- Описанная окружность
- Теорема Птолемея
- Задачи для решения
Основные определения и свойства
Фигура | Рисунок | Определения и свойства |
Окружность | Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности | |
Дуга | Часть окружности, расположенная между двумя точками окружности | |
Круг | Конечная часть плоскости, ограниченная окружностью | |
Сектор | Часть круга, ограниченная двумя радиусами | |
Сегмент | Часть круга, ограниченная хордой | |
Правильный многоугольник | Выпуклый многоугольник, у которого все стороны равны и все углы равны | |
Около любого правильного многоугольника можно описать окружность |
Окружность |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности |
Дуга |
Часть окружности, расположенная между двумя точками окружности |
Круг |
Конечная часть плоскости, ограниченная окружностью |
Сектор |
Часть круга, ограниченная двумя радиусами |
Сегмент |
Часть круга, ограниченная хордой |
Правильный многоугольник |
Выпуклый многоугольник, у которого все стороны равны и все углы равны
Около любого правильного многоугольника можно описать окружность |
- Определение 1. Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.
- Определение 2. Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.
Замечание 1. Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.
- Определение 3. Числом π (пи) называют число, равное площади круга радиуса 1.
Замечание 2. Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:
Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.
Чем круг отличается от окружности: объяснение
Основное отличие между кругом и окружностью — это то, что круг — геометрическая фигура, а окружность — замкнутая кривая. Также обратите внимание на отличия между окружностью и кругом:
- Окружность это замкнутая линия, а круг — площадь внутри этой окружности;
- Окружность это кривая линия на плоскости, а круг — пространство, сомкнутое в кольцо окружностью;
- Сходство между окружностью и кругом: радиус и диаметр;
- У круга и окружности единый центр;
- В случае если заштриховывается пространство внутри окружности, оно превращается в круг;
- У окружности есть длина, но ее нет у круга, и наоборот, у круга есть площадь, которой нет у окружности.
Круг и окружность: примеры, фото
Для наглядности предлагаем рассмотреть фото, на котором слева изображен круг, а справа окружность.
Сравнение между кругом и окружностью
Свойства окружности
Свойство 1
Через три точки на плоскости, не лежащие на одной прямой, можно провести окружность, причем только одну.
Свойство 2
Точка касания двух окружностей (C) лежит на одной прямой (AB), которая проходит через их центры.
Свойство 3
Изопериметрическое неравенство: Из всех замкнутых кривых одинаковой длины окружность ограничивает область с самой большой площадью.
Формулы
- Диаметр окружности (d):
- Длина окружности (С):
- Радиус окружности (R):
Формулы для площади круга и его частей
Числовая характеристика | Рисунок | Формула |
Площадь круга | ,
где R – радиус круга, D – диаметр круга |
|
Площадь сектора | ,
если величина угла α выражена в радианах |
|
,
если величина угла α выражена в градусах |
||
Площадь сегмента | ,
если величина угла α выражена в радианах |
|
,
если величина угла α выражена в градусах |
Площадь круга |
, где R – радиус круга, D – диаметр круга |
Площадь сектора |
, если величина угла α выражена в радианах если величина угла α выражена в градусах |
Площадь сегмента |
, если величина угла α выражена в радианах если величина угла α выражена в градусах |
Формулы для длины окружности и её дуг
Числовая характеристика | Рисунок | Формула |
Длина окружности | C = 2πR = π D,
где R – радиус круга, D – диаметр круга |
|
Длина дуги | L(α) = αR,
если величина угла α выражена в радианах |
|
,
если величина угла α выражена в градусах |
Длина окружности |
C = 2πR = π D, где R – радиус круга, D – диаметр круга |
Длина дуги |
L(α) = αR, если величина угла α выражена в радианах , если величина угла α выражена в градусах |
Формула длины окружности и площади круга: сравнение
Формула длины окружности L=2 πR
Формула площади круга S= πR²
Обратите внимание, что в обеих формулах присутствует радиус и число π. Данные формулы рекомендуется выучить наизусть, так как они простейшие и обязательно пригодятся в повседневной жизни и на работе.
Площадь круга
Рассмотрим две окружности с общим центром (концентрические окружности) и радиусами радиусами 1 и R, в каждую из которых вписан – угольникnправильный (рис. 1).
Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1.
Рис.1
равнаR, – угольника, вписанного в окружность радиуса nПлощадь правильного
, равна1 – угольника, вписанного в окружность радиуса nПлощадь правильного
Следовательно,
Поскольку π, стремится к 1 – угольника, вписанного в окружность радиуса n площадь правильного nпри увеличении , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R, стремится к числу πR2.
Таким образом, площадь круга радиуса R, обозначаемая S, равна
S = πR2.
Длина окружности
Рассмотрим – угольникnправильный B1B2…Bn , вписанный в окружность радиуса радиуса R, и опустим из центра O окружности перпендикуляры на все стороны многоугольника (рис. 2).
Рис.2
Поскольку – угольникаnплощадь B1B2…Bn равна
то, обозначая длину окружности радиуса R буквой C, мы, в соответствии с определением 2, при увеличении n получаем равенство:
откуда вытекает формула для длины окружности радиуса R:
C = 2πR.
Следствие. Длина окружности радиуса 1 равна 2π.
Как найти длину окружности через диаметр
Диаметр — отрезок, который соединяет две точки окружности и проходит через её центр. Формула длины окружности через диаметр:
l=πd, где
π— число пи — математическая константа, равная 3,14
d — диаметр окружности
Как найти длину окружности через радиус
Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:
l=2πr , где
π — число пи, равное 3,14
r — радиус окружности
Как вычислить длину окружности через площадь круга
Если вам известна площадь круга, вы также можете узнать длину окружности:
где:
- π — число пи, равное 3,14
- S — площадь круга
Как найти длину окружности через диагональ вписанного прямоугольника
Как измерить окружность, если в нее вписан прямоугольник:
l=πd, где
- π — число пи, равное 3,14
- d — диагональ прямоугольника
Как вычислить длину окружности через сторону описанного квадрата
Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:
l=πa, где
- π — математическая константа, равная 3,14
- a — сторона квадрата
Как найти длину окружности через стороны и площадь вписанного треугольника
Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:
где:
- π — математическая константа, она всегда равна 3,14
- a — первая сторона треугольника
- b — вторая сторона треугольника
- c — третья сторона треугольника
- S — площадь треугольника
Как найти длину окружности через площадь и полупериметр описанного треугольника
Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.
Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.
где:
- π — математическая константа, равная 3,14
- S — площадь треугольника
- p — полупериметр треугольника
Как вычислить длину окружности через сторону вписанного правильного многоугольника
Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.
Формула вычисления длины окружности:
где:
- π — математическая константа, равная 3,14
- a — сторона многоугольника
- N — количество сторон многоугольника
Длина дуги
Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.
Рис.3
Площадь сектора
Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.
Рис.4
Площадь сегмента
Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.
Рис.5
Уравнение окружности
- Уравнение окружности с радиусом r и центром в начале декартовой системы координат:
r2 = x2 + y2
- Уравнение окружности с радиусом r и центром в точке с координатами (a, b) в декартовой системе координат:
r2 = (x — a)2 + (y — b)2
- Параметрическое уравнение окружности с радиусом r и центром в точке с координатами (a, b) в декартовой системе координат:
{ | x = a + r cos t |
y = b + r sin t |
Касательная окружности и ее свойства
Касательная окружности — прямая, которая касается окружности только в одной точке.
Основные свойства касательных к окружности
- Касательная всегда перпендикулярна к радиусу окружности, проведенного в точке соприкосновения.
- Кратчайшее расстояние от центра окружности к касательной равна радиусу окружности.
- Если две касательные, с точками соприкосновения B и C, на одной окружности не параллельны, то они пересекаются в точке A, а отрезок между точкой соприкосновения и точкой пересечения одной касательной равен таком же отрезке на другой касательной:
AB = AC
Также, если провести прямую через центр окружности О и точку пересечения A этих касательных, то углы образованный между этой прямой и касательными будут равны:
∠ОAС = ∠OAB
Секущая окружности и ее свойства
Секущая окружности — прямая, которая проходит через две точки окружности.
Основные свойства секущих
- Если с точки вне окружности (Q) выходят две секущие, которые пересекают окружность в двух точках A и B для одной секущей и C и D для другой секущей, то произведения отрезков двух секущих равны между собою:
AQ ∙ BQ = CQ ∙ DQ
- Если из точки Q вне окружности выходит секущая прямая, что пересекает окружность в двух точках A и B, и касательная с точкой соприкосновения C, то произведение отрезков секущей равна квадрату длины отрезка касательной:
AQ ∙ BQ = CQ2
Хорда окружности ее длина и свойства
Хорда окружности — отрезок, который соединяет две точки окружности.
Длина хорды
- Длина хорды через центральный угол и радиус:
AB = 2r sin α2
- Длина хорды через вписанный угол и радиус:
AB = 2r sin α
Основные свойства хорд
- Две одинаковые хорды стягивают две одинаковые дуги:
если хорды AB = CD, то
дуги ◡ AB = ◡ CD
- Если хорды параллельные, то дуги между ними будут одинаковые:
если хорды AB ∣∣ CD, то
◡ AD = ◡ BC
- Если радиус окружности перпендикулярен к хорде, то он разделяет хорду пополам в точке их пересечения:
если OD ┴ AB, то
AC = BC
- Если две хорды AB и CD пересекаются в точке Q, то произведение отрезков, что образовались при пересечении, одной хорды равны произведению отрезков другой хорды:
AQ ∙ BQ = DQ ∙ QC
- Хорды с одинаковой длиной находятся на одинаковом расстоянии от центра окружности.
если хорды AB = CD, то
ON = OK
- Чем больше хорда тем ближе она к центру.
если CD > AB, то
ON < OK
Центральный угол, вписанный угол и их свойства
Центральный угол окружности — угол, вершиной которого есть центр окружности.
Угол вписанный в окружность — угол, вершина которого лежит на окружности, а стороны угла пересекают окружность.
Основные свойства углов
β = α2
- Если два вписанных угла опираются на одну хорду и находятся по различные стороны от нее, то сумма этих углов равна 180°.
α + β = 180°
Дуга окружности (◡) — часть окружности, которая соединяет две точки на окружности.Определение.Градусная мера дуги — угол между двумя радиусами, которые ограничивают эту дугу. Градусная мера дуги всегда равна градусной мере центрального угла,который ограничивает эту дугу своими сторонами.
Формула длины дуги через центральный угол (в градусах):
l = πr180°∙ α
Определение.Полуокружность — дуга в которой концы соединены диаметром окружности.Определение.Полукруг (◓) — часть круга, которая ограничена полуокружностью и диаметром.Определение.Сектор (◔) — часть круга, которая ограничена двумя радиусами и дугой между этими радиусами.
Формула.Формула площади сектор через центральный угол (в градусах)
S = πr2360°∙ α
Сегмент — часть круга, которая ограничена дугой и хордой, что соединяет ее концы. Концентрические окружности — окружности с различными радиусами, которые имеют общий центр.
Кольцо — часть плоскости ограниченная двумя концентрическими окружностями.
Вписанная окружность
Окружность называетсявписанной в многоугольник, если она касается его сторон. Центр вписанной окружности лежит в точке пересечения биссектрис углов многоугольника.
Не во всякий многоугольник можно вписать окружность.
Площадь многоугольника, в который вписана окружность можно найти по формуле
,
здесь — полупериметр многоугольника, — радиус вписанной окружности.
Отсюда радиус вписанной окружности равен
Если в выпуклый четырехугольник вписана окружность, то суммы длин противоположных сторон равны. Обратно: если в выпуклом четырехугольнике суммы длин противоположных сторон равны, то в четырехугольник можно вписать окружность:
В любой треугольник можно вписать окружность, притом только одну. Центр вписанной окружности лежит в точке пересечения биссектрис внутренних углов треугольника.
Радиус вписанной окружности равен
. Здесь
Описанная окружность
Окружность называется описанной около многоугольника, если она проходит через все вершины многоугольника. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров сторон многоугольника. Радиус вычисляется как радиус окружности, описанной около треугольника, определенного любыми тремя вершинами данного многоугольника:
Около четырехугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна
.
∠
+∠
=∠
+∠
Около любого треугольника можно описать окружность, притом только одну. Ее центр лежит в точке пересечения серединных перпендикуляров сторон треугольника:
Радиус описанной окружности вычисляется по формулам:
Где — длины сторон треугольника, — его площадь.
Теорема Птолемея
Во вписанном четырехугольнике произведение диагоналей равно сумме произведений его противоположных сторон:
Задачи для решения
Давайте тренироваться! Двигаемся от простого к сложному:
- Задача 1. Найти длину окружности, диаметр которой равен 5 см.
Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:
l=πd
Подставляем туда известные переменные и получается, что длина окружности равна
l=πd=3,14·5=15,7(см)
Ответ: 15,7 (см)
- Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною a = 4√3 дм
Решение. Радиус окружности равен
Подставим туда наши переменные и получим
Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус l=2πr, мы можем подставить наши данные и получить решение задачи.
Так и сделаем:
l=2πr=2·π·4≈2·3,14·4=25,12(дм)
Ответ: l=25,12(дм)