Теорема синусов
Теорема синусов гласит
Стороны треугольника пропорциональны синусам противолежащих углов
[
frac{a}{sin(α)} = frac{b}{sin(β)} = frac{c}{sin(γ)}
]
Также отношение стороны треугольника к синусу противолежащего угла равно диаметру описанной окружности.
[
frac{a}{sin(α)} = frac{b}{sin(β)} = frac{c}{sin(γ)} = 2R
]
Вычислить, найти сторону треугольника по теореме синусов
Пусть известно: две стороны a, b и угол между ними γ. Нужно найти сторону c и недостающие углы α и β. Используем то, что сумма углов треугольника 180°
[
β = (180° — (α + γ))
]
[
frac{a}{sin(α)} = frac{b}{sin(180° — (α + γ))}
]
По формулам приведения
[
sin(180° — (α + γ)) = sin(α + γ)
]
Подставим в (4)
[
frac{a}{sin(α)} = frac{b}{sin(α + γ)}
]
по формуле синуса суммы углов разделим углы
[
sin(α + γ) = sin(α)cos(γ) + cos(α)sin(γ)
]
Получим
[
frac{b}{a} = frac{sin(α)cos(γ) + cos(α)sin(γ)}{sin(α)}
]
[
frac{b}{a} = cos(γ) + ctg(α)sin(γ)
]
Отсюда найдутся все углы треугольника α и β (см. формула (3)):
[
ctg(α) = frac{Largefrac{b}{a}normalsize — cos(γ)}{sin(γ)}
]
Далее теорема синусов позволит найти оставшуюся сторону c
[
с = bfrac{sin(γ)}{sin(β)} = afrac{sin(γ)}{sin(α)}
]
Вычислить, найти две стороны треугольника по теореме синусов
Пусть известно: одна сторона с, и два прилегающих к ней угла α и β. Нужно найти угол γ и стороны a и b. Используем то, что сумма углов треугольника 180°
[
γ = (180° — (α + β))
]
Теперь когда все углы треугольника известны, а также известна одна сторона, теорема синусов позволит легко найти недостающие стороны:
[
a = c frac{sin(α)}{sin(γ)}
]
[
b = c frac{sin(β)}{sin(γ)}
]
Теорема синусов |
стр. 238 |
---|
Содержание:
Теорема синусов, теорема косинусов:
Теорема синусов
Вы уже знаете, что в треугольнике против большей стороны лежит больший угол, а против большего угла — большая сторона. Пусть
Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Отношение стороны треугольника к синусу противолежащего угла равно удвоенному радиусу окружности, описанной около треугольника, т. е.
Доказательство:
Пусть дан треугольник АВС, ВС = — радиус его описанной окружности. Угол а может быть острым, тупым или прямым. Рассмотрим эти случаи отдельно.
1) Угол острый (рис. 152, а). Проведя диаметр BD и отрезок DC, получим прямоугольный треугольник BCD, в котором как вписанный угол, опирающийся на диаметр. Заметим, что как вписанные углы, опирающиеся на одну и ту же дугу ВС. Из прямоугольного треугольника BCD находим т. е. откуда
2) Угол тупой (рис. 152, б). Проведем диаметр BD и отрезок DC. В четырехугольнике ABDC по свойству вписанного четырехугольника Из прямоугольного треугольника как вписанный угол, опирающийся на диаметр) Поскольку то откуда
3) Для справедливость равенства докажите самостоятельно, В силу доказанного откуда
Теорема доказана.
Теорема синусов дает возможность решать широкий круг задач.
Так, пропорция позволяет решить две следующие задачи:
- зная две стороны треугольника и угол, противолежащий одной из них, найти синус угла, противолежащего другой стороне;
- зная два угла треугольника и сторону, противолежащую одному из этих углов, найти сторону, противолежащую другому углу.
С помощью формулы можно решить еще три задачи (рис. 153):
- зная сторону треугольника и противолежащий ей угол, найти радиус окружности, описанной около треугольника;
- зная угол треугольника и радиус описанной окружности, найти сторону треугольника, противолежащую данному углу;
- зная сторону треугольника и радиус его описанной окружности, найти синус угла, противолежащего данной стороне.
Повторение
Пример:
В остроугольном треугольнике известны стороны и угол Найти два других угла округлив их значения до 1°, и третью сторону треугольника, округлив ее длину до 0,1.
Решение:
По теореме синусов откуда При помощи калькулятора (таблиц). находим Тогда По теореме синусов откуда
Ответ:
Замечание. Если бы по условию треугольник был тупоугольным с тупым углом то, зная вначале мы нашли бы острый угол А затем, используя формулу получили бы, что
Пример:
Доказать справедливость формулы площади треугольника где — его стороны, R — радиус описанной окружности.
Доказательство:
Воспользуемся известной формулой площади треугольника: По теореме синусов откуда Тогда Что и требовалось доказать.
Замечание. Выведенная формула позволяет найти радиус описанной окружности треугольника
Пример:
Найти радиус R окружности, описанной около равнобедренного треугольника АВС с основанием АС = 10 и боковой стороной ВС =13 (рис. 154).
Решение:
Способ 1. Из формулы следует, что Найдем . Для этого в треугольнике АВС проведем высоту ВК, которая будет и медианой, откуда Из по теореме Пифагора откуда
Тогда
Способ 2. Используем формулу из которой Так как то
Ответ:
Замечание*. Напомним, что в главе II мы находили радиус R описанной окружности равнобедренного треугольника, проводя серединные перпендикуляры к его сторонам и используя подобие полученных прямоугольных треугольников. Также мы могли использовать формулу где — боковая сторона, — высота, проведенная к основанию
Заменив в формуле получим — формулу радиуса описанной окружности для произвольного треугольника. Итак, мы имеем четыре формулы для нахождения радиуса R описанной окружности треугольника:
Теорема косинусов
Теорема косинусов позволяет выразить длину любой стороны треугольника через длины двух других его сторон и косинус угла между ними (например, длину стороны треугольника АВС (рис. 165) через длины сторон ). Теорему косинусов можно назвать самой «работающей» в геометрии. Она имеет многочисленные следствия, которые часто используются при решении задач.
Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними, т. е.
Доказательство:
Докажем теорему для случая, когда в треугольнике АВС угол А и угол С острые (рис. 166).
Проведем высоту ВН к стороне АС. Из находим откуда
Из по теореме Пифагора
По основному тригонометрическому тождеству
Тогда
Справедливость теоремы для случаев, когда или тупой или прямой, докажите самостоятельно. Теорема доказана.
Для сторон теорема косинусов запишется так:
Замечание. Если , то по теореме Пифагора Так как то Таким образом, теорема Пифагора — частный случай теоремы косинусов.
С помощью теоремы косинусов можно решить следующие задачи:
• зная две стороны и угол между ними, найти третью сторону треугольника;
• зная две стороны и угол, противолежащий одной из этих сторон, найти третью сторону (рис. 167) (в этом случае возможны два решения).
Рассмотрим следствия из теоремы косинусов, которые дают возможность решить еще целый ряд задач.
Следствие:
Теорема косинусов позволяет, зная три стороны треугольника, найти его углы (косинусы углов). Из равенства следует формула
Для углов получим:
Пример:
В треугольнике АВС стороны АВ = 8, ВС = 5, АС = 7. Найдем ZB (рис. 168).
По теореме косинусов
Используя записанную выше формулу, можно сразу получить:
Следствие:
С помощью теоремы косинусов можно по трем сторонам определить вид треугольника: остроугольный, прямоугольный или тупоугольный.
Так, из формулы с учетом того, что следует:
- если то и угол острый;
- если то и угол тупой;
- если то и угол прямой.
При определении вида треугольника достаточно найти знак косинуса угла, лежащего против большей стороны, поскольку только больший угол треугольника может быть прямым или тупым.
Пример:
Выясним, каким является треугольник со сторонами a = 2, 6 = 3 и с = 4. Для этого найдем знак косинуса угла у, лежащего против большей стороны с. Так как то угол тупой и данный треугольник тупоугольный.
Сформулируем правило определения вида треугольника (относительно углов). Треугольник является:
- остроугольным, если квадрат его большей стороны меньше суммы квадратов двух других его сторон:
- тупоугольным, если квадрат его большей стороны больше суммы квадратов двух других его сторон:
- прямоугольным, если квадрат его большей стороны равен сумме квадратов двух других его сторон:
Следствие:
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:
Доказательство:
Пусть в параллелограмме ABCD — острый, откуда — тупой (рис. 169). По теореме косинусов из
(1)
Из Поскольку cos то
(2)
Сложив почленно равенство (1) и равенство (2), получим что и требовалось доказать.
Данная формула дает возможность:
- • зная две соседние стороны и одну из диагоналей параллелограмма, найти другую диагональ;
- • зная две диагонали и одну из сторон параллелограмма, найти соседнюю с ней сторону.
Следствие:
Медиану треугольника со сторонами а, b и с можно найти по формуле
Доказательство:
Рассмотрим — медиана треугольника (рис. 170). Продлим медиану AM за точку М на ее длину:
Проведем отрезки BD и DC. Так как у четырехугольника ABDC диагонали AD и ВС точкой пересечения делятся пополам, то он — параллелограмм. По свойству диагоналей параллелограмма Отсюда следует, что
Утверждение доказано.
Аналогично:
Формула медианы позволяет:
- зная три стороны треугольника, найти любую из его медиан;
- зная две стороны и медиану, проведенную к третьей стороне, найти третью сторону;
- зная три медианы, найти любую из сторон треугольника.
Пример:
а) Дан треугольник АВС, а = 5, 5 = 3, Найти сторону с. б) Дан треугольник АВС, а = 7, с = 8, а = 60°. Найти сторону Ь.
Решение:
а) По теореме косинусов
Отсюда б) Пусть По теореме косинусов то есть Отсюда или так как для наборов длин отрезков 7, 3, 8 и 7, 5, 8 выполняется неравенство треугольника.
Ответ: а) 7; б) 3 или 5.
Пример:
Две стороны треугольника равны 6 и 10, его площадь —
Найти третью сторону треугольника при условии, что противолежащий ей угол — тупой.
Решение:
Пусть в стороны АВ = 6, ВС = 10 и (рис. 171).
Поскольку то откуда
Так как и по условию — тупой, то . Для нахождения стороны АС применим теорему косинусов:
Ответ: 14.
Пример:
Найти площадь треугольника, две стороны которого равны 6 и 8, а медиана, проведенная к третьей стороне, равна 5.
Решение:
Обозначим стороны треугольника Пусть — медиана (рис. 172).
По формуле медианы откуда По обратной теореме Пифагора данный треугольник со сторонами 6, 8 и 10 — прямоугольный, его площадь равна половине произведения катетов:
Ответ: 24.
Формула Герона
Мы знаем, как найти площадь треугольника по основанию и высоте, проведенной к этому основанию: а также по двум сторонам и углу между ними: Теперь мы выведем формулу нахождения площади треугольника по трем сторонам.
Теорема (формула Герона).
Площадь треугольника со сторонами можно найти по формуле где — полупериметр треугольника.
Доказательство:
(рис. 183). Из основного тригонометрического тождества следует, что Для синус положительный. Поэтому Из теоремы косинусов откуда
Тогда
Так как
Теорема доказана.
Решение треугольников
Решением треугольника называется нахождение его неизвестных сторон и углов (иногда других элементов) по данным, определяющим треугольник.
Такая задача часто встречается на практике, например в геодезии, астрономии, строительстве, навигации.
Рассмотрим алгоритмы решения трех задач.
Пример №1 (решение треугольника по двум сторонам и углу между ними).
Дано: (рис. 184).
Найти :
Решение:
Рис. 184
1) По теореме косинусов
2) По следствию из теоремы косинусов
3) Угол находим при помощи калькулятора или таблиц.
4) Угол
Замечание. Нахождение угла по теореме синусов требует выяснения того, острый или тупой угол
Пример №2 (решение треугольника по стороне и двум прилежащим к ней углам).
Дано: (рис. 185).
Найти:
Решение:
1) Угол
2) По теореме синусов (sin и sin находим при помощи калькулятора или таблиц).
3) Сторону с можно найти с помощью теоремы косинусов или теоремы синусов: или (cos и sin находим при помощи калькулятора или таблиц).
Пример №3 (решение треугольника по трем сторонам).
Дано: (рис. 186).
Найти: и радиус R описанной окружности.
Решение:
1) По следствию из теоремы косинусов
2) Зная угол находим при помощи калькулятора или таблиц.
3) Аналогично находим угол
4) Угол
5) Радиус R описанной окружности треугольника можно найти по формуле где
Замечание*. Вторым способом нахождения R будет нахождение косинуса любого угла при помощи теоремы косинусов затем нахождение по косинусу угла его синуса и, наконец, использование теоремы синусов для нахождения R.
Пример №4
Найти площадь S и радиус R описанной окружности треугольника со сторонами 9, 12 и 15.
Решение:
Способ 1. Воспользуемся формулой Герона. Обозначим а = 9, b = 12, с = 15. Получим:
Тогда
Радиус R описанной окружности найдем из формулы Имеем:
Ответ:
Способ 2. Так как поскольку то треугольник — прямоугольный по обратной теореме Пифагора. Его площадь равна половине произведения катетов: а радиус описанной окружности равен половине гипотенузы:
Пример №5
Найти площадь трапеции с основаниями, равными 5 и 14, и боковыми сторонами, равными 10 и 17.
Решение:
Пусть в трапеции ABCD основания AD = 14 и ВС = 5, боковые стороны АВ = 10 и Проведем (рис. 187). Так как АВСК — параллелограмм, то СК = АВ = 10, АК = ВС = 5, откуда KD = AD — АК = 9. Найдем высоту СН треугольника KCD, которая равна высоте трапеции. Площадь треугольника KCD найдем по формуле Герона, обозначив его стороны а = 10, b = 17, с = 9. Получим:
Так как СН = 8. Площадь трапеции
Ответ: 76.
Примеры решения задач с использованием теоремы синусов и теоремы косинусов
Пример:
Внутри угла А, равного 60°, взята точка М, которая находится на расстоянии 1 от одной стороны угла и на расстоянии 2 от другой стороны. Найти расстояние от точки М до вершины угла А (рис. 189, а).
Решение:
Пусть Найдем
длину отрезка AM. Сумма углов четырехугольника АВМС равна 360°.
Поэтому
Так как в четырехугольнике АВМС , то около него можно описать окружность по признаку вписанного четырехугольника (рис. 189, б). Поскольку прямой вписанный угол опирается на диаметр, то отрезок AM — диаметр этой окружности, т. е. где R — радиус. Из по теореме косинусов Из по теореме синусов откуда
Ответ:
Замечание. Вторым способом решения будет продление отрезка ВМ до пересечения с лучом АС и использование свойств полученных прямоугольных треугольников. Рассмотрите этот способ самостоятельно.
Пример №6
В прямоугольном треугольнике АВС известно: высота СН = 2 (рис. 190). Найти гипотенузу АВ.
Решение:
Построим симметричный относительно прямой АВ (см. рис. 190).
Поскольку то вокруг четырехугольника можно описать окружность, где АВ — диаметр этой окружности (прямой вписанный угол опирается на диаметр). Треугольник вписан в эту окружность, По теореме синусов откуда
Ответ: 8.
Пример №7
Дан прямоугольный треугольник АВС с катетами ВС = а и АС = На гипотенузе АВ как на стороне построен квадрат ADFB (рис. 191). Найти расстояние от центра О этого квадрата до вершины С прямого угла, т. е. отрезок СО.
Решение:
Способ 1. Так как (диагонали квадрата ADFB взаимно перпендикулярны), то поэтому четырехугольник АОВС является вписанным в окружность, ее диаметр Тогда
Пусть СО = х. По теореме косинусов из находим
из находим
По свойству вписанного четырехугольника Поскольку то откуда находим Тогда .
Способ 2. Используем теорему Птолемея, которая гласит: «Произведение диагоналей вписанного четырехугольника равно сумме произведений его противоположных сторон». Для нашей задачи получаем (см. рис. 191):
Способ 3. Достроим до квадрата CMNK, как показано на рисунке 192. Можно показать, что центр квадрата CMNK совпадет с центром квадрата ADFB, т. е. с точкой О (точки В и D симметричны относительно центров обоих квадратов). Тогда
Ответ:
Пример №8
Точка О — центр окружности, вписанной в треугольник АВС, Найти стороны треугольника (см. задачу 232*).
Решение:
Пусть и
— радиус вписанной окружности (рис. 193).
Тогда
Отсюда Применим формулу Герона:
С другой стороны, Из уравнения находим = 2. Откуда (см), (см), (см).
Ответ: 15 см; 20 см; 7 см.
Теорема Стюарта
Следующая теорема позволяет найти длину отрезка, соединяющего вершину треугольника с точкой на противоположной стороне.
Теорема Стюарта. «Если а, b и с — стороны треугольника и отрезок d делит сторону с на отрезки, равные х и у (рис. 194), то справедлива формула
Доказательство:
По теореме косинусов из и (см. рис. 194) следует:
(1)
(2)
Умножим обе части равенства (1) на у, равенства (2) — на
Сложим почленно полученные равенства:
Из последнего равенства выразим
Теорема доказана.
Следствие:
Биссектрису треугольника можно найти по формуле (рис. 195)
Доказательство:
По свойству биссектрисы треугольника Разделив сторону с в отношении получим:
По теореме Стюарта
Пример №9
Доказать, что если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера—Лемуса).
Доказательство:
Пусть дан треугольник АВС, — биссектрисы, проведенные к сторонам ВС = а и АС = b соответственно, и (рис. 196). Нужно доказать, что Выразим и через и приравняем полученные выражения. Биссектриса делит противолежащую сторону на части, пропорциональные прилежащим сторонам. Поэтому откуда откуда
По формуле биссектрисы треугольника
Из условия следует: Перенеся слагаемые в одну сторону равенства и разложив на множители (проделайте это самостоятельно), получим: Отсюда (второй множитель при положительных больше нуля). Утверждение доказано.
Теорема Птолемея о вписанном четырехугольнике
Произведение диагоналей вписанного четырехугольника равно сумме произведений его противоположных сторон, т. е. (рис. 197).
Доказательство:
Из по теореме косинусов
Так как (по свойству вписанного четырехугольника) и откуда
Аналогично из получим Тогда Теорема доказана.
Запомните:
- Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Отношение стороны треугольника к синусу противолежащего угла равно удвоенному радиусу его описанной окружности:
- Радиус описанной окружности треугольника можно найти, используя формулы:
- Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними:
- Пусть — стороны треугольника и с — большая сторона. Если , то треугольник тупоугольный, если то треугольник остроугольный, если , то треугольник прямоугольный.
- Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:
- Формула Герона:
- Формула медианы:
- Параллельность прямых и плоскостей
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости
- Перпендикулярность прямых и плоскостей в пространстве
- Углы и расстояния в пространстве
- Подобие треугольников
- Решение прямоугольных треугольников
- Параллелограмм
На странице содержится информация о теореме синусов, калькулятор, с помощью которого можно найти стороны и угол треугольника, а также формула теоремы синусов.
Теорема синусов — теорема, которая устанавливает зависимость между сторонами треугольника и величиной противолежащих им углов.
Стороны треугольника пропорциональны синусам противолежащих углов.
Кроме того теорему синусов можно записать в расширенной форме. В этом случае в нее добавляется значение радиуса описанной окружности треугольника.
Формула теоремы синусов
{dfrac{a}{sin alpha} = dfrac{b}{sin beta} = dfrac{c}{sin gamma} = 2R}
a, b, c — стороны треугольника,
α, β, γ — углы треугольника.
R — радиус описанной около треугольника окружности.
Теорема синусов. Доказательство
Тебе уже известно, что около каждого треугольника можно описать окружность. Мы это и сделаем. А потом проведём диаметр ( displaystyle BO).
Пусть этот диаметр пересекает окружность в точке ( displaystyle K). Давай рассмотрим ( displaystyle Delta BKC).
Что же это за треугольник?
Ну, конечно же, прямоугольный, ведь в ( displaystyle Delta BKC) угол ( displaystyle C) опирается на диаметр ( displaystyle BKquadRightarrow quadangle C=90{}^circ ) (вспоминаем тему «Вписанный и центральный угол окружности»).
Но и кроме того, ( displaystyle angle K) в ( displaystyle Delta BKC) равен ( displaystyle angle A) в ( displaystyle Delta ABC), потому что эти углы опираются на одну дугу ( displaystyle BC) (опять вспоминаем ту же тему).
А теперь просто запишем выражение для синуса ( displaystyle angle K) в прямоугольном ( displaystyle Delta BKC) ( displaystyle sin angle K=frac{a}{BK}).
Но ведь ( displaystyle BK) – диаметр ( displaystyle quadRightarrowquad BK=2R), и ( displaystyle sin angle K=frac{a}{2R}).
Вспомним, что ( displaystyle angle K=angle A) и получим ( displaystyle sin angle A=frac{a}{2R}quadRightarrowquad frac{a}{sin angle A}=2R).
Вот и всё! Провели одну линию, рассмотрели один прямоугольный треугольник – и доказательство готово.
Но как же быть с углами ( displaystyle B) и ( displaystyle C)? – спросишь ты.
Да, точно также. Давай рассмотрим ( displaystyle angle B).
Теперь проведём диаметр ( displaystyle AO) и соединим точки ( displaystyle K) и ( displaystyle C).
Как-то тут немного по-другому получается, ты заметил? ( displaystyle Delta AKC), конечно, прямоугольный, так как ( displaystyle angle C) опирается на диаметр ( displaystyle AK).
Но теперь ( displaystyle angle K+angle B=180{}^circ ), потому что четырехугольник ( displaystyle ABCK) – вписанный. (Надеюсь, ты ещё помнишь, что для угла ( displaystyle A) у нас было ( displaystyle angle A=angle K).) В чём же дело?
Ну, просто ( displaystyle angle B) – тупой, поэтому и получилось такое различие. Но, к счастью, для теоремы синусов это различие не играет роли. Сейчас мы в этом убедимся.
Итак, запишем выражение для синуса ( displaystyle angle K) в прямоугольном ( displaystyle Delta AKC).
( displaystyle sin angle K=frac{b}{AK}); то есть ( displaystyle sin angle K=frac{b}{2R})
Но ( displaystyle angle B=180{}^circ -angle KRightarrow sin angle B=sin angle K) (читаем или вспоминаем формулы приведения в тригонометрии.)
Значит, ( displaystyle sin angle B=frac{b}{2R}quadRightarrowquad frac{b}{sin angle B}=2R).
Ну вот, мы рассмотрели и острый, и тупой угол. Если ты все ещё беспокоишься об угле ( displaystyle C), то проделай все те же действия самостоятельно и убедись, что все получается.
Обрати внимание, что мы доказали «четверное равенство».
( displaystyle frac{a}{sin angle A}=frac{b}{sin angle B}=frac{c}{sin angle C}=2R)
в такой последовательности:
( displaystyle left{ begin{array}{l}frac{a}{sin angle A}=2R\frac{b}{sin angle B}=2Rhspace{13mm}Rightarrowquad frac{a}{sin angle A}=frac{b}{sin angle B}=frac{c}{sin angle C}=2R\frac{c}{sin angle C}=2Rend{array} right.)
А теперь внимание! Обсудим пользу этой теоремы
Понимаешь, теорема синусов – единственный разумный способ для нахождения радиуса описанной окружности.
Почему я так говорю? А ты вспомни сам: ну где ещё в формулах участвует ( displaystyle R)?! Возможно, правда, ты знаком с формулой ( displaystyle S=frac{abc}{4R}), то есть ( displaystyle R=frac{abc}{4S}quad), но!
Давай – ка сравним:
Из теоремы синусов: ( displaystyle R=frac{a}{2sin angle A})
Из формулы площади: ( displaystyle R=frac{abc}{4S}).
Чувствуешь разницу? В первой формуле нужно знать только одну сторону и один угол, а во второй формуле – все стороны, да ещё и площадь! Ну и какую формулу легче применить?
А кроме того, открою тебе маленький секрет: формула ( displaystyle S=frac{abc}{4R}) как раз и доказывается именно с применением теоремы синусов.
Чтобы убедиться в этом, читай темы «Площадь круга», «Площадь треугольника и четырехугольника».
Итак, теорема синусов бывает полезна и для нахождения синуса какого – то угла, если известны две стороны и один угол.
Но в основном теорема синусов – главный инструмент для нахождения радиуса описанной окружности.
Запомни это очень хорошо!
Теорема синусов.
Стороны треугольника пропорциональны синусам противолежащих углов.
Дано: ∆ ABC,
BC=a, AC=b, AB=c,
∠A=α, ∠B=β, ∠C=γ.
Доказать:
Доказательство:
1) Опустим из вершины C высоту CD.
2) Из прямоугольного треугольника ACD по определению синуса острого угла
Отсюда
3) Аналогично из треугольника BCD
4) Приравниваем правые части полученных равенств:
Поделив обе части последнего равенства на произведение sinα∙sinβ, получим:
5) Опустим из вершины A высоту AF.
6) Из прямоугольного треугольника ACF по определению синуса
7) Аналогично из треугольника ABF
Приравниваем правые части:
делим обе части равенства на произведение sinγ∙sinβ, получаем:
Что и требовалось доказать.
Замечание.
Если треугольник ABC тупоугольный, то все рассуждения и в этом случае сохраняются, поскольку
Например, из треугольника BCD
В прямоугольном треугольника теорему синусов не принято использовать (достаточно применить определение синуса).