Как найти стороны многоугольника зная количество сторон

Вы здесь

  • Сторона правильного многоугольника

    Правильные многоугольники часто фигурируют в задачах с вписанными или описанными окружностями. Отрезок, проведенный из центра окружности в угол или середину стороны, является радиусом описанной или вписанной окружности соответственно.

    Зная количество сторон многоугольника, ключевой задачей является нахождение центрального угла между этими двумя радиусами, так как они с половиной стороны образуют прямоугольный треугольник. Такой угол будет равен 180 градусам, разделенным на количество сторон многоугольника n:

    Из тригонометрических отношений в треугольнике, сторона будет равна удвоенному произведению радиуса описанной окружности на синус центрального угла или радиуса вписанной окружности на тангенс того же угла.

Смотрите также

Как найти стороны многоугольника

В самом широком определении многоугольником можно назвать любую замкнутую ломаную линию. Вычислять длины сторон такой геометрической фигуры по одной общей формуле невозможно. Если уточнить, что многоугольник является выпуклым, то появятся некоторые общие для всего класса фигур параметры (например, сумма углов), но для общей для всех формулы нахождения длин сторон их тоже будет недостаточно. Если сузить определение еще больше и рассмотреть только правильные выпуклые многоугольники, то появится возможность вывести несколько общих для всех таких фигур формул вычисления сторон.

Как найти стороны многоугольника

Инструкция

По определению правильным называется многоугольник, длины всех сторон которого одинаковы. Поэтому, зная их суммарную длину — периметр — (P) и общее число вершин или сторон (n), разделите первое на второе, чтобы вычислить размеры каждой стороны (a) фигуры: a = P/n.

Около всякого правильного многоугольника можно описать окружность единственно возможного радиуса (R) — это свойство тоже можно использовать для вычисления длины стороны (a) любого многоугольника, если число его вершин (n) тоже известно из условий. Для этого рассмотрите треугольник, образованный двумя радиусами и искомой стороной. Это равнобедренный треугольник, в котором основание можно найти, умножив удвоенную длину боковой стороны — радиуса — на половину величины угла между ними — центрального угла. Рассчитать угол легко — поделите 360° на число сторон многоугольника. Окончательная формула должна выглядеть так: a = 2*R*sin(180°/n).

Аналогичное свойство есть и для вписанной в правильный выпуклый многоугольник окружности — она обязательно существует, а радиус может иметь единственное значение для каждой конкретной фигуры. Поэтому и здесь при вычислении длины стороны (a) можно использовать знание радиуса (r) и числа сторон многоугольника (n). Радиус, проведенный из точки касания окружности и любой из сторон, перпендикулярен этой стороне и делит ее пополам. Поэтому рассмотрите прямоугольный треугольник, в котором радиус и половина искомой стороны являются катетами. Согласно определению, их отношение равно тангенсу половины центрального угла, который вы можете рассчитать так же, как и в предыдущем шаге: (360°/n)/2 = 180°/n. Определение тангенса острого угла в прямоугольном треугольнике в этом случае можно записать так: tg(180°/n) = (a/2)/r. Выразите из этого равенства длину стороны. У вас должна получиться такая формула: a = 2*r*tg(180°/n).

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

bezdelnik
[34.1K]

8 лет назад 

r — радиус вписанной в N-угольник окружности

В любой правильный многоугольник можно вписать окружность. От длины стороны будет зависеть радиус вписанной окружности. Или наоборот — длина стороны зависит радиус вписанной окружности.

Посмотрите на формулу, которая связывает эти величины

текст при наведении

Чтобы посчитать количество сторон, надо найти из этой формулы N. Получите ответ.

в избранное

ссылка

отблагодарить

Rafail
[136K]

Вокруг окружности ЛЮБОГО радиуса можно описать ЛЮБОЙ правильный N-угольник. 
—  8 лет назад 

bezdelnik
[34.1K]

spin, в приведенной Вами формуле два неизвестных a и n, поэтому по ней нельзя найти n. 
—  8 лет назад 

spin
[16.3K]

а — длина стороны, n — число сторон многоугольника. Если задан многоугольник с известным количеством сторон, радиус вписанной окружности, то получается одно неизвестное.
Конечно, если неизвестно количество сторон, то одно уравнение с двумя неизвестными не решается и надо иметь еще какие-то данные.
 
—  8 лет назад 

Rafail
[136K]

О чём спорите, господа? разве Вы не прочитали мой комментарий, или не поняли смысл сказанного? Вокруг ЛЮБОЙ окружности можно описать ЛЮБОЙ многоугольник, поэтому вопрос вообще бессмысленен. При ЛЮБОМ радиусе r число сторон N может быть ЛЮБЫМ. 
—  8 лет назад 

spin
[16.3K]

Никто не спорит. Понятно, что по тем данным, которые есть в вопросе однозначно посчитать количество сторон не получится.
Если задана только окружность, то вокруг нее можно построить многоугольник с любым количеством сторон (ясное дело, что количество сторон будет больше двух :) ). Именно из этого утверждения я и начал свой ответ. От количества сторон многоугольника будет зависеть длина стороны: чем больше N — тем меньше длина стороны.
 
—  8 лет назад 

все комментарии (еще 5)

Знаете ответ?

Длина стороны правильного многоугольника

Нахождение длины стороны правильного многоугольника по известной площади и числу сторон.

Статьи, описывающие этот калькулятор

  • Длина стороны правильного многоугольника

PLANETCALC, Длина стороны правильного многоугольника

Длина стороны правильного многоугольника

Точность вычисления

Знаков после запятой: 2

Радиус описанной окружности

Ссылка скопирована в буфер обмена

Похожие калькуляторы

  • • Длина стороны правильного многоугольника
  • • Площадь правильного многоугольника
  • • Правильный многоугольник. Описанная и вписанная окружность
  • • Определение параметров правильного многоугольника по радиусам вписанной и описанной окружности
  • • Длина стороны правильного многоугольника
  • • Раздел: Геометрия ( 97 калькуляторов )

PLANETCALC, Длина стороны правильного многоугольника

Содержание

  1. Определение правильного многоугольника
  2. Элементы правильного многоугольника
  3. Диагонали n — угольника
  4. Внешний угол многоугольника
  5. Сумма внутренних углов
  6. Сумма внешних углов
  7. Виды правильных многоугольников
  8. Основные свойства правильного многоугольника
  9. Свойство 1
  10. Свойство 2
  11. Свойство 3
  12. Свойство 4
  13. Свойство 5
  14. Свойство 6
  15. Доказательства свойств углов многоугольника
  16. Правильный n-угольник — формулы
  17. Формулы длины стороны правильного n-угольника
  18. Формула радиуса вписанной окружности правильного n-угольника
  19. Формула радиуса описанной окружности правильного n-угольника
  20. Формулы площади правильного n-угольника
  21. Формула периметра правильного многоугольника:
  22. Формула определения угла между сторонами правильного многоугольника:
  23. Формулы правильного треугольника:
  24. Формулы правильного четырехугольника:
  25. Формулы правильного шестиугольника:
  26. Формулы правильного восьмиугольника:
  27. Сторона правильного многоугольника через радиус описанной вокруг него окружности
  28. Шаг 1
  29. Шаг 2
  30. Шаг 3

Определение правильного многоугольника

Правильный многоугольник – это выпуклый многоугольник, у которого равны все стороны и углы.

Правильный шестиугольник

Признаки правильного n-угольника

  • a1 = a2 = a3 = … an-1 = an
  • α1 = α2 = α3 = … αn-1 = αn

Примечание: n – количество сторон/углов фигуры.

Элементы правильного многоугольника

Для рисунка выше:

  • a – сторона/ребро;
  • α – угол между смежными сторонами;
  • O – центр фигуры/масс (совпадает с центрами описанной и вписанной окружностей);
  • β – центральный угол описанной окружности, опирающийся на сторону многоугольника.

Диагонали n — угольника

Фигура Рисунок Описание
Диагональ
многоугольника
диагонали многоугольника Диагональю многоугольника называют отрезок, соединяющий две несоседние вершины многоугольника
Диагонали
n – угольника, выходящие из одной вершины
диагонали многоугольника Диагонали, выходящие из одной вершины
n – угольника, делят n – угольник на
n – 2 треугольника
Все диагонали
n – угольника
диагонали многоугольника Число диагоналейn – угольника равно
Диагональ многоугольника
диагонали многоугольника

Диагональю многоугольника называют отрезок, соединяющий две несоседние вершины многоугольника

Диагонали n – угольника, выходящие из одной вершины
диагонали многоугольника

Диагонали, выходящие из одной вершины n – угольника, делят n – угольник на n – 2 треугольника

Все диагонали n – угольника
диагонали многоугольника

Число диагоналей n – угольника равно

Внешний угол многоугольника

Определение 5 . Два угла называют смежными, если они имеют общую сторону, и их сумма равна 180° (рис.1).

Внешний угол многоугольника смежные углы

Рис.1

Определение 6 . Внешним углом многоугольника называют угол, смежный с внутренним углом многоугольника (рис.2).

Внешний угол многоугольника смежные углы

Рис.2

Замечание. Мы рассматриваем только выпуклые многоугольники выпуклые многоугольники .

Сумма внутренних углов

Сумма внутренних углов выпуклого многоугольника равна произведению  180°  и количеству сторон без двух.

s = 2d(n — 2),

где  s  — это сумма углов,  2d  — два прямых угла (то есть  2 · 90 = 180°),  а  n  — количество сторон.

Если мы проведём из вершины  A  многоугольника  ABCDEF  все возможные диагонали, то разделим его на треугольники, количество которых будет на два меньше, чем сторон многоугольника:

сумма внутренних углов многоугольника

Следовательно, сумма углов многоугольника будет равна сумме углов всех получившихся треугольников. Так как сумма углов каждого треугольника равна  180°  (2d),  то сумма углов всех треугольников будет равна произведению  2d  на их количество:

s = 2d(n — 2) = 180 · 4 = 720°.

Из этой формулы следует, что сумма внутренних углов является постоянной величиной и зависит от количества сторон многоугольника.

Сумма внешних углов

Сумма внешних углов выпуклого многоугольника равна  360°  (или  4d).

s = 4d,

где  s  — это сумма внешних углов,  4d  — четыре прямых угла (то есть 4 · 90 = 360°).

Сумма внешнего и внутреннего угла при каждой вершине многоугольника равна  180°  (2d),  так как они являются смежными углами. Например,  ∠1  и  ∠2:

Сумма внешних углов многоугольника

Следовательно, если многоугольник имеет  n  сторон (и  n  вершин), то сумма внешних и внутренних углов при всех  n  вершинах будет равна  2dn.  Чтобы из этой суммы  2dn  получить только сумму внешних углов, надо из неё вычесть сумму внутренних углов, то есть  2d(n — 2):

s = 2dn — 2d(n — 2) = 2dn — 2dn + 4d = 4d.

Виды правильных многоугольников

  1. Правильный (равносторонний) треугольник
  2. Правильный четырехугольник (квадрат)
  3. Правильный пяти-, шести-, n-угольник

Основные свойства правильного многоугольника

  • Все стороны равны:
    a1 = a2 = a3 = … = an-1 = an2. Все углы равны:
    α1 = α2 = α3 = … = αn-1 = αn3. Центр вписанной окружности Oв совпадает з центром описанной окружности Oо, что и образуют центр многоугольника O4. Сумма всех углов n-угольника равна:

180° · (n — 2)

  • Сумма всех внешних углов n-угольника равна 360°:

β1 + β2 + β3 + … + βn-1 + βn = 360°

  • Количество диагоналей (Dn) n-угольника равна половине произведения количества вершин на количество диагоналей, выходящих из каждой вершины:
  • В любой многоугольник можно вписать окружность и описать круг при этом площадь кольца, образованная этими окружностями, зависит только от длины стороны многоугольника:
  • Все биссектрисы углов между сторонами равны и проходят через центр правильного многоугольника O

Свойство 1

Внутренние углы в правильном многоугольнике (α) равны между собой и могут быть рассчитаны по формуле:

Формула расчета внутреннего угла правильного многоугольника

где n – число сторон фигуры.

Свойство 2

Сумма всех углов правильного n-угольника равняется: 180° · (n-2).

Свойство 3

Количество диагоналей (Dn) правильного n-угольника зависит от количества его сторон (n) и определяется следующим образом:

Формула расчета количества диагоналей правильного многоугольника

Свойство 4

В любой правильный многоугольник можно вписать круг и описать окружность около него, причем их центры будут совпадать, в том числе, с центром самого многоугольника.

В качестве примера на рисунке ниже изображен правильный шестиугольник (гексагон) с центром в точке O.

Площадь (S) образованного окружностями кольца вычисляется через длину стороны (a) фигуры по формуле:

Формула расчета площади кольца, образованного описанной и вписанной в правильный многоугольник окружностями

Между радиусами вписанной (r) и описанной (R) окружностей существует зависимость:

Зависимость между радиусами описанной и вписанной в правильный многоугольник окружностей

Свойство 5

Зная длину стороны (a) правильного многоугольника можно рассчитать следующие, относящиеся к нему величины:

  • Площадь (S):

Формула расчета площади правильного многоугольника через длину его стороны

  • Периметр (P):Формула расчета периметра правильного многоугольника через длину его стороны
  • Радиус описанной окружности (R):

Формула расчета радиуса описанной около правильного многоугольника окружности через длину его стороны

  • Радиус вписанной окружности (r):

Формула расчета радиуса вписанной в правильный многоугольник окружности через длину его стороны

Свойство 6

Площадь (S) правильного многоугольника можно выразить через радиус описанной/вписанной окружности:

Формула расчета площади правильного многоугольника через радиус вписанной в него окружности

Формула расчета площади правильного многоугольника через радиус описанной около него окружности

Доказательства свойств углов многоугольника

Теорема 1. В любом треугольнике сумма углов равна 180°.

Доказательство. Проведем, например, через вершину B произвольного треугольника ABC прямую DE, параллельную прямой AC, и рассмотрим полученные углы с вершиной в точке B (рис. 3).

Свойства углов треугольника доказательство

Рис.3

Углы ABD и BAC равны как внутренние накрест лежащие. По той же причине равны углы ACB и CBE. Поскольку углы ABD, ABC и CBE в сумме составляют развёрнутый угол, то и сумма углов треугольника ABC равна 180°. Теорема доказана.

Теорема 2. Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

Доказательство. Проведём через вершину C прямую CE, параллельную прямой AB, и продолжим отрезок AC за точку C (рис.4).

Свойства углов треугольника доказательство
Свойства углов треугольника доказательство

Рис.4

Углы ABC и BCE равны как внутренние накрест лежащие. Углы BAC и ECD равны как соответственные равны как соответственные . Поэтому внешний угол BCD равен сумме углов BAC и ABC. Теорема доказана.

Замечание. Теорема 1 является следствием теоремы 2.

Теорема 3. Сумма углов  – угольникаn равна

Доказательство. Выберем внутри n – угольника произвольную точку O и соединим её со всеми вершинами n – угольника (рис. 5).

Свойства углов многоугольника

Рис.5

Получим n треугольников:

OA1A2,  OA2A3,  …  OAnA1

Сумма углов всех этих треугольников равна сумме всех внутренних углов n – угольника плюс сумма всех углов с вершиной в точке O. Поэтому сумма всех углов n – угольника равна

что и требовалось доказать.

Теорема 4. Сумма внешних углов  – угольникаn , взятых по одному у каждой вершины, равна 360°.

Доказательство. Рассмотрим рисунок 6.

Свойства углов многоугольника

Рис.6

В соответствии рисунком 6 справедливы равенства

Теорема доказана.

Правильный n-угольник — формулы

Формулы длины стороны правильного n-угольника

  • Формула стороны правильного n-угольника через радиус вписанной окружности:
  • Формула стороны правильного n-угольника через радиус описанной окружности:

Формула радиуса вписанной окружности правильного n-угольника

Формула радиуса вписанной окружности n-угольника через длину стороны:

Формула радиуса описанной окружности правильного n-угольника

Формула радиуса описанной окружности n-угольника через длину стороны:

Формулы площади правильного n-угольника

  • Формула площади n-угольника через длину стороны:
  • Формула площади n-угольника через радиус вписанной окружности:
  • Формула площади n-угольника через радиус описанной окружности:

Формула периметра правильного многоугольника:

Формула периметра правильного n-угольника:

P = na

Формула определения угла между сторонами правильного многоугольника:

Формула угла между сторонами правильного n-угольника:

Изображение правильного треугольника с обозначениями
Рис.3

Формулы правильного треугольника:

  • Формула стороны правильного треугольника через радиус вписанной окружности:

a = 2r √3

  • Формула стороны правильного треугольника через радиус описанной окружности:

a = R√3

  • Формула радиуса вписанной окружности правильного треугольника через длину стороны:
  • Формула радиуса описанной окружности правильного треугольника через длину стороны:
  • Формула площади правильного треугольника через длину стороны:
  • Формула площади правильного треугольника через радиус вписанной окружности:

S = r2 3√3

  • Формула площади правильного треугольника через радиус описанной окружности:
  • Угол между сторонами правильного треугольника:

α = 60°

Изображение правильного четырехугольнику с обозначениями
Рис.4

Формулы правильного четырехугольника:

  • Формула стороны правильного четырехугольника через радиус вписанной окружности:

a = 2r

  • Формула стороны правильного четырехугольника через радиус описанной окружности:

a = R√2

  • Формула радиуса вписанной окружности правильного четырехугольника через длину стороны:
  • Формула радиуса описанной окружности правильного четырехугольника через длину стороны:
  • Формула площади правильного четырехугольника через длину стороны:

S = a2

  • Формула площади правильного четырехугольника через радиус вписанной окружности:

S = 4 r2

  • Формула площади правильного четырехугольника через радиус описанной окружности:

S =  2 R2

  • Угол между сторонами правильного четырехугольника:

α = 90°

Формулы правильного шестиугольника:

Формула стороны правильного шестиугольника через радиус вписанной окружности:

Формула стороны правильного шестиугольника через радиус описанной окружности:

a = R

Формула радиуса вписанной окружности правильного шестиугольника через длину стороны:

Формула радиуса описанной окружности правильного шестиугольника через длину стороны:

R = a

Формула площади правильного шестиугольника через длину стороны:

Формула площади правильного шестиугольника через радиус вписанной окружности:

S = r2 2√3

Формула площади правильного шестиугольника через радиус описанной окружности:

8. Угол между сторонами правильного шестиугольника:

α = 120°

Формулы правильного восьмиугольника:

Формула стороны правильного восьмиугольника через радиус вписанной окружности:

a = 2r · (√2 — 1)

Формула стороны правильного восьмиугольника через радиус описанной окружности:

a = R√2 — √2

Формула радиуса вписанной окружности правильного восьмиугольника через длину стороны:

Формула радиуса описанной окружности правильного восьмиугольника через длину стороны:

Формула площади правильного восьмиугольника через длину стороны:

S = a2 2(√2 + 1)

Формула площади правильного восьмиугольника через радиус вписанной окружности:

S = r2 8(√2 — 1)

Формула площади правильного восьмиугольника через радиус описанной окружности:

S = R2 2√2

Угол между сторонами правильного восьмиугольника:

α = 135°

Сторона правильного многоугольника через радиус описанной вокруг него окружности

Сторону правильного многоугольника через радиус описанной вокруг него окружности можно найти по формуле

Где:

a – длина его стороны;

R – радиус описанной окружности;

n – число сторон многоугольника.

Формула стороны правильного многоугольника

Шаг 1

Рассмотрим правильный многоугольник А1А2А3…Аn.

Пусть его сторона будет равна a.

Опишем вокруг этого многоугольника окружность с центром в точке О и радиусом R.

Вывод формулы стороны правильного многоугольника.

Шаг 2

Соединим точку О с его вершинами. А1А2А3…Аn.

Рассмотрим треугольник ОА1А2.

Рассматриваемый треугольник будет равнобедренным, так как его стороны А1О и А2О – радиусы описанной окружности.

Проведем в треугольнике А1ОА2 высоту ОК.

Так как треугольник А1ОА2 равнобедренный, то высота будет медианой:

Вывод формулы стороны правильного многоугольника.

Шаг 3

Рассмотрим треугольник А1КО.

Этот треугольник прямоугольный, так как ОК – высота по построению.

Так как точка О – центр правильного многоугольника, то отрезки АnO являются биссектрисами углов этого многоугольника.

Таким образом, если углы многоугольника обозначим буквой α, то угол ОА1К будет равен:

По свойству углов правильного многоугольника, каждый угол равен:

Тогда угол ОА1К будет равен:

Из определения косинуса угла получим:

Отсюда:

Подставим в формулу значения, полученные выше и на шаге 2:

Умножим обе части уравнения на 2:

Воспользуемся формулами приведения

Так как А1О является радиусом описанной окружности, то сторона правильного многоугольника может быть найдена по формуле:

Вывод формулы стороны правильного многоугольника.

Понравилась статья? Поделить с друзьями:
  • Как найти нашивки на форму
  • Как составить договор дарения на квартиру между родственниками правильно
  • Как найти статую мимика в террарии
  • Range check error victoria как исправить
  • Python как найти список в списке