Как найти стороны параллелограмма
Свойства параллелограмма:
1. Противоположные стороны равны и параллельны
2. Противоположные углы равны
3. Точка пересечения диагоналей, делит их пополам
1. Формулы длины сторон через диагонали и угол между ними.
a , b — стороны параллелограмма
D — большая диагональ
d — меньшая диагональ
α , β — углы между диагоналями
Формулы сторон параллелограмма через диагонали и угол между ними (по теореме косинусов), ( a , b ):
Формулы сторон параллелограмма через диагонали и сторону, ( a , b ):
Формулы сторон параллелограмма , ( a , b ):
2. Формулы длины сторон параллелограмма через высоту.
a , b — стороны параллелограмма
H b — высота на сторону b
H a — высота на сторону a
α , β — углы параллелограмма
Формулы сторон параллелограмма через высоту, ( a , b ):
3. Дополнительные, интересные формулы параллелограмма:
a , b — стороны параллелограмма
D — большая диагональ
d — меньшая диагональ
α — острый угол между диагоналями
Четырехугольники, вписанные в окружность. Теорема Птолемея
Вписанные четырёхугольники и их свойства
Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .
Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .
Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .
Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.
Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).
Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Фигура | Рисунок | Свойство |
Окружность, описанная около параллелограмма | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |
Окружность, описанная около ромба | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |
Окружность, описанная около трапеции | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |
Окружность, описанная около дельтоида | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |
Произвольный вписанный четырёхугольник |
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Окружность, описанная около параллелограмма | |
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |
Окружность, описанная около ромба | |
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |
Окружность, описанная около трапеции | |
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |
Окружность, описанная около дельтоида | |
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |
Произвольный вписанный четырёхугольник | |
Окружность, описанная около параллелограмма |
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Теорема Птолемея
Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.
Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).
Докажем, что справедливо равенство:
Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).
Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
откуда вытекает равенство:
(1) |
Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
Как найти стороны параллелограмма вписанного в окружность
В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 8.
Это задание ещё не решено, приводим решение прототипа.
В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 6.
Пусть длин сторон параллелограмма равны a и В выпуклый четырёхугольник можно вписать окружность тогда и только тогда, когда суммы длин противоположных сторон равны: Периметр параллелограмма
http://www.resolventa.ru/spr/planimetry/ofcircle.htm
http://oge.sdamgia.ru/problem?id=340934
Можно ли вписать окружность в параллелограмм и наоборот
Содержание:
-
Параллелограмм, вписанный в окружность
- Свойство радиуса окружности, описанной около прямоугольника
- Пример решения задачи. Параллелограмм и описанная окружность
-
Параллелограмм, описанный около окружности
- Радиус окружности, вписанной в ромб
- Задачи. Параллелограмм и вписанная окружность.
Параллелограмм, вписанный в окружность
Параллелограмм — это четырехугольник с попарно параллельными и равными противолежащими сторонами.
Все четыре стороны этой фигуры принадлежат одной плоскости.
Четырехугольник можно вписать в окружность, если сумма его противоположных углов равна 180°. Если сумма противоположных углов параллелограмма равна 180°, то такой параллелограмм — прямоугольник.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Точка пересечения диагоналей прямоугольника является центром описанной окружности.
Свойство радиуса окружности, описанной около прямоугольника
Радиус описанной окружности равен половине диагонали прямоугольника.
Пример решения задачи. Параллелограмм и описанная окружность
Задача 1
Дано: прямоугольник со сторонами 8 см и 6 см.
Найти: радиус описанной окружности.
Решение: диагональ прямоугольника равна (sqrt{8^2+6^2}=10 (см)); следовательно, радиус описанной окружности равен 10÷2=5 (см).
Ответ: 5 см.
Параллелограмм, описанный около окружности
Когда параллелограмм можно описать около окружности? Другими словами — при каком условии можно вписать окружность или круг в параллелограмм?
Так как параллелограмм — это частный случай четырехугольника, будет действовать то же правило, что и для любого другого четырехугольника. Окружность можно вписать в параллелограмм, только если суммы его противоположных сторон равны.
Это условие выполняется только для тех параллелограммов, у которых все стороны равны, то есть только для ромба (и квадрата, как частного случая ромба).
Если в задаче дано, что в параллелограмм вписана окружность, то из этого условия можно сделать вывод, что все его стороны равны, и данный параллелограмм является ромбом. Если по условию один из углов этого параллелограмма прямой, то такой параллелограмм — квадрат.
Радиус окружности, вписанной в ромб
Радиус вписанной в ромб окружности можно найти несколькими способами.
Если известны диагонали и сторона
Формула 1
(r=frac{Dd}{4a}), где:
- r — радиус вписанной окружности;
- а — сторона ромба;
- D — большая диагональ;
- d — меньшая диагональ.
Если известны диагонали
Формула 2
(r=frac{Dd}{2sqrt{D^2+d^2}}), где:
- r — радиус вписанной окружности;
- D — большая диагональ;
- d — меньшая диагональ.
Если известны сторона и угол
Формула 3
(r=frac{a·sinalpha}2), где:
- r — радиус вписанной окружности;
- а — сторона ромба;
- α — острый угол.
Если известны диагонали и угол
Формула 4
(r=frac d2cosalpha/2=frac d{2sqrt2}sqrt{1+cosalpha})
Формула 5
(r=frac D2sin;alpha/2=frac D{2sqrt2}sqrt{1-cosalpha}), где:
- r — радиус вписанной окружности;
- D — большая диагональ;
- d — меньшая диагональ;
- α — острый угол.
Если известны диагонали и сторона
Формула 6
(r=frac{Dsqrt{a^2-D^2/4}}{2a})
Формула 7
(r=frac{dsqrt{a^2-d^2/4}}{2a}), где:
- r — радиус вписанной окружности;
- D — большая диагональ;
- d — меньшая диагональ;
- а — сторона ромба.
Если известна высота ромба
Формула 8
(r=frac h2), где:
- r — радиус вписанной окружности;
- h — высота ромба.
Если известны площадь и полупериметр
Формула 9
(r=frac Sp), где:
- r — радиус вписанной окружности;
- S — площадь ромба;
- p — полупериметр ромба.
Задачи. Параллелограмм и вписанная окружность.
Задача 2
Дано: параллелограмм со вписанной окружностью. Одна из сторон параллелограмма равна 5 см.
Найти: периметр параллелограмма.
Решение: в параллелограмм можно вписать окружность только если это ромб. Четыре стороны ромба равны. Следовательно, периметр данного параллелограмма равен 5·4=20 (см).
Ответ: 20 см.
Задача 3
Дано: параллелограмм MNKP с диагоналями 12 см и 16 см. В MNKP вписана окружность.
Найти: радиус вписанной окружности.
Решение:
Из того, что в параллелограмм MNKP вписана окружность, делаем вывод, что MNKP — ромб.
Параллелограмм MNKP не является квадратом, так как его диагонали не равны. MK=16 см, NP=12 см.
ΔMOP прямоугольный, (∠MOP=90°. MO=8 см, OP=6 см. S_{MОР}=(8·6)÷2=24 (см^2)).
(S_{MNKP}=24·4=96 (см^2)).
По теореме Пифагора ( MP=sqrt{MО^2+ОР^2}=sqrt{8^2+6^2}=10 (см)).
Полупериметр MNKP равен 20 см.
Следовательно, радиус вписанной окружности равен
(r=frac Sp=96÷10=9,6 (см)).
Ответ: 9,6 см.
Насколько полезной была для вас статья?
У этой статьи пока нет оценок.
Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»
Текст с ошибкой:
Расскажите, что не так
Поиск по содержимому
Определение параллелограмма
С этой фигурой знакомы все, освоившие курс школьной программы. Впервые с понятием «параллелограмм» встречаются в 8 классе на уроках геометрии.
Параллелограмм — геометрическая фигура, являющаяся разновидностью четырехугольника. Противоположные стороны параллельны.
Стоит отметить, что всем известные фигуры, такие как квадрат, ромб, прямоугольник, являются параллелограммами. Исходя из этого, им можно дать следующие определения:
- Квадрат — параллелограмм с равными сторонами, пересекающимися под углом 90 градусов.
- Ромб — параллелограмм с равными между собой сторонами, не пересекающимися под углом 90 градусов.
- Прямоугольник — параллелограмм с неравными между собой сторонами, но пересекающимися под прямым углом.
Видео
Стороны параллелограмма
Формулы определения длин сторон параллелограмма:
1. Формула сторон параллелограмма через диагонали и угол между ними:
a = √d12 + d22 — 2d1d2·cosγ 2 = √d12 + d22 + 2d1d2·cosδ 2
b = √d12 + d22 + 2d1d2·cosγ 2 = √d12 + d22 — 2d1d2·cosδ 2
2. Формула сторон параллелограмма через диагонали и другую сторону:
3. Формула сторон параллелограмма через высоту и синус угла:
4. Формула сторон параллелограмма через площадь и высоту:
a = Sha b = Shb
Как вписать окружность впараллелограмм?
В окружность можно вписать параллелограмм при условии равнозначных сумм противолежащих сторон. Из трех вариантов параллелограмма сумма противоположных сторон одинакова только у ромба. Следовательно, если в параллелограмм вписана окружность, то этот параллелограмм является ромбом.
Алгоритм действий:
- Начертить ромб можно, зная длину минимум одной стороны и одного угла.
- Провести горизонтальную линию, равную длине стороны.
- Транспортиром отмерить известный угол и провести луч.
- На луче отмерить тот же самый размер стороны.
- Оставшиеся две стороны нарисовать параллельно имеющимся.
- Согласно свойству ромба и вписанной окружности, проводим две биссектрисы из смежных углов (они же диагонали в ромбе).
- Пересечение биссектрис отметить точкой О.
- Точка О будет центром окружности.
- Вписанная окружность должна касаться всех сторон параллелограмма. Следовательно, стороны ромба будут касательными к окружности.
- Касательные перпендикулярны радиусу, который проходит к точке касания. Таким образом, из центра окружности (точки О) надо опустить перпендикуляр к любой стороне ромба.
- Иголку циркуля поставить в точку О, а ножку — на точку касания перпендикуляра со стороной ромба.
- Начертить окружность.
- Правильно начерченная фигура будет соприкасаться со всеми сторонами ромба.
Признаки параллелограмма
Четырехугольник является параллелограммом, если выполняется хотя бы одно из следующих условий:
1. Противоположные стороны попарно равны:
2. Противоположные углы попарно равны:
3. Диагонали пересекаются и в точке пересечения делятся пополам
4. Противоположные стороны равны и параллельны:
5.
Небольшой видеоролик о свойствах параллелограмма (в том числе ромба, прямоугольника, квадрата) и о том, как эти свойства применяются в задачах:
Формулы площади параллелограмма смотрите здесь.
Хорошую подборку задач на нахождение углов и длин в параллелограмме смотрите здесь.
Теги
Как найти длину одной из сторон параллелограмма? Чтобы найти сторону параллелограмма, необходимо наличие некоторых других значений, которые бы были известны. Далее попросту использовать одну из подходящих формул. Например, по теореме косинусов, это формулы сторон через диагонали и находящийся между ними угол: Другим решением, являются формулы, где стороны рассчитываются по диагонали и одной из известной стороны: Вот еще формулы сторон параллелепипеда, через вторую сторону, диагонали и косинус угла: Стоит напомнить и про формулы длин сторон, через высоту и синус угла: Так же длину стороны параллелограмма, можно определить если известны площадь и высота: Как видим, вариантов расчета высоты параллелограмма достаточно много и хотелось напомнить основные характеристики этой геометрической фигуры: Во первых, параллелограммом называется четырехугольник, имеющий параллельно расположенные противоположные стороны , т. е. находящиеся на параллельных прямых. Квадраты, прямоугольники и ромбы, также являются параллелограммами. система выбрала этот ответ лучшим Для нахождения стороны параллелограмма есть более десятка разных формул (они перечислены в ответе автора Бульбозавр), но для решения задач на эту тему, далеко не всегда их можно применить. На мой взгляд лучше всего разобрать несколько примеров и на практике увидеть, как находить сторону этой фигуры — в наших случаях с помощью уравнений. Пример 1 Нужно найти стороны параллелограмма, если одна из сторон больше другой в два раза а периметр равен 30 см. Даже не нужно чертить рисунок, а просто составить уравнение и решить его периметр(30см) = 2(х+2х) откуда х=5см, следовательно одна сторона равна 5см, другая — 10см. Пример 2 АВСД — параллелограмм, нужно найти его стороны если — ВМ перпендикуляр к АС, АМ=6см, МС=15см, ВС больше АВ на 6 см Для решения этой задачи сначала рассматриваем два прямоугольных треугольника АВМ и ВСМ у которых общий катет h. Согласно Пифагору h*h=a*a-6*6=b*b-15*15 откуда b*b-a*a=(b-a)(b+a)=225-36=189 по условию задачи b-a=7 тогда b+a=189/7=27 решив эту простенькую систему уравнений найдем стороны a=10см b=17cм Alexsandr82 6 лет назад Есть еще несколько формул которые будут скорее вспомогательными при решении задач по нахождению стороны паралелограмма но тем не менее их тоже нужно знать. Например одну из сторон паралеллограмма можно найти если известна вторая сторона и периметр фигуры по формуле: Р = 2(а+b), тогда а = (Р/2 — b), или b = (P/2 — a), где Р — периметр, а и b — стороны. Также можно найти сторону паралеллограмма зная его площадь и высоту опущенную на искомую сторону: S = a*H1 = b*H2, тогда а = S/H1 или b = S/H2, где S — площадь, а — меньшая сторона паралелограмма, b — большая сторона, Н1 — высота построенная к меньшей стороне, Н2 — сторна построенная к большей стороне паралеллограмма. Vector 60 8 месяцев назад Существует несколько формул для вычисления сторон параллелограмма (a и b). 1) Для нахождения сторон параллелограмма можно воспользоваться длиной диагоналей, а также величиной углов между диагоналями. Формулы будут такими: 2) Если известна одна из сторон и диагонали, то другую сторону можно найти так: 3) Если известна высота и величина одного из углов, то стороны параллелограмма можно найти по таким формулам: 4) Еще можно использовать значение площади и высоты: Stasy12 более года назад Формул, конечно много, с помощью которых можно найти сторону параллелограмма. Например можно найти стороны паралелограмма, зная размеры диагоналей и угла между ними(формула 1и 2) Зная длины диагоналей и одну из сторон, легко можно найти вторую(формулы 3 и 4) Через высоту, которая опущена на сторону и угол между сторонами(формулы 5 и 6) Зная площадь и высоту, которая опущена на заданную сторону можно найти длину стороны(формулы 7 и 8). Знаете ответ? |
Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.
Свойства параллелограмма:
- В параллелограмме противоположные стороны и противоположные углы равны.
- Диагонали параллелограмма точкой пересечения делятся пополам.
- Диагональ параллелограмма делит параллелограмм на два равных треугольника.
- Точка пересечения диагоналей — центр симметрии параллелограмма.
- Биссектриса любого угла параллелограмма отсекает от него равнобедренный треугольник.
- Биссектрисы параллелограмма, проведенные из противоположных углов, параллельны.
- Биссектрисы параллелограмма, проведенные из соседних углов, перпендикулярны.
- Угол между высотами, проведенными из тупого угла параллелограмма, равен острому углу параллелограмма.
- Угол между высотами, проведенными из острого угла параллелограмма, равен тупому углу параллелограмма.
- Сумма квадратов диагоналей параллелограмма равна сумме квадратов сторон параллелограмма.
- Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°.
Частные случаи параллелограмма: прямоугольник, квадрат, ромб. Следовательно, все эти фигуры обладают свойствами, присущими параллелограмму.
Прямоугольник — параллелограмм, у которого все углы равны.
Отличительное свойство прямоугольника: диагонали прямоугольника равны.
Ромб — параллелограмм, у которого все стороны равны.
Отличительное свойство ромба: диагонали ромба взаимно перпендикулярны и делят его углы пополам.
Квадрат — параллелограмм, у которого все стороны и углы равны.
Отличительное свойство квадрата: диагонали квадрата равны, взаимно перпендикулярны и делят углы квадрата пополам.
Площадь параллелограмма:
- Площадь параллелограмма через сторону и высоту, проведенной к этой стороне: S=a·ha=b·hb.
- Площадь параллелограмма через стороны и угол между ними: S=a·b·sinφ.
- Площадь параллелограмма через диагонали и угол между ними: S=0,5·d1·d2·sinφ.
- Площадь параллелограмма через радиус вписанной окружности и сторону(верна только для параллелограмма, в который можно вписать окружность): S=2·a·r.
- Площадь параллелограмма через радиус вписанной окружности и угол между сторонами(верна только для параллелограмма, в который можно вписать окружность): S=4r2/sinφ.