Как найти стороны подобных треугольников зная периметр

Подобные треугольники. Отношение периметров подобных треугольников. Коэффициент подобия

Что такое подобные треугольники?

Подобные треугольники определение

Подобные треугольники определение:

На рисунке изображены два подобных треугольника, у них углы соответственно равны, т.е. угол A равен углу A1, угол B равен углу B1, угол C равен углу C1.

Сходственные стороны треугольников

Сходственные стороны треугольников пропорциональны:

здесь k называется коэффициентом подобия.

Отношение площадей подобных треугольников

Отношение площадей подобных треугольников равно квадрату коэффициента подобия:

Отношение периметров подобных треугольников

Отношение периметров подобных треугольников:

Докажем это утверждение. Пусть имеются два подобных треугольника ABC и A1B1C1. По определению подобных треугольников их сходственные стороны пропорциональны:

Периметр треугольника ABC равен сумме длин его трёх сторон:

Сумма в скобках в правой части равенства представляет собой периметр треугольника A1B1C1. Разделим обе части равенства на периметр A1B1 + B1C1 + A1C1. Получаем:

что и требовалось доказать. Итак, отношение периметров подобных треугольников равно коэффициенту подобия.

Для установления факта подобия двух треугольников используют признаки подобия треугольников:

Подобные треугольники

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

II признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия.
  • Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Здесь вы найдете подборку задач по теме «Подобные треугольники» .

Коэффициент подобия периметров треугольников

Подобные треугольники. Отношение периметров подобных треугольников. Коэффициент подобия

Что такое подобные треугольники?

Подобные треугольники определение

Подобные треугольники определение:

На рисунке изображены два подобных треугольника, у них углы соответственно равны, т.е. угол A равен углу A1, угол B равен углу B1, угол C равен углу C1.

Сходственные стороны треугольников

Сходственные стороны треугольников пропорциональны:

здесь k называется коэффициентом подобия.

Отношение площадей подобных треугольников

Отношение площадей подобных треугольников равно квадрату коэффициента подобия:

Отношение периметров подобных треугольников

Отношение периметров подобных треугольников:

Докажем это утверждение. Пусть имеются два подобных треугольника ABC и A1B1C1. По определению подобных треугольников их сходственные стороны пропорциональны:

Периметр треугольника ABC равен сумме длин его трёх сторон:

Сумма в скобках в правой части равенства представляет собой периметр треугольника A1B1C1. Разделим обе части равенства на периметр A1B1 + B1C1 + A1C1. Получаем:

что и требовалось доказать. Итак, отношение периметров подобных треугольников равно коэффициенту подобия.

Для установления факта подобия двух треугольников используют признаки подобия треугольников:

Подобные треугольники

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

II признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия.
  • Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Здесь вы найдете подборку задач по теме «Подобные треугольники» .

Коэффициент подобия периметров треугольников

Признака подобия треугольников

Две фигуры `F` и `F’` называются подобными, если они переводятся друг в друга преобразованием подобия, т. е. таким преобразованием, при котором расстояния между точками изменяются (увеличиваются или уменьшаются) в одно и то же число раз. Если фигуры `F` и `F’` подобны, то пишется `F

F’`. Напомним, что запись подобия треугольников `Delta ABC

Delta A_1 B_1 C_1` означает, что вершины, совмещаемые преобразованием подобия, стоят на соответствующих местах, т. е. `A` переходит в `A_1`, `B` — в `B_1`, `C` — в `C_1`.

Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. В частности, если `Delta ABC

Delta A_1B_1C_1`, то `/_ A = /_ A_1`, `/_ B = /_ B_1`, `/_ C = /_ C_1`,

`A_1B_1 : AB = B_1C_1 : BC = C_1A_1 : CA`.

Два треугольника подобны, если:

1. два угла одного соответственно равны двум углам другого;

2. две стороны одного пропорциональны двум сторонам другого и углы, образованные этими сторонами, равны;

3. три стороны одного треугольника пропорциональны трём сторонам другого.

В решении задач и доказательстве теорем часто используется утверждение, которое, чтобы не повторять каждый раз, докажем сейчас отдельно.

Если две стороны треугольника пересекает прямая, параллельная третьей стороне (рис. 9), то она отсекает треугольник, подобный данному.

Действительно, из параллельности `MN` и `AC` следует, что углы `1` и `2` равны. Треугольники `ABC` и `MBN` имеют два равных угла: общий угол при вершине `B` и равные углы `1` и `2`. По первому признаку эти треугольники подобны.

И сразу применим это утверждение в следующем примере, в котором устанавливается важное свойство трапеции.

Прямая, проходящая через точку пересечения диагоналей трапеции параллельно её основаниям, пересекает боковые стороны трапеции в точках `M` и `N`. Найти длину отрезка `MN`, если основания трапеции равны `a` и `b`.

1. Пусть `O` — точка пересечения диагоналей, `AD = a`, `BC = b`. Прямая `MN` параллельна основанию `AD` (рис. 10а), следовательно, $$ MOparallel AD$$, треугольники `BMO` и `BAD` подобны, поэтому

2. $$ ADparallel BC$$, `Delta AOD

Delta COB` по двум углам (рис. 10б):

`(OD)/(OB) = (AD)/(BC)`, то есть `(OD)/(OB) = a/b`.

3. Учитывая, что `BD = BO + OD` находим отношение

`(BO)/(BD) = (BO)/(BO + OD) = 1/(1 + OD//BO) = b/(a + b)`.

Подставляя это в (1), получаем `MO = (ab)/(a + b)`; аналогично устанавливаем, что `ON = (ab)/(a + b)`, таким образом `MN = (2ab)/(a + b)`.

Точки `M` и `N` лежат на боковых сторонах `AB` и `CD` трапеции `ABCD` и $$ MNparallel AD$$ (рис. 11а). Найти длину `MN`, если `BC = a`, `AD = 5a`, `AM : MB = 1:3`.

1. Пусть $$ BFVert CD$$ и $$ MEVert CD$$ (рис. 11б), тогда `/_ 1 = /_ 2`, `/_ 3 = /_ 4` (как соответствующие углы при пересечении двух параллельных прямых третьей) и `Delta AME

Delta MBF`. Из подобия следует `(AE)/(MF) = (AM)/(MB) = 1/3`.

2. Обозначим `MN = x`. По построению `BCNF` и `MNDE` — параллелограммы, `FN = a`, `ED = x` и, значит, `MF = x — a`; `AE = 5a — x`. Итак, имеем `(5a — x)/(x — a) = 1/3`, откуда находим `x = 4a`.

Напомним, что отношение периметров подобных треугольников равно отношению их сходственных сторон. Верно также следующее утверждение: отношение медиан, биссектрис и высот, проведённых к сходственным сторонам в подобных треугольниках, равно отношению сходственных сторон.

Отношение радиусов вписанных окружностей, как и отношение радиусов описанных окружностей, в подобных треугольниках также равно отношению сходственных сторон.

Попытайтесь доказать это самостоятельно.

Прямоугольные треугольники подобны, если:

1. они имеют по равному острому углу;

2. катеты одного треугольника пропорциональны катетам другого;

3. гипотенуза и катет одного треугольника пропорциональны гипотенузе и катету другого.

Два первых признака следуют из первого и второго признаков подобия треугольников, поскольку прямые углы равны. Третий признак следует, например, из второго признака подобия и теоремы Пифагора.

Заметим, что высота прямоугольного треугольника, опущенная на гипотенузу, разбивает его на два прямоугольных треугольника, подобных между собой и подобных данному. Доказанные в § 1 метрические соотношения Свойств 1, 2, 3 можно доказать, используя подобие указанных треугольников.

СВОЙСТВА ВЫСОТ И БИССЕКТРИС

Если в треугольнике `ABC` нет прямого угла, `A A_1` и `BB_1` — его высоты, то `Delta A_1B_1C

Delta ABC` (этот факт можно сформулировать так: если соединить основания двух высот, то образуется треугольник, подобный данному).

Как всегда, полагаем `AB = c`, `BC = a`, `AC = b`.
а) Треугольник `ABC` остроугольный (рис. 12а).

В треугольнике `A A_1C` угол `A_1` — прямой, `A_1C = AC cos C = ul (b cos C)`.

В треугольнике `B B_1C` угол `B_1` — прямой, `B_1C = BC cos C = ul (a cos C)`.

В треугольниках `A_1 B_1C` и `ABC` угол `C` общий, прилежащие стороны пропорциональны: `(A_1C)/(AC) = (B_1C)/(BC) = cos C`.

Таким образом, `Delta A_1 B_1 C

Delta ABC` с коэффициентом подобия `ul (cos C)`. (Заметим, что `/_ A_1 B_1 C = /_B`).
б) Треугольник `ABC` — тупоугольный (рис. 12б), угол `C` — острый, высота `A A_1` проведена из вершины тупого угла.

коэффициент подобия `ul (cos C)`, `/_ A_1 B_1 C = /_B`.

Случай, когда угол `B` тупой, рассматривается аналогично.
в) Треугольник `ABC` — тупоугольный (рис. 12в), угол `C` — тупой, высоты `A A_1` и `B B_1` проведены из вершин острых углов.

`varphi = /_ BCB_1 = /_ ACA_1 = 180^@ — /_ C`, `cos varphi = — cos C = |cos C|`.

с коэффициентом подобия `ul (k = |cos C|`, `(/_A_1B_1C=/_B)`.

В остроугольном треугольнике `ABC` проведены высоты `A A_1`, `B B_1`, `C C_1` (рис. 13).

Треугольник, вершинами которого служат основания высот, называется «высотным» треугольником (или ортотреугольником).

Доказать, что лучи `A_1 A`, `B_1 B` и `C_1 C` являются биссектрисами углов высотного треугольника `A_1 B_1 C_1` (т. е. высоты остроугольного треугольника являются биссектрисами ортотреугольника).

По первой лемме о высотах `Delta A_1 B_1 C

Delta ABC`, `/_ A_1 B_1 C = /_ B`.

Аналогично `Delta AB_1C_1

Delta ABC`, `/_ AB_1 C_1 = /_ B`, т. е. `/_A_1 B_1C = /_ AB_1 C_1`.

Так как `BB_1` — высота, то `/_AB_1B = /_CB_1B = 90^@`.

Поэтому `/_C_1B_1B = /_A_1B_1B = 90^@ — /_B`, т. е. луч `B_1B` — биссектриса угла `A_1B_1C_1`.

Аналогично доказывается, что `A A_1` — биссектриса угла `B_1 A_1 C_1` и `C_1C` — биссектриса угла `B_1 C_1 A_1`.

Высоты `A A_1`, `B B_1` треугольника `ABC` пересекаются в точке `H` (рис. 14). Доказать, что имеет место равенство `AH * H A_1 = BH * HB_1`, т. е. произведение отрезков одной высоты равно произведению отрезков другой высоты.

Delta BHA_1`, имеют по равному острому углу при вершине `H` (заметим, что этот угол равен углу `C`). Из подобия следует `(AH)/(BH) = (HB_1)/(HA_1)`, откуда `AH * HA_1 = BH * HB_1`. Для тупоугольного треугольника утверждение также верно. Попробуйте доказать самостоятельно.

Высоты `A A_1` и `B B_1` треугольника `ABC` пересекаются в точке `H`, при этом `BH = HB_1` и `AH = 2 HA_1` (рис. 15). Найти величину угла `C`.

1. По условию пересекаются высоты, поэтому треугольник остроугольный. Положим `BH = HB_1 = x` и `HA_1 = y`, тогда `AH = 2y`. По второй лемме о высотах `AH * HA_1 = BH * HB_1`, т. е. `x^2 = 2y^2`, `x = y sqrt 2`.
2. В треугольнике `AHB_1` угол `AHB_1` равен углу `C` (т. к. угол `A_1 AC` равен `90^@ — C`), поэтому `cos C = cos (/_ AHB_1) = x/(2y) = sqrt 2/ 2`. Угол `C` — острый, `/_ C = 45^@`.

Установим ещё одно свойство биссектрисы угла треугольника.

Биссектриса внутреннего угла треугольника делит противолежащую этому углу сторону на отрезки, пропорциональные прилежащим сторонам, т. е. если `AD` — биссектриса треугольника `ABC`, то `(BD)/(DC) = (AB)/(AC)`.

Проведём через точку `B` прямую параллельно биссектрисе `DA`, пусть `K` — её точка пересечения с прямой `AC` (рис. 16).

Параллельные прямые `AD` и `KB` пересечены прямой `KC`, образуются равные углы `1` и `3`. Те же прямые пересечены и прямой `AB`, здесь равные накрест лежащие углы `2` и `4`. Но `AD` — биссектриса, `/_1 = /_2`, следовательно `/_3 = /_4`. Отсюда следует, что треугольник `KAB` равнобедренный, `KA = AB`.
По теореме о пересечении сторон угла параллельными прямыми из $$ ADVert KB$$ следует `(BD)/(DC) = (KA)/(AC)`. Подставляя сюда вместо `KA` равный ему отрезок `AB`, получим `(BD)/(DC) = (AB)/(AC)`. Теорема доказана.

Биссектриса треугольника делит одну из сторон треугольника на отрезки длиной `3` и `5`. Найти в каких пределах может изменяться периметр треугольника.

Пусть `AD` — биссектриса и `BD = 3`, `DC = 5` (рис. 17).

По свойству биссектрисы `AB : AC = 3:5`. Положим `AB = 3x`, тогда `AC = 5x`. Каждая сторона треугольника должна быть меньше суммы двух других сторон, т. е. `ul (5x 1`.

Периметр треугольника `P = 8 + 8x = 8(1 + x)`, поэтому `ul (16

источники:

Подобные треугольники

http://b4.cooksy.ru/articles/koeffitsient-podobiya-perimetrov-treugolnikov

метаморфоза
[3.6K]

более года назад 

Соответствующие стороны подобных треугольников равны 18 см и 12 см, разность периметров равна 36 см. Найдите периметры этих треугольников​.

wisge­st
[16.5K]

более года назад 

Так как отношения всех соответствующих сторон подобных треугольников равны между собой, то точно также будут относится друг к другу и их суммы, то есть периметры:

18/12 = 3/2,

то есть как 3 части к 2 частям.

При этом разница в частях между периметрами равна 3-2=1, а, значит, длина одной части равна разности периметров — 36 см.

Поэтому периметры будут равны

36 * 3 = 108 (см)

и

36 * 2 = 72 (см).

Ответ: 108 и 72 см.

автор вопроса выбрал этот ответ лучшим

комментировать

в избранное

ссылка

отблагодарить

Ларис­а Алекс­андро­вна Седов­а
[18]

более года назад 

Периметр первого треугольника 108см, второго 72. Решается с помощью уравнения с двумя неизвестными.

Подобие второго и первого треугольника 12/18=2/3.

Составляем уравнение, где х и у две другие неизвестные стороны первого треугольника:

18+х+у минус 12+2/3х+2/3у равно 36. Получаем 6+1/3х+1/3у=36; 1/3(х+у)=36-6=30; х+у=90. Графика не позволяет показать расчеты красивее. В итоге: х+у=90 (это сумма двух других сторон первого треугольника) + 18 (третья сторона) = 108. (х+у) умножить на 2/3 = 60 (это сумма двух других сторон второго треугольника) + 12 = 72.

Проверяем: 108-72=36.

комментировать

в избранное

ссылка

отблагодарить

Евген­ий трохо­в
[56.6K]

более года назад 

Коэффициент подобия треугольников равен 18/12=1,5.

То есть периметр большего треугольника больше периметра меньшего треугольника в 1,5 раза.

Р=1,5р.

Р(большое)-периметр бОльшего треугольника

р(малое) — периметр меньшего треугольника.

Р-р=36

1,5р-р=36

р(малое) =72

Р(большое)=72+36=108

Тут даже не нужны конкретные значения сторон, достаточно знать их отношение.

С таким же успехом можно взять стороны не 18—20,а,например 2 и 3

комментировать

в избранное

ссылка

отблагодарить

Знаете ответ?

Что такое подобные треугольники?

Подобные треугольники определение

Подобные треугольники определение:

Подобные треугольники имеют соответственно равные углы, а сходственные стороны треугольников пропорциональны.

На рисунке изображены два подобных треугольника, у них углы соответственно равны, т.е. угол A равен углу A1, угол B равен углу B1, угол C равен углу C1. Подобные треугольники

Сходственные стороны треугольников

Сходственные стороны треугольников пропорциональны:

AB /A1B1 = BC /B1C1 = AC /A1C1 = k

здесь k называется коэффициентом подобия.

Отношение площадей подобных треугольников

Отношение площадей подобных треугольников равно квадрату коэффициента подобия:

SABC / SA1B1C1 = k2

Отношение периметров подобных треугольников

Отношение периметров подобных треугольников:

Отношение периметров подобных треугольников равно коэффициенту подобия.

Докажем это утверждение. Пусть имеются два подобных треугольника ABC и A1B1C1. По определению подобных треугольников их сходственные стороны пропорциональны:

AB = k * A1B1
BC = k * B1C1
AC = k * A1C1

Периметр треугольника ABC равен сумме длин его трёх сторон:

AB + BC + AC =
k * (A1B1 + B1C1 + A1C1)

Сумма в скобках в правой части равенства представляет собой периметр треугольника A1B1C1. Разделим обе части равенства на периметр A1B1 + B1C1 + A1C1. Получаем:

AB + BC + AC / (A1B1 + B1C1 + A1C1) = k

что и требовалось доказать. Итак, отношение периметров подобных треугольников равно коэффициенту подобия.

Для установления факта подобия двух треугольников используют признаки подобия треугольников:

Dимасuk
6 лет назад

Светило науки — 4434 ответа — 19820 раз оказано помощи

Стороны подобных треугольников относятся так же, как и периметры этих треугольников.
Пусть х см — сторона в меньшем треугольнике. Тогда в большем она будет равна (х + 6)см. Зная отношение периметром, составим уравнение:
х/(х + 6) = 9/13
13х = 9х + 54
13х — 9х = 54
4х = 54
х = 13,5
Значит, сторона меньшего треугольника равна 13,5 см.
Тогда сторона большегоравнп 13,5 см + 6 см = 19,5 см.
Ответ; 19,5 см.

22
Авг 2013

Категория: Справочные материалы

Подобные треугольники

2013-08-22
2014-01-31

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

8

Коэффициентом подобия называют число k, равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны  подобных треугольников — стороны, лежащие напротив равных углов.

коэффициент подобия треуг

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

3ed II признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

12

III признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

4e

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия.r
  • Отношение длин соответствующих элементов подобных треугольников (в частности,  длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

подобные треугольники

2. Треугольники  AOD и COB, образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия – k=frac{AO}{OC}.

 podobie v trapetsii

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

подобие в прямоугольном треугольнике

внимание

Здесь вы найдете  подборку задач по теме «Подобные треугольники».

Автор: egeMax |

комментариев 50

Понравилась статья? Поделить с друзьями:
  • Как найти в каком году родился человек
  • Как найти свой клан в дискорде танки
  • Заворачивается ковер как исправить
  • Как найти действительные корни уравнения 10 класс
  • Как составить квест игру для школьников