Как найти суммарную мощность источника

Баланс мощностей

Содержание:

  1. Баланс мощностей
  2. Пример расчёта разветвлённой цепи постоянного тока
  3. Баланс мощностей

Баланс мощностей

Для любой электрической цепи суммарная мощность Баланс мощностей, развиваемая источниками электрической энергии (источниками тока и ЭДС), равна суммарной мощности Баланс мощностей, расходуемой потребителями (резисторами):

Баланс мощностей

Мощность, рассеиваемая резистором, Баланс мощностей, мощность источника ЭДС Баланс мощностей, мощность источника тока Баланс мощностей.

Мощности, рассеиваемые резисторами, всегда положительные, в то время как мощности источников электрической энергии, в зависимости от соотношения направления падений напряжения и тока в них, могут иметь любой знак. Мощность положительна, когда направление тока через источник тока противоположно падению напряжения на нем. Он питает электрическую цепь. В противном случае источник питания является отрицательным, и вы являетесь потребителем электрической энергии. Следует заметить, что направление падения напряжения всегда противоположно направлению ЭДС, поэтому для источника ЭДС условием положительной мощности является совпадение направлений ЭДС и тока.

Пример расчёта разветвлённой цепи постоянного тока

Рассмотрим решение задачи для цепи, представленной на рис. 1.6, описанными выше методами расчёта.

Баланс мощностей Дано Баланс мощностей

Баланс мощностей

Найти:

1) все неизвестные токи, используя законы Кирхгофа; показать, что баланс мощностей имеет место;

Решение.

1) Применение законов Кирхгофа. Баланс мощностей.

Всего в схеме семь ветвей Баланс мощностей =7, ветвей с источниками тока Баланс мощностей = 1, число неизвестных токов равно Баланс мощностей, количество узлов — Баланс мощностей, число уравнений по первому закону Кирхгофа Баланс мощностей, число уравнений по второму закону Кирхгофа — Баланс мощностей

Возможно вам будут полезны данные страницы:

Выберем положительные направления токов и обозначим их стрелками. Выберем и обозначим стрелками направления обхода трёх независимых контуров: Баланс мощностей Составим систему уравнений по законам Кирхгофа

для узла а Баланс мощностей;

для узла b Баланс мощностей

для узла с Баланс мощностей или Баланс мощностей;

для контура Баланс мощностей Баланс мощностей,

для контура Баланс мощностей Баланс мощностей

для контура Баланс мощностей Баланс мощностей

Полученные уравнения после подстановки в них числовых значений будут иметь следующий вид:

Баланс мощностей Решение данной системы: Баланс мощностей

Баланс мощностей

Баланс мощностей для рассматриваемой цепи

Баланс мощностей

Получено тождество 252 Вт = 252 Вт.

Примечание: падение напряжения на источнике тока Баланс мощностей определено по второму закону Кирхгофа для контура, содержащего Баланс мощностей и Баланс мощностей, как Баланс мощностей

Баланс мощностей

В любой электрической цепи должен соблюдаться энергетический баланс -баланс мощностей: алгебраическая сумма мощностей всех источников равна арифметической сумме мощностей всех приемников энергии.

Баланс мощностей

В левой части равенства слагаемое берется со знаком «+» если Е и I совпадают по направлению и со знаком Баланс мощностей если не совпадают.

Если направления ЭДС и тока I в источнике противоположны, то физически это означает, что данный источник работает в режиме потребителя.

Таблица
№1

I1
(A)

I2
(A)

I3
(A)

I4
(A)

I5
(A)

I6
(A)

МКТ

-0,805

-0,172

0,977

-0,299

0,471

-0,506

МУП

-0,805

-0,17

0,98

-0,3

0,47

-0,505

0

0,002

0,003

0,001

0,001

0,001

5. Составим баланс мощностей в исходной схеме (схеме с источником тока), вычислив суммарную мощность источников и суммарную мощность потребителей.

Баланс
электрической мощности заключается в
том, что в каждый момент времени приемники
(потребители) электрической мощности
потребляют ее столько, сколько производят
источники (Рист=Рпр).

[Вт]

[Вт]

Вывод:
Рпр
≈ Рист

6. Определить ток i1 в заданной по условию схеме с источником тока, используя теорему об активном двухполюснике и эквивалентном генераторе.

Выделим
в схеме ветвь da
с током I1.
Оставшаяся часть схемы является активным
двухполюсником, который можно заменить
эквивалентным генератором, ЭДС которого
равна напряжению холостого хода Uxx
на зажимах da,
а внутреннее сопротивление равно
входному сопротивлению Rвх
двухполюсника.


d I3
I1

EJk3 EJk2
R3 Uxx
R2

R2 E3
I11
E2

R6
I6
R4
c

b

a
I22

R5

Тогда
ток I1
можно рассчитать следующим образом:

(7)

6.1
Рассчитаем напряжение холостого хода
Uxx.
Для этого необходимо знать токи в
оставшихся двух ветвях (I3
и I6).

(8)



[А]

[A]

[A]

[A]

По
второму закону Кирхгофа составим
уравнение для контура, включающего Uxx.

(9)

Выразим
из уравнения (9) Uxx:

(10)

[В]

    1. Рассчитаем входное
      сопротивление активного двухполюсника

R2
R4

R5

R3
R6

[Ом]

[Ом]

[Ом]

R2
R’’

R’


R3 R’’’

[Ом]

[Ом]

R2’’

R’

R3’’’

[Ом]

R23
R’

[Ом]

    1. Найдем
      ток I1,
      подставив значения Rвх
      и Uxx:

[А]

  1. Потенциальная
    диаграмма.

Построим
потенциальную диаграмму для контура
bckfdmnb.
При ее построении один узел можно
заземлить. Пусть это будет узел “b”.
Потенциалы других узлов определяются
относительно нулевого.

Рассчитаем значения
потенциалов в данных узлах схемы:

b
= 0
b
= 0 [В]

c
=
b
+
I5R5
c
=
0 + 2,585 = 2,585 [В]

k
= c
— E3
k
= 2,585 – 10 =
— 7,415 [В]

f
=
k
+
I3R3
f
=
— 7,415 + 0,98 = — 6,435 [В]

d
= f
— EJk3
d
= — 6,435 – 0 =
— 6,435 [В]

m
= d
+ EJk2
m=- 6,435 +1 = — 5,435 [В]

n
=
m
+ I2R2
n
=
— 5,435 + 0,435 = — 5 [В]

b
= n+E2
b
= — 5 + 5 = 0
[В]

Соседние файлы в папке разное к тоэ

  • #

    26.01.201444.03 Кб2LAB111~1.XLS

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    26.01.201426.62 Кб10RGR3(TOE2).xls

  • #

Как определить мощность источника тока

Содержание

  • 1 Виды мощности
  • 2 Активная и реактивная мощность
  • 3 Как определяется мощность
  • 4 Мощность источника питания
  • 5 Видео по теме

Источники питания используются повсеместно. Их основная задача — преобразование параметров электроэнергии, поступающей из сети, в такие, которые необходимы для конкретного электротехнического устройства. Способность ИП выполнять данную задачу зависит от его мощности. Она является главной характеристикой любого блока питания. Чтобы оценить эффективность устройства, необходимо понимать, как найти мощность, если известны различные характеристики электрической цепи.

Источники электротока

Виды мощности

При вычислении мощности возможны следующие ситуации:

  • Мгновенная мощность вычисляется для очень малого промежутка времени. Это значение важно знать в тех случаях, когда в разные моменты времени эта величина меняется. Проведение замеров позволит мастеру получить целостное представление об используемой мощности. Для постоянного тока данная характеристика постоянна.
  • Активное значение мощности применяется для определения постоянной величины, которая фактически является средним значением при наличии переменного тока. При этом мгновенные значения будут изменяться, а активная мощность будет в среднем характеризовать происходящие процессы. Активная мощность — это показатель выполнения полезной работы электрическим оборудованием.
  • Реактивная мощность относится к работе индуктивных и емкостных элементов электрических приборов. Она циклически переходит из одной формы в другую. При этом происходит перемещение зарядов, то есть, осуществляется электрическая работа, которая обычно не является полезной.

Определение мощности электротока

Активная и реактивная мощность

При работе электрического оборудования следует рассматривать полную мощность. Она показывает работу, которая проводится в единицу времени (в СИ в этом качестве рассматривается 1 секунда). При этом нужно помнить, что полная мощность складывается из активной и реактивной мощности.

Это разделение связано с используемым сопротивлением. Если электрические заряды преодолевают активное сопротивление, мощность также является активной. Она, как правило, относится к выполнению полезной работы.

При наличии переменного тока в электрической цепи присутствует реактивное сопротивление. Оно связано с работой электромагнитного поля и фактически сводится к периодическим изменениям, при которых энергия регулярно перетекает из одной формы в другую, практически не расходуясь.

В бытовых приборах и промышленном оборудовании в большинстве случаев присутствуют оба вида мощности. Активная играет основную роль при использовании постоянного тока или в тех случаях, когда её доля в общей мощности относительно высока.

Обычно в технической документации указывается параметр cosφ. Он может принимать значения от 0 до 1 включительно. Его величина показывает долю активной мощности в полной. Она будет высокой, например, в электронагревательных приборах, где значительная часть энергии тратится на выполнение полезной работы по обогреву помещения.

Надо учитывать, что наличие реактивной мощности оказывает разрушительное действие на прибор. Это может быть, например, связано с разрушением изоляции проводов и кабелей, с повышением риска возникновения короткого замыкания или с порчей оболочек электроприводов или трансформаторов.

Для получения полной мощности применяется векторное сложение активной и реактивной мощности. Её величину вычисляют по теореме Пифагора как длину гипотенузы прямоугольного треугольника, в котором катетами являются активная и реактивная мощности.

Треугольник мощностей

Как определяется мощность

Эта величина определяется на основе работы, выполненной при перемещении заряда. Мощность равна частному от деления её величины на потраченное для этого время. Из курса физики известно, что работу можно выразить как произведение разности потенциалов на перемещаемый заряд. Для вычисления заряда можно применить следующую формулу:

Формула для определения заряда

На основе сказанного можно привести такое равенство:

Формула работы

Из формулы видно, что мощность можно выразить как произведение напряжения и силы тока. Её можно преобразовать с использованием закона Ома:

Закон ома для участка цепи

Подставив это выражение в формулу мощности, выводят эквивалентные формы, которые могут быть более удобными в некоторых ситуациях.

Эквивалентные формулы для мощности

Например, при рассмотрении последовательного соединения удобной будет формула с использованием силы тока и напряжения. Это связано с тем, что сила электротока на рассматриваемом участке является одинаковой.

При параллельном соединении одинаковым на различных участках будет электронапряжение. В данном случае производить вычисления проще с использованием формулы, которая выражает мощность через разницу потенциалов и сопротивление.

В международной системе измерений для мощности используется ватт. Иногда применяют эквивалентную единицу вольт*ампер. Широко используются значения, которые выражаются в единицах, кратных ваттам. В качестве примера можно привести киловатт и мегаватт, которые соответствуют тысяче и миллиону ватт соответственно.

У большинства электроприборов, используемых в быту, мощность находится в определённых пределах, которые примерно соответствуют значениям, указанным в следующей таблице:

Мощность бытовых электроприборов

В прошлом в качестве единицы измерения мощности активно использовалась лошадиная сила. Для ее выражения через ватты нужно применять следующую формулу:

Определение лошадиной силы

Хотя классической единицей измерения энергии или выполненной работы является джоуль, для электрических приборов чаще используется ватт*час.

При описании электрических устройств или деталей часто указывают предельную мощность. В технической документации также может быть указана номинальная мощность оборудования. Режим работы устройства в этом случае считается оптимальным. Если реальная мощность будет выше, то это означает, что прибор эксплуатируется очень интенсивно.

Сказанное можно пояснить на следующем примере. Допустим, речь идёт о резисторе на 500 Ом. Пусть в технической документации сказано, что предельно допустимая мощность при его использовании составляет 10 Вт. В этом случае предельно допустимое напряжение определяется по формуле:

Формула для расчёта мощности

Из этого выражения можно найти напряжение. Для него будет правильным следующее равенство:

Вычисление предельного напряжения

Подставляя конкретные значения, получаем, что квадратный корень нужно извлечь из произведения 500 * 10 = 5000. Он будет примерно равен 70.7. Таким образом, предельно допустимым напряжением для этого резистора будет 70.7 В.

Иногда возникает необходимость практически измерить мощность. Это можно сделать с помощью ваттметра.

Ваттметр

Для определения мощности также используют амперметр и вольтметр. Первый присоединяют последовательно, второй — параллельно. Получив значения силы тока и напряжения, на их основе производят вычисления для определения мощности.

Использование амперметра и вольтметра

Мощность источника питания

В предыдущем разделе было рассмотрено понятие мощности и относящиеся к ней характеристики в применении к различным электрическим узлам или приборам. При рассмотрении источника элетротока потребуется учитывать имеющиеся в этом случае особенности.

Используемый ИП должен соответствовать параметрам электрической цепи, которую он питает. При этом необходимо обратить внимание на следующее:

  • Значение полной мощности электрической цепи.
  • ЭДС источника.
  • Внутренне сопротивление ИП.
  • Потери энергии внутри источника питания.
  • Значение полезной мощности.

Мощность источника тока должна превосходить мощность электроприбора не меньше, чем на 5-10%. Это позволит обеспечить электропитание даже в условиях интенсивного использования прибора. Энергия источника питания будет расходоваться на совершение полезной работы, а также на потери.

Для понимания особенностей работы источника питания важно знать разницу между электронапряжением на клеммах и электродвижущей силой. Практически в работающей цепи электроны перемещаются по замкнутому пути. Они переходят от отрицательной клеммы через электрическую цепь к положительной. Попадая внутрь батареи под воздействием электродвижущей силы, электроны будут вновь перемещаться на отрицательную клемму.

Связь между электродвижущей силой и работой

Нужно учитывать, что величина ЭДС не является независимой от нагрузки. Её точное значение можно узнать при измерении на холостом ходу. Чтобы вычислить мощность источника питания, можно воспользоваться формулой, которая выражает её через ЭДС и сопротивление. Для этого потребуется выполнить следующие действия:

  1. Нужно определить величину электродвижущей силы (E) источника питания. Для этого замеряют разность потенциалов на клеммах на холостом ходу.
  2. Далее требуется подключить нагрузку, которая имеет известное сопротивление (R).
  3. Затем в электрической цепи измеряют силу тока (I), а также напряжение (U).
  4. Теперь есть возможность узнать падение напряжения (U0) внутри источника тока. Оно представляет собой разность между электродвижущей силой и напряжением в цепи.
  5. Внутреннее сопротивление (R0) вычисляется по формуле R0 = U0 / I.

Подставив полученные значения в формулу, выраженную через напряжение и сопротивление, можно определить мощность источника тока.

Схема для определения внутреннего сопротивления ИТ

Полную мощность ИП можно представить как Рполн = Рполезн + Рпотерь.

Для определения полезной мощности используется одна из трех формул:

Определение полезной мощности

Мощность потерь, возникающая во внутренней цепи, то есть, в источнике тока, расходуется лишь на процессы, происходящие в самом ИТ и не может использоваться для каких-либо других целей. Ее вычисляют по формуле:

Определение мощности потерь

Для определения полной мощности можно воспользоваться одной из трех формул:

Определение полной мощности

Используя приведённый здесь алгоритм, можно определить полезную мощность, которая создаётся рассматриваемым источником тока. Чтобы составить представление о зависимости полезной мощности и той, которая расходуется на нагрев ИТ, можно воспользоваться графиком. Из него видно, что полезная мощность сначала возрастает, а затем начинает убывать. Максимума она достигает в точке, в которой сопротивление нагрузки равно внутреннему сопротивлению источника электротока, то есть, R = r.

Графики мощности и КПД

КПД при таком условии будет равен 50%. В общем случае коэффициент полезного действия находят по формуле:

Коэффициент полезного действия

Максимальная полезная мощность равняется половине полной. Следовательно

Максимальная полезная мощность

Из сказанного видно, что при подборе наиболее подходящего источника питания для электрического устройства нужно стремиться к тому, чтобы внутреннее сопротивление источника питания было равно сопротивлению нагрузки. Если оно значительно меньше, то существенная часть мощности в процессе эксплуатации будет рассеиваться в виде тепла. Приведённое требование соответствия величин называют условием согласования.

Важно отметить, что в качестве устройства питания не обязательно может использоваться батарея или аккумулятор. Отмеченная здесь закономерность будет действовать и в том случае, если речь идёт об использовании усилителя.

В качестве примера использования указанного правила можно привести подключение акустической системы к усилителю. В этом случае выходной импеданс последнего должен подбираться таким образом, чтобы быть примерно равным входному импедансу подключённых динамиков. На практике в технической документации усилителя указывают границы, в которых должна находиться соответствующая характеристика подключённых устройств.

Видео по теме



Вопрос, как рассчитать мощность, не так уж прост, когда речь дет о расчете электрической мощности. Дело в том, что мощность одного и того же электрического устройства может быть разной в разные моменты времени. Кроме того, при расчете мощности нужно учитывать, что мощность может быть активной (затраты энергии на сопротивление) и реактивной (затраты энергии на создание электромагнитных полей). Кроме того, различаются расчеты мощности для постоянного и переменного электрического тока.

Однако обычно вопрос о расчете мощности касается суммарной мощности бытовых электроприборов, включенных в сеть.

Здесь все проще: достаточно сложить мощности каждого электроприбора, чтобы получить суммарную мощность всех. Узнать мощность прибора можно в паспорте изделия. Однако нужно учитывать, что нужно еще рассчитать мощность с учетом реактивной. Для этого в паспорте изделия ищем еще один показатель: cosφ (коэффициент мощности). Для иностранных изделий его еще иногда обозначают как PF, power factor.

Кроме того, в паспорте смотрим еще один коэффициент – коэффициент пускового тока.

Теперь мы можем рассчитать мощность прибора.

Допустим, в паспорте холодильника указаны его мощность 700 ВТ, коэффициент мощности

cosφ= 0,7 и коэффициент пускового тока, равный 4.

Тогда суммарная мощность прибора будет составлять (700/0,7)*4 = 4000 ВА. Обратим внимание, что суммарная мощность измеряется не в ваттах, а в вольт-амперах. И окончательное показание намного превышает паспортную мощность. Это связано с тем, что в момент включения и отключения холодильника возникают реактивная мощность, кратковременно увеличивая нагрузку. Однако при расчете суммарной мощности помещения это нужно учитывать, так как такие кратковременные броски могут выбивать автомат на входе или приводить к авариям.

Для выбора сечения питающих кабелей и проводов при прокладке электрических сетей потребителей нужно знать, приборы какой мощности будут в них включены. Как рассчитать потребляемую мощность того или иного электрического прибора, можно узнать, разобравшись в самом понятии мощности. Для этого хватит информации из школьной программы и элементарных понятий о токе, напряжении, сопротивлении. К тому же эти знания нужны при приобретении бытовых электроприборов.

Полная мощность и ее составляющие

Электрическая мощность – это величина, отвечающая за скорость изменения или передачи электроэнергии. Полная мощность обозначается буквой S и находится как произведение действующих значений тока и напряжения. Её единица измерения – вольт-ампер (В·А; V·A).

Полная мощность может складываться из двух составляющих: активной (P) и реактивной (Q).

Активная мощность измеряется в ваттах (Вт; W), реактивная – в варах (Вар).

Это зависит от того, какой тип нагрузки включён в цепь потребления электроэнергии.

Активная нагрузка

Такой тип нагрузки представляет собой элемент, оказывающий сопротивление электрическому току. В результате чего ток выполняет работу по нагреву нагрузки, и электричество превращается в тепло. Если к батарейке последовательно подключить резистор на любое сопротивление, то ток, проходящий по замкнутой цепи, будет нагревать его до тех пор, пока батарейка не разрядится.

Внимание! В качестве активной нагрузки в сетях переменного тока можно привести пример теплового электронагревателя (ТЭНа). Тепловыделение на нём – результат работы электричества.

К подобным потребителям также относятся спирали лампочек, электроплиты, духовки, утюг, кипятильник.

Емкостная нагрузка

В качестве такой нагрузки выступают аппараты, которые могут аккумулировать энергию в электрополях и создавать движение (колебание) мощности от источника к нагрузке и обратно. Ёмкостной нагрузкой служат конденсаторы, кабельные линии (ёмкость между жилами), последовательно и параллельно соединённые в контур конденсаторы и катушки индуктивности. Усилители звуковой мощности, синхронные электрические двигатели в перевозбуждённом режиме тоже нагружают линии ёмкостной составляющей.

Индуктивная нагрузка

Когда потребителем электричества является определённое оборудование, включающее в свой состав:

  • трансформаторы;
  • трёхфазные асинхронные двигатели, насосы.

На табличках, прикреплённых к оборудованию, можно увидеть такую характеристику, как cos ϕ. Это коэффициент сдвига фаз между током и напряжением в сети переменного тока, в которую будет включено оборудование. Его ещё называют коэффициентом мощности, чем ближе cos ϕ к единице, тем лучше.

Важно! Когда в устройстве содержатся индуктивные или ёмкостные компоненты: трансформаторы, дроссели, обмотки, конденсаторы, синусоидальный ток отстаёт по фазе от напряжения на некоторый угол. В идеале ёмкость обеспечивает сдвиг фазы на -900, а индуктивность – на + 900.

Ёмкостная и индуктивная составляющие в сумме образуют реактивную мощность. Тогда формула полной мощности имеет вид:

где:

  • S – полная мощность (ВА);
  • P – активная часть (Вт);
  • Q – реактивная часть (Вар).

Если отобразить это графически, тогда можно увидеть, что векторное сложение P и Q будет полной величиной S – гипотенузой треугольника мощности.

Негативное воздействие реактивной нагрузки

Реактивная нагрузка не выполняет никакой полезной работы. Колебания реактивной составляющей от источника к потребителю только вызывают паразитные потери. Кроме того, промышленные предприятия обязаны платить за отпущенную им реактивную энергию. Это вызвано тем, что в большинстве своём приёмники энергии – электродвигатели и трансформаторы. Количество потреблённого электричества (кВт⋅ч) не всё идёт на полезную работу, а оплачивать нужно и её реактивную составляющую.

Решить эту проблему помогут конденсаторные компенсационные установки. Ведь если включить параллельно индуктивной нагрузке ёмкостную, то можно свести действие паразитных токов к минимуму. На подстанциях, питающих потребителей, устанавливаются такие установки.

Параметры для вычислений

Расчеты потребляемой мощности невозможно произвести, не зная следующих параметров:

  • силы тока, потребляемого нагрузкой – I (А);
  • напряжения питания, выдаваемого источником – U (В).

Если речь идёт не только об активной мощности, то нужно знать величину cos ϕ. Ее указывают на табличке, прикреплённой к прибору. В некоторых случаях необходимо знать и сопротивление нагрузки.

Формула для вычислений

Все данные, необходимые для подставления в формулу при вычислениях, можно либо измерить, либо взять из характеристик используемых приборов.

К сведению. Если в паспортных данных указана величина cos ϕ, значит, получаемое устройством электричество будет иметь реактивную составляющую. Это тоже нужно учитывать при вычислениях.

Формула для вычисления имеет вид:

где:

  • I – ток в амперах;
  • U – напряжение в вольтах;
  • cos ϕ – сдвиг фаз.

В случае активной нагрузки сдвиг фаз в формулу не подставляется, и она имеет вид:

Особенности вычисления

Чтобы вычислить мощность, не обладая полными данными о потребляемом токе и напряжении, можно воспользоваться средними характеристиками. Обратившись к справочникам, можно узнать, что осветительное оборудование может потреблять ток до 15 А. Максимальный ток мощных приборов доходит до 50-60 А. Коэффициент мощности, если он не указан или не известен, можно брать 0,7 – это среднее значение.

Однофазное напряжение в бытовой сети – 220 В. Его линейное значение в трёхфазных сетях равно 380 В.

Математические действия

Основная формула позволяет вычислять неизвестную величину, когда известны две других. К примеру, если известен потребляемый прибором ток I = 2 А и напряжение сети U = 220 В, то потребляемая мощность равна Р = 2*220 = 440 Вт.

К примеру, известно, что утюг потребляет 2 кВт, а напряжение в розетке – 220 В, то можно найти силу тока, на которую рассчитано сечение жил питающего шнура.

I = P/U = 2000/220 = 9,1 А.

В случае дольных величин при использовании для вычислений калькулятора полученные значения округляют до десятых единиц искомой величины.

Правила расчета потребляемой мощности

В быту, когда возникает необходимость самостоятельно определить мощность потребления электроэнергии, выполняют следующее:

  • определяют напряжение, необходимое для питания прибора;
  • узнают из паспортных данных номинальную силу тока.

Как узнать мощность электроприбора, если вообще не известен ни один параметр? Бытовые электроприборы рассчитаны на напряжение 220 В.

Чтобы определить мощность, допустимо измерить потребляемый ток. Это можно сделать с помощью прибора амперметра. Его включают в цепь последовательно, предварительно выставив самый большой предел измерений – не меньше сотни ампер. Токоизмерительные клещи помогут без особого труда измерить ток, для чего один из проводников обхватывается датчиком клещей, и показания отображаются на дисплее. Зная напряжение, умножают его на измеренный ток, получают величину потребляемой мощности.

Расчет мощности лампочек

Подбор мощности ламп накаливания зависит от желаемой величины освещённости жилого помещения. Одна лампочка мощностью 100 Вт, работая в тёмное время суток не менее 12 часов, потребляет мощность 1,2 кВт. За месяц это составит 36 кВт, за год – не менее 432 кВт. Если лампочек в квартире 10 шт., то суммарное годовое потребление составит 4320 кВт. При цене за 1 кВт электроэнергии – 5 рублей, сумма получается приличная – 21000 рублей. Поэтому замена ламп накаливания на энергосберегающие источники света: светодиодные лампы, светодиодные ленты и им подобные, позволяет экономить средства. Кроме того, снижение мощности таких лампочек не снижает величины светового потока. Пониженное напряжение питания светодиодных лент также понижает величину потребляемой мощности.

Измерение мощности приборами

Для измерения Р можно воспользоваться специальными приборами. Для этого подойдёт мультиметр, к которому можно подключить токоизмерительные клещи. Как измерить мощность мультиметром? Тестер включается на режим измерения переменного напряжения, клещи должны обхватывать только один проводник, подводимый к нагрузке.

Разделение проводников в кабеле не всегда удобно. К тому же после измерений нужно рассчитывать мощность по формуле.

Измеритель мощности

Для измерения можно использовать специальный прибор – ваттметр. Прибор включается в розетку, в его выходное гнездо включают нагрузку, мощность которой нужно измерять. Результаты проводимого измерения выводятся на дисплей уже в киловаттах.

Измерение мощности с помощью электросчетчика

Используя квартирный счётчик электроэнергии, можно также проверить потребляемую мощность отдельного прибора. Для этого необходимо:

  • выключить все потребители энергии, оставив в режиме потребления лишь тестируемый прибор;
  • отметить показания на текущий момент и зафиксировать их значения через час;
  • произвести вычитания последних значений из предыдущих показаний;
  • результат будет измеренной величиной.

Основной недостаток такого блока действий – отключение других необходимых бытовых приборов.

Информация. При использовании этого метода, пользуясь моментом, можно посмотреть, нет ли скрытой утечки тока, и исправность счётчика. При отключении всех приборов электросчётчик должен остановиться.

Потребляемая энергия

Расчёт потребляемой энергии для дома или квартиры не представляет особой сложности. Для этого требуется выполнить следующий алгоритм действий:

  • составить таблицу всех электроприборов, используемых в доме, включая и лампы освещения;
  • в отдельные графы вынести: мощность прибора, часы работы в сутки;
  • для каждого потребителя энергии посчитать (путём умножения мощности на время работы) среднесуточное потребление;
  • просуммировать все полученные величины мощности.

Такой расчёт даст реальную картину потребления электроэнергии. Пользуясь этими данными, можно контролировать расход и корректировать потребляемую суточную мощность каждого прибора.

Не важно, каким способом рассчитывается или измеряется потребляемая мощность. Главная задача процесса – грамотно подобрать сечение проводников для устройства проводки, подвода питающих кабелей и обеспечить срабатывание автоматической защиты. Кабель, подводящий напряжение в помещение, должен выдерживать одновременное включение всех потребителей, расположенных в нём длительное время. Его выбор напрямую зависит от точности определения мощности потребителей.

Видео

При расчете электрических нагрузок важное значение имеет правильное определение нагрузки во всех элементах силовой сети. Завышение нагрузки может привести:

— к перерасходу проводникового материала;

–к уменьшению пропускной способности электрической сети;

— невозможности обеспечения нормальной работы силовых ЭП.

Существуют несколько методов расчета электрических нагрузок

Расчет электрических нагрузок произвел по таблице 2 методом коэффициента использования и коэффициента расчетной нагрузки. [8]

Таблица 2.6 — Электроприемники ШР1

Поз. на плане. Наименование ЭП Кол. шт Номинальная мощность, кВт Коэф. использования Ки Коэф. мощности cosj
Одного Рн Общая å Рн
12,13- Продольно-фрезерный станок 0,14 0,5/1,73
14,15- Горизонтально – расточной станок 10,5
16 Агрегатно- расточной станок
17,18-Плоскошлифовальный станок
19-23 Кран консольный Пресс гидравлический 6,5 32,5,
Итого по ШР1 157,5

Все электроприемники (ЭП) напряжением до 1000 В разбивают по узлам питания с учетом их расположения на плане. Узлами питания в данном проекте приняты распределительные пункты типа ПР и распределительные шинопроводы. Исходные данные для расчета заполняются на основании технологических данных, а также данных приведенных в справочниках для индивидуальных ЭП [8]. При этом:

-все ЭП узла питания группируются по категориям с одинаковыми kи и tgj независимо от мощности ЭП. В каждой строке таблицы указываются ЭП одной категории;

— резервные ЭП, ремонтные сварочные трансформаторы и ЭП, работающие кратковременно не учитываются.

В механическом цеху установлены, в основном, металлообрабатывающие станки, которые приводятся в движение асинхронными двигателями.

Методику расчета привожу на примере ШР1.

Расчётные нагрузки других распределительных пунктов рассчитываются аналогично и для удобства пользования и наглядности приведены в таблице 2.7 Все ЭП, которые запитываются от ШР1 имеют одинаковый коэффициент использования и коэффициент мощности, что значительно упрощает расчет.

Суммарная активная мощность

Суммарная средняя активная мощность с учетом коэффициента использования:

Рс = Ки Рном (2.28)

где Ки – коэффициент использования группы ЭП

Рном– номинальная мощность группы ЭП

Рс = 0,14 * 157,7 = 22,05 (кВт)

Средняя реактивная мощность:

Qc = åРс tgj(2.29)

где tgj — коэффициент реактивной мощности группы ЭП

Qc1 = 22,05 1,73 = 38,15 ( кВАр)

Эффективное число электроприёмников:

nэ=2 å Рном / Рном мах(2.30)

где Рном мах – номинальная мощность наиболее мощного ЭП.

nэ = 2 157,5/33 = 9,5

Средневзвешенный коэффициент использования:

В зависимости от средневзвешенного коэффициента использования и эффективного числа ЭП напряжением до1000 В определяем по таблице [2] коэффициент расчетной мощности

Расчётная активная мощность силовых ЭП определяется по формуле:

Рр.с.= Кр å Рс(2.32)

Рр.с = 2,2 22,05= 48,51 ( кВт)

С учетом осветительной нагрузки аварийного освещения

Расчётная реактивная мощность силовых ЭП из условия, если nэ 2 +Pp 2

ПР 1

1,2,3,4- Сварочный аппарат
0,25
0,65/1,17
60,84
2,14
111,28
66,92
129,85
196,7

ПР2

5,6,7,8,9 – гальванические ванны
0,8
0,95/0,33
36,96
1,12
125,44
40,66
131,87
199,8

ПР3

10,11 Вентиляторы
0,65
0,85/0,62
8,06
1,33
17,29
8,87
19,43
29,44

ШР1

12,13- Продольно-фрезерн. станок

14,15- Горизон.-расточной станок
10,5

16- Агрегатно- расточн. станок

17,18-Плоскошлифов. станок

19,20,21,22,23 Кран консольный
6,5
32,5

157,5
0,14
0,5/1,73
22,1
38,15
9,5
2,2
48,51
41,97

Аварийное освещение
1,08
0,35

49,59
42,32
65,19
98,77

ШР2

24,25 Агрегатно- расточн. станок

26 Токарно-шлифовальн. станок

27,28,29,30Радиально-верлильный
5,2
20,8

31,32 Алмазно-расточн. станок

74,4
0,14
0,5/1,73
10,4
18,02
10,6
2,1
22,92
18,02

Рабочее освещение
17,05
5,62

37,97
23,64
44,72
67,76

Итого по цеху
599,9
0,54
341,57
182,41
387,22
586,7

Iр =

По расчётному току выбираем трансформаторы тока, выключатели нагрузки установленные на линейных панелях РУ- 0,4 кВ, питающие кабели и аппараты защиты.

— расчетная активная мощность – 341,57кВт;

— расчетная реактивная мощность – 182,41квар

Вывод: для точного расчета суммарной мощности нагрузки нужно сложить полную мощность всех выбранных приборов (в Вольт-Амперах). Для электроприборов без двигателей полная мощность будет равна активной.

Как рассчитать мощность прибора?

Мощность равна произведению силы тока на напряжение, то есть 1 Вт = 1 А х 1 В. Формула: Р = I х V. Например, если сила тока равна 3 А, а напряжение равно 110 В, то мощность равна: 3 х 110 = 330 Вт. (Формула: Р = I х V, где Р – мощность).

Как считается суммарная мощность?

Для того чтобы узнать суммарную мощность всего оборудования, вам необходимо сложить мощность всех электроприборов, которые могут быть подключены в сеть. … После этого мощность рассчитывается по формуле P = U2 / R.

Как определить мощность бытового прибора?

Используем электросчетчик

Отключаем всех потребителей в квартире, оставляем подключенным только интересующий прибор. В течение 15 минут производим подсчет импульсов и умножаем на четыре (что бы получить количество за час). Узнав цифру делим ее на imp/kW и узнаем мощность агрегата.

Как рассчитать трехфазную нагрузку?

Мощность трехфазного тока равна тройной мощности одной фазы. При соединении в звезду PY=3·Uф·Iф·cosфи =3·Uф·I·cosфи. При соединении в треугольник P=3·Uф·Iф·cosфи=3·U·Iф·cosфи. На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник.

Как рассчитать мощность по переменному току?

Если в цепь переменного тока включено только активное сопротивление, такие например, как лампочка, утюг или электрочайник, то полную мощность можно рассчитать как произведение действующего напряжения и тока, которую и покажут нам измерительные приборы, т. е. P=U*I.

Как считается мощность?

Мощность численно равна произведению тока, протекающего через нагрузку, и приложенного к ней напряжения. Чтобы перевести Ватты в Амперы, понадобится формула: I = P / U, где I – это сила тока в амперах; P – мощность в ваттах; U – напряжение у вольтах.

Чему равен 1 ватт?

Ватт — единица измерения мощности, которая принята в международной системе единиц измерения СИ. 1 Ватт это мощность, при которой за 1 секунду совершается работа, равная 1 джоулю. 1 килокалория в час (ккал/ч) равна 4,1868×1000/3600 = 1,163 ватт.

Как считается нагрузка?

Рассчитывать нагрузку на электрическую сеть следует следующим образом: надо сложить мощность всех устройств и разделить их на напряжение в сети. Таким образом мы получим силу тока, по которой можно определить, правильно ли подобран электрический кабель, перегружена ли сеть.

Что такое мощность и нагрузка?

Скорость полезного потребления энергии, фактически определяет активная мощность. … Реактивная мощность — это такая мощность, которая определяется электромагнитными полями, образующимися в процессе работы приборов. Является реактивная мощность, как правило, «вредной», ее определяют характером нагрузки.

Какая мощность бытовых приборов?

Мощность бытовых электроприборов — средние значения

Наименование кВт
Стиральная машина автоматическая 3,3
Сушильная машина 2,1–3,3
Телевизор 0,18
Тостер 0,9–1,6

Понравилась статья? Поделить с друзьями:
  • Как найти вклады умерших родственников
  • Как найти напряжение каждого конденсатора в цепи
  • Как найти порядок действий в примере
  • Как найти русалку под водой
  • Как найти обратную функцию sin