Как найти суммарную вероятность события

Лучшее спасибо — порекомендовать эту страницу

Событие А называется частным случаем события В, если при наступлении А наступает и В. То, что А является частным случаем В, записывается как $A subset B$.

События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записывается очевидно: А = В.

Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

Теорема о сложении вероятностей. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.

$$P(A+B)=P(A)+P(B).$$

Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:

$$Pleft(sum_{i=1}^{n}A_i right)=sum_{i=1}^{n} P(A_i).$$

Если случайные события $A_1, A_2, …, A_n$ образуют полную группу несовместных событий, то имеет место равенство
$P(A_1)+P(A_2)+…+P(A_n)=1.$ Такие события (гипотезы) используются при решении задач на полную вероятность.

Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.

Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле

$$P(A+B)=P(A)+P(B)-P(Acdot B).$$

События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей. Вероятность произведения независимых событий А и В вычисляется по формуле:

$$P(Acdot B)=P(A)cdot P(B).$$

Вероятность произведения зависимых событий вычисляется по формуле условной вероятности.

Примеры решений задач с событиями

Пример. В первом ящике 1 белый и 5 черных шаров, во втором 8 белых и 4 черных шара. Из каждого ящика вынули по шару. Найти вероятность того, что один из вынутых шаров белый, а другой – черный.

Решение. Обозначим события: А – вынули белый шар из первого ящика,
;

— вынули черный шар из первого ящика,
;

В – белый шар из второго ящика,
;

— черный шар из второго ящика,
.

Нам нужно, чтобы произошло одно из событий или . По теореме об умножении вероятностей
, .
Тогда искомая вероятность по теореме сложения будет
.

Пример. Вероятность попадания в цель у первого стрелка 0,8, у второго – 0,9. Стрелки делают по выстрелу. Найти вероятность: а) двойного попадания; б) двойного промаха, в) хотя бы одного попадания; г) одного попадания.

Решение.

Пусть А – попадание первого стрелка, ;

В – попадание второго стрелка, .

Тогда — промах первого, ;

— промах второго, .

Найдем нужные вероятности.

а) АВ – двойное попадание,

б) – двойной промах, .

в) А+В – хотя бы одно попадание,

.

г) – одно попадание,

.

См. обучающую статью «решение задач о стрелках»

Пример. Решить задачу, применяя теоремы сложения и умножения. Мастер обслуживает 3 станка, работающих независимо друг от друга. Вероятность того, что первый станок потребует внимания рабочего в течение смены, равна 0,4, второй — 0,6, третий – 0,3. Найти вероятность того, что в течение смены: а) ни один станок не потребует внимания мастера, б) ровно 1 станок потребует внимания мастера.

Решение.

Вводим базовые независимые события $A_i$ = (Станок $i$ потребовал внимания рабочего в течение смены), $i=1, 2, 3$. По условию выписываем вероятности: $p_1=0,4$, $p_2=0,6$, $p_3=0,3$. Тогда $q_1=0,6$, $q_2=0,4$, $q_3=0,7$.

Найдем вероятность события $X$=(Ни один станок не потребует внимания в течение смены):

$$
P(X)=Pleft(overline{A_1} cdot overline{A_2} cdot overline{A_3}right)= q_1 cdot q_2 cdot q_3 =
0,6cdot 0,4 cdot 0,7 = 0,168.
$$

Найдем вероятность события $Z$= (Ровно один станок потребует внимания в течение смены):

$$
P(Z)= \ = P(A_1) cdot Pleft(overline{A_2} right) cdot Pleft(overline{A_3} right) + Pleft(overline{A_1}right) cdot P(A_2) cdot Pleft(overline{A_3} right) + Pleft(overline{A_1} right) cdot Pleft(overline{A_2} right) cdot P(A_3)=\
= p_1 cdot q_2 cdot q_3 + q_1 cdot p_2 cdot q_3 + q_1 cdot q_2 cdot p_3 =\ =
0,4cdot 0,4 cdot 0,7+0,6cdot 0,6 cdot 0,7+0,6cdot 0,4 cdot 0,3 = 0,436.
$$

См. обучающую статью «решение задач о станках»

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8. Найти вероятности того, что формула содержится 1) только в одном справочнике; 2) только в двух справочниках; 3) во всех трех справочниках.

Решение.

А – формула содержится в первом справочнике;

В – формула содержится во втором справочнике;

С – формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

1.

2. .

3.

Вероятность наступления хотя бы одного события

Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий?

Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.

Теорема. Вероятность появления хотя бы одного из событий $A_1, A_2, …, A_n$, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий

$$
P(A)=1-Pleft(overline{A_1}right)cdot Pleft(overline{A_2}right)cdot … cdot Pleft(overline{A_n}right)= 1-q_1 cdot q_2 cdot … cdot q_n.
$$

Если события $A_1, A_2, …, A_n$ имеют одинаковую вероятность $p$, то формула принимает простой вид:

$$
P(A)=1-(1-p)^n=1-q^n.
$$

Примеры решений на эту тему

Пример. Вероятности попадания в цель при стрельбе из трех орудий таковы: p1 = 0,8; p2 = 0,7; p3 = 0,9. Найти вероятность хотя бы одного попадания (событие А) при одном залпе из всех орудий.

Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям , и (т. е. вероятности промахов), соответственно равны:

, ,

Искомая вероятность .

Пример. В типографии имеется 4 плоскопечатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А).

Решение. События «машина работает» и «машина не работает» (в данный момент) — противоположные, поэтому сумма их вероятностей равна единице:

Отсюда вероятность того, что машина в данный момент не работает, равна

Искомая вероятность

Так как полученная вероятность весьма близка к единице, то на основании следствия из принципа практической невозможности маловероятных событий мы вправе заключить, что в данный момент работает хотя бы одна из машин.

Пример. Вероятность того, что при одном выстреле стрелок попадает в цель, равна 0,4. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью не менее 0,9 он попал в цель хотя бы один раз?

Решение. Обозначим через А событие «при n выстрелах стрелок попадает в цель хотя бы один раз». События, состоящие в попадании в цель при первом, втором выстрелах и т. д., независимы в совокупности, поэтому применима формула .

Приняв во внимание, что, по условию, (следовательно, ), получим

Прологарифмируем это неравенство по основанию 10:

Итак, , т.е. стрелок должен произвести не менее 5 выстрелов.

См. обучающую статью «решение задач с хотя бы один…»

В коробке находятся (9) яблок, среди них (2) жёлтых, (3) красных и (4) зелёных. Наугад берётся одно яблоко. Найди вероятность того, что оно не жёлтое.

1 способ.
Обозначим: событие (A) — вынуто красное яблоко, событие (B) — вынуто зелёное яблоко, тогда событие (A+B) — вынуто красное или зелёное яблоко, то есть не жёлтое. Найдём вероятность событий (A) и (B):

P(A)=39=13;P(B)=49. 

События (A) и (B) несовместны, поэтому вероятность события (A+B) равна:

P(A+B)=P(A)+P(B)=13+49=79.

Следствие. Сумма вероятностей противоположных событий равна единице, т. е.

P(A)+P(A¯)=1

.

Зависимые и независимые случайные события.
Основные формулы сложения и умножения вероятностей

Понятия зависимости и независимости случайных событий. Условная вероятность. Формулы сложения и умножения вероятностей для зависимых и независимых случайных событий. Формула полной вероятности и формула Байеса.

Теоремы сложения вероятностей

Найдем вероятность суммы событий A и B (в предположении их совместности либо несовместности).

Теорема 2.1. Вероятность суммы конечного числа несовместных событий равна сумме их вероятностей:

P{A+B+ldots+N}=P{A}+P{B}+ldots+P{N}.

Пример 1. Вероятность того, что в магазине будет продана пара мужской обуви 44-го размера, равна 0,12; 45-го — 0,04; 46-го и большего — 0,01. Найти вероятность того, что будет продана пара мужской обуви не меньше 44-го размера.

Решение. Искомое событие D произойдет, если будет продана пара обуви 44-го размера (событие A) или 45-го (событие B), или не меньше 46-го (событие C), т. е. событие D есть сумма событий A,B,C. События A, B и C несовместны. Поэтому согласно теореме о сумме вероятностей получаем

P{D}=P{A+B+C}=P{A}+P{B}+P{C}=0,!12+0,!04+0,!01 =0,!17.

Пример 2. При условиях примера 1 найти вероятность того, что очередной будет продана пара обуви меньше 44-го размера.

Решение. События «очередной будет продана пара обуви меньше 44-го размера» и «будет продана пара обуви размера не меньше 44-го» противоположные. Поэтому по формуле (1.2) вероятность наступления искомого события

P{overline{D}}=1-P{D}=1-0,!17=0,!83.

поскольку P{D}=0,!17, как это было найдено в примере 1.

Теорема 2.1 сложения вероятностей справедлива только для несовместных событий. Использование ее для нахождения вероятности совместных событий может привести к неправильным, а иногда и абсурдным выводам, что наглядно видно на следующем примере. Пусть выполнение заказа в срок фирмой «Electra Ltd» оценивается вероятностью 0,7. Какова вероятность того, что из трех заказов фирма выполнит в срок хотя бы какой-нибудь один? События, состоящие в том, что фирма выполнит в срок первый, второй, третий заказы обозначим соответственно A,B,C. Если для отыскания искомой вероятности применить теорему 2.1 сложения вероятностей, то получим P{A+B+C}=0,!7+0,!7+0,!7=2,!1. Вероятность события оказалась больше единицы, что невозможно. Это объясняется тем, что события A,B,C являются совместными. Действительно, выполнение в срок первого заказа не исключает выполнения в срок двух других.

Сформулируем теорему сложения вероятностей в случае двух совместных событий (будет учитываться вероятность их совместного появления).

Теорема 2.2. Вероятность суммы двух совместных событий равна сумме вероятностей этих двух событий без вероятности их совместного появления:

P{A+B}=P{A}+P{B}-P{AB}.


Зависимые и независимые события. Условная вероятность

Различают события зависимые и независимые. Два события называются независимыми, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.

Пример 3. Монета брошена два раза. Вероятность появления «герба» в первом испытании (событие A) не зависит от появления или не появления «герба» во втором испытании (событие B). В свою очередь, вероятность появления «герба» во втором испытании не зависит от результата первого испытания. Таким образом, события A и B независимые.

Несколько событий называются независимыми в совокупности, если любое из них не зависит от любого другого события и от любой комбинации остальных.

События называются зависимыми, если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события B, вычисленная в предположении осуществления другого события A, называется условной вероятностью события B и обозначается P{B|A}.

Условие независимости события B от события A записывают в виде P{B|A}=P{B}, а условие его зависимости — в виде P{B|A}ne{P{B}}. Рассмотрим пример вычисления условной вероятности события.


Пример 4. В ящике находятся 5 резцов: два изношенных и три новых. Производится два последовательных извлечения резцов. Определить условную вероятность появления изношенного резца при втором извлечении при условии, что извлеченный в первый раз резец в ящик не возвращается.

Решение. Обозначим A извлечение изношенного резца в первом случае, а overline{A} — извлечение нового. Тогда P{A}=frac{2}{5},~P{overline{A}}=1-frac{2}{5}=frac{3}{5}. Поскольку извлеченный резец в ящик не возвращается, то изменяется соотношение между количествами изношенных и новых резцов. Следовательно, вероятность извлечения изношенного резца во втором случае зависит от того, какое событие осуществилось перед этим.

Обозначим B событие, означающее извлечение изношенного резца во втором случае. Вероятности этого события могут быть такими:

P{B|A}=frac{1}{4},~~~P{B|overline{A}}=frac{2}{4}=frac{1}{2}.

Следовательно, вероятность события B зависит от того, произошло или нет событие A.


Формулы умножения вероятностей

Пусть события A и B независимые, причем вероятности этих событий известны. Найдем вероятность совмещения событий A и B.

Теорема 2.3. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:

P{AB}=P{A}cdot P{B}.

Следствие 2.1. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

P{A_1A_2ldots{A_n}}=P{A_1}P{A_2}ldots{P{A_n}}.


Пример 5. Три ящика содержат по 10 деталей. В первом ящике — 8 стандартных деталей, во втором — 7, в третьем — 9. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

Решение. Вероятность того, что из первого ящика взята стандартная деталь (событие A), P{A}=frac{8}{10}=frac{4}{5}. Вероятность того, что из второго ящика взята стандартная деталь (событие B), P{B}=frac{7}{10}. Вероятность того, что из третьего ящика взята стандартная деталь (событие C), P{C}=frac{9}{10}. Так как события A, B и C независимые в совокупности, то искомая вероятность (по теореме умножения)

P{ABC}=P{A}P{B}P{C}=frac{4}{5}frac{7}{10}frac{9}{10}=0,!504.

Пусть события A и B зависимые, причем вероятности P{A} и P{B|A} известны. Найдем вероятность произведения этих событий, т. е. вероятность того, что появится и событие A, и событие B.

Теорема 2.4. Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:

P{AB}=P{A}cdot P{B|A};qquad P{AB}=P{B}cdot P{A|B}

Следствие 2.2. Вероятность совместного появления нескольких зависимых событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились.


Пример 6. В урне находятся 5 белых шаров, 4 черных и 3 синих. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его в урну. Найти вероятность того, что при первом испытании появится белый шар (событие A), при втором — черный (событие B) и при третьем — синий (событие C).

Решение. Вероятность появления белого шара при первом испытании P{A}=frac{5}{12}. Вероятность появления черного шара при втором испытании, вычисленная в предположении, что при первом испытании появился белый шар, т. е. условная вероятность P{B|A}=frac{4}{11}. Вероятность появления синего шара при третьем испытании, вычисленная в предположении, что при первом испытании появился белый шар, а при втором — черный, P{C|AB}=frac{3}{10}. Искомая вероятность

P{ABC}=P{A}P{B|A}P{C|AB}=frac{5}{12}frac{4}{11}frac{3}{10}.


Формула полной вероятности

Теорема 2.5. Если событие A наступает только при условии появления одного из событий B_1,B_2,ldots{B_n}, образующих полную группу несовместных событий, то вероятность события A равна сумме произведений вероятностей каждого из событий B_1,B_2,ldots{B_n} на соответствующую условную вероятность события B_1,B_2,ldots{B_n}:

P{A}=sumlimits_{i=1}^{n}P{B_i}P{A|B_i}.

(2.1)

При этом события B_i,~i=1,ldots,n называются гипотезами, а вероятности P{B_i} — априорными. Эта формула называется формулой полной вероятности.

Пример 7. На сборочный конвейер поступают детали с трех станков. Производительность станков не одинакова. На первом станке изготовляют 50% всех деталей, на втором — 30%, на третьем — 20%. Вероятность качественной сборки при использовании детали, изготовленной на первом, втором и третьем станке, соответственно 0,98, 0,95 и 0,8, Определить вероятность того, что узел, сходящий с конвейера, качественный.

Решение. Обозначим A событие, означающее годность собранного узла; B_1, B_2 и B_3 — события, означающие, что детали сделаны соответственно на первом, втором и третьем станке. Тогда

P{B_1}=0,!5;~~~~~P{B_2}=0,!3;~~~~~P{B_3}=0,!2;
P{A|B_1}=0,!98;~~~P{A|B_2}=0,!95;~~~P{A|B_3}=0,!8.

Искомая вероятность

begin{gathered}P{A}=P{B_1}P{A|B_1}+P{B_2}P{A|B_2}+P{B_3}P{A|B_3}=hfill\=0,!5cdot0,!98+0,!3cdot0,!95+0,!2cdot0,!8=0,!935.end{gathered}


Формула Байеса

Эта формула применяется при решении практических задач, когда событие A, появляющееся совместно с каким-либо из событий B_1,B_2,ldots{B_n}, образующих полную группу событий, произошло и требуется провести количественную переоценку вероятностей гипотез B_1,B_2,ldots{B_n}. Априорные (до опыта) вероятности P{B_1},P{B_2},ldots{P{B_n}} известны. Требуется вычислить апостериорные (после опыта) вероятности, т. е., по существу, нужно найти условные вероятности P{B_1|A},P{B_2|A},ldots{P{B_n|A}}. Для гипотезы B_j формула Байеса выглядит так:

P{B_j|A}=frac{P{B_j} P{A|B_j}}{P{A}}.

Раскрывая в этом равенстве P{A} по формуле полной вероятности (2.1), получаем

P{B_j|A}=dfrac{P{B_j}P{A|B_j}}{sumlimits_{i=1}^{n}P{B_i}P{A|B_i}}.


Пример 8. При условиях примера 7 рассчитать вероятности того, что в сборку попала деталь, изготовленная соответственно на первом, втором и третьем станке, если узел, сходящий с конвейера, качественный.

Решение. Рассчитаем условные вероятности по формуле Байеса:

для первого станка

P{B_1|A}=dfrac{P{B_1}P{A|B_1}}{P{A}}=frac{0,!5cdot0,!98}{0,!935}approx0,!525;

для второго станка

P{B_2|A}=dfrac{P{B_2}P{A|B_2}}{P{A}}=frac{0,!3cdot0,!95}{0,!935}approx0,!304;

для третьего станка

P{B_3|A}=dfrac{P{B_3}P{A|B_3}}{P{A}}=frac{0,!2cdot0,!8}{0,!935}approx0,!171.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Учреждение
образования «Белорусская государственная

сельскохозяйственная
академия»

Кафедра
высшей математики

СЛОЖЕНИЕ
И УМНОЖЕНИЕ ВЕРОЯТНОСТЕЙ. ПОВТОРНЫЕ
НЕЗАВИСИМЫЕ ИСПЫТАНИЯ

Лекция
для студентов землеустроительного
факультета

заочной
формы обучения

Горки,
2012

Сложение
и умножение вероятностей. Повторные

независимые
испытания

  1. Сложение вероятностей

Суммой
двух совместных событий

А
и В
называется событие С,
состоящее в наступлении хотя бы одного
из событий А
или В.
Аналогично суммой нескольких совместных
событий называется событие, состоящее
в наступлении хотя бы одного из этих
событий.

Суммой
двух несовместных событий

А
и В
называется событие С,
состоящее в наступлении или события
А,
или события В.
Аналогично суммой нескольких несовместных
событий называется событие, состоящее
в наступлении какого-либо одного из
этих событий.

Справедлива
теорема сложения вероятностей несовместных
событий: вероятность
суммы двух несовместных событий равна
сумме вероятностей этих событий
,
т.е.
.
Эту теорему можно распространить на
любое конечное число несовместных
событий.

Из
данной теоремы следует:


сумма
вероятностей событий, образующих полную
группу, равна единице;


сумма
вероятностей противоположных событий
равна единице, т.е.
.

Пример
1
.
В ящике находятся 2 белых, 3 красных и 5
синих шара. Шары перемешивают и наугад
извлекают один. Какова вероятность
того, что шар окажется цветным?

Решение.
Обозначим события:

A={извлечён
цветной шар};

B={извлечён
белый шар};

C={извлечён
красный шар};

D={извлечён
синий шар}.

Тогда
A=C+D.
Так как события C,
D
несовместны, то воспользуемся теоремой
сложения вероятностей несовместных
событий:
.

Пример
2
.
В урне находятся 4 белых шара и 6 –
чёрных. Из урны наугад вынимают 3 шара.
Какова вероятность того, что все они
одного цвета?

Решение.
Обозначим события:

A={вынуты
шары одного цвета};

B={вынуты
шары белого цвета};

C={вынуты
шары чёрного цвета}.

Так
как A=B+C
и события В
и С
несовместны, то по теореме сложения
вероятностей несовместных событий
.
Вероятность события В
равна
,
где
4,

.
Подставим k
и n
в формулу и получим
Аналогично
найдём вероятность события С:
,
где
,
,
т.е.
.
Тогда
.

Пример
3
.
Из колоды в 36 карт наугад вынимают 4
карты. Найти вероятность того, что среди
них окажется не менее трёх тузов.

Решение.
Обозначим события:

A={среди
вынутых карт не менее трёх тузов};

B={среди
вынутых карт три туза};

C={среди
вынутых карт четыре туза}.

Так
как A=B+C,
а события В
и С
несовместны, то
.
Найдём вероятности событий В
и С:

,
.
Следовательно, вероятность того, что
среди вынутых карт не менее трёх тузов,
равна

0.0022.

  1. Умножение вероятностей

Произведением
двух событий А
и В
называется событие С,
состоящее в совместном наступлении
этих событий:
.
Это определение распространяется на
любое конечное число событий.

Два
события называются независимыми,
если вероятность наступления одного
из них не зависит от того, произошло
другое событие или нет. События
,
,
… ,

называются независимыми
в совокупности
,
если вероятность наступления каждого
из них не зависит от того, произошли или
не произошли другие события.

Пример
4
.
Два стрелка стреляют по цели. Обозначим
события:

A={первый
стрелок попал в цель};

B={второй
стрелок попал в цель}.

Очевидно,
что вероятность попадания в цель первым
стрелком не зависит от того, попал или
не попал второй стрелок, и наоборот.
Следовательно, события А
и В
независимы.

Справедлива
теорема умножения вероятностей
независимых событий: вероятность
произведения двух независимых событий
равна произведению вероятностей этих
событий
:
.

Эта
теорема справедлива и для n
независимых в совокупности событий:
.

Пример
5
.
Два стрелка стреляют по одной цели.
Вероятность попадания первого стрелка
равна 0.9, а второго – 0.7. Оба стрелка
одновременно делают по одному выстрелу.
Определить вероятность того, что будут
иметь место два попадания в цель.

Решение.
Обозначим события:

A={первый
стрелок попадёт в цель};

B={второй
стрелок попадёт в цель};

C={оба
стрелка попадут в цель}.

Так
как
,
а события А
и В
независимы, то
,
т.е.
.

События
А
и В
называются зависимыми,
если вероятность наступления одного
из них зависит от того, произошло другое
событие или нет. Вероятность наступления
события А
при условии, что событие В
уже наступило, называется условной
вероятностью

и обозначается

или
.

Пример
6
.
В урне находятся 4 белых и 7 чёрных шаров.
Из урны извлекаются шары. Обозначим
события:

A={извлечён
белый шар} ;

B={извлечён
чёрный шар}.

Перед
началом извлечения шаров из урны
.
Из урны извлекли один шар и он оказался
чёрным. Тогда вероятность события А
после наступления события В
будет уже другой, равной
.
Это означает, что вероятность события
А
зависит от события В,
т.е. эти события будут зависимыми.

Справедлива
теорема умножения вероятностей зависимых
событий: вероятность
произведения двух зависимых событий
равна произведению вероятности одного
из них на условную вероятность другого,
вычисленную в предположении, что первое
событие уже наступило
,
т.е.

или
.

Пример
7
.
В урне находятся 4 белых шара и 8 красных.
Из неё наугад последовательно извлекают
два шара. Найти вероятность того, что
оба шара будут чёрными.

Решение.
Обозначим события:

A={первым
извлечён чёрный шар};

B={вторым
извлечён чёрный шар}.

События
А
и В
зависимы, так как
,
а
.
Тогда
.

Пример
8
.
Три стрелка стреляют по цели независимо
друг от друга. Вероятность попадания в
цель для первого стрелка равна 0.5, для
второго – 0.6 и для третьего – 0.8. Найти
вероятность того, что произойдут два
попадания в цель, если каждый стрелок
сделает по одному выстрелу.

Решение.
Обозначим события:

A={произойдут
два попадания в цель};

B={первый
стрелок попадёт в цель};

C={второй
стрелок попадёт в цель};

D={третий
стрелок попадёт в цель};

={первый
стрелок не попадёт в цель};

={второй
стрелок не попадёт в цель};

={третий
стрелок не попадёт в цель}.

По
условию примера
,
,
,

,
,
.
Так как
,
то используя теорему сложения вероятностей
несовместных событий и теорему умножения
вероятностей независимых событий,
получим:

.

Пусть
события

образуют полную группу событий некоторого
испытания, а событии А
может наступить только с одним из этих
событий. Если известны вероятности

и условные вероятности

события А,
то вероятность события А вычисляется
по формуле:


или
.
Эта формула называется формулой
полной вероятности
,
а события


гипотезами.

Пример
9
.
На сборочный конвейер поступает 700
деталей с первого станка и 300 деталей

со второго. Первый станок даёт 0.5% брака,
а второй – 0.7%. Найти вероятность того,
что взятая деталь будет бракованной.

Решение.
Обозначим события:

A={взятая
деталь будет бракованной};

={деталь
изготовлена на первом станке};

={деталь
изготовлена на втором станке}.

Вероятность
того, что деталь изготовлена на первом
станке, равна
.
Для второго станка
.
По условию вероятность получения
бракованной детали, изготовленной на
первом станке, равна
.
Для второго станка эта вероятность
равна
.
Тогда вероятность того, что взятая
деталь будет бракованной, вычисляется
по формуле полной вероятности

.

Если
известно, что в результате испытания
наступило некоторое событие А,
то вероятность того, что это событие
наступило с гипотезой
,
равна
,
где

полная вероятность события А.
Эта формула называется формулой
Байеса

и позволяет вычислять вероятности
событий

после того, как стало известно, что
событие А
уже наступило.

Пример
10
.
Однотипные детали к автомобилям
производятся на двух заводах и поступают
в магазин. Первый завод производит 80%
общего количества деталей, а второй –
20%. Продукция первого завода содержит
90% стандартных деталей, а второго – 95%.
Покупатель купил одну деталь и она
оказалась стандартной. Найти вероятность
того, что эта деталь изготовлена на
втором заводе.

Решение.
Обозначим события:

A={куплена
стандартная деталь};

={деталь
изготовлена на первом заводе};

={деталь
изготовлена на втором заводе}.

По
условию примера
,
,

и
.
Вычислим полную вероятность события
А:
0.91.
Вероятность того, что деталь изготовлена
на втором заводе, вычислим по формуле
Байеса:
.

Задания
для самостоятельной работы

  1. Вероятность
    попадания в цель для первого стрелка
    равна 0.8, для второго – 0.7 и для третьего
    – 0.9. Стрелки произвели по одному
    выстрелу. Найти вероятность того, что
    имеет место не менее двух попаданий в
    цель.

  2. В
    ремонтную мастерскую поступило 15
    тракторов. Известно, что 6 из них нуждаются
    в замене двигателя, а остальные – в
    замене отдельных узлов. Случайным
    образом отбираются три трактора. Найти
    вероятность того, что замена двигателя
    необходима не более, чем двум отобранным
    тракторам.

  3. На
    железобетонном заводе изготавливают
    панели, 80% из которых – высшего качества.
    Найти вероятность того, что из трёх
    наугад выбранных панелей не менее двух
    будут высшего сорта.

  4. Три
    рабочих собирают подшипники. Вероятность
    того, что подшипник, собранный первым
    рабочим, высшего качества, равна 0.7,
    вторым – 0.8 и третьим – 0.6. Для контроля
    наугад взято по одному подшипнику из
    собранных каждым рабочим. Найти
    вероятность того, что не менее двух из
    них будут высшего качества.

  5. Вероятность
    выигрыша по лотерейному билету первого
    выпуска равна 0.2, второго – 0.3 и третьего
    – 0.25. Имеются по одному билету каждого
    выпуска. Найти вероятность того, что
    выиграет не менее двух билетов.

  6. Бухгалтер
    выполняет расчёты, пользуясь тремя
    справочниками. Вероятность того, что
    интересующие его данные находятся в
    первом справочнике, равна 0.6, во втором
    – 0.7 ив третьем – 0.8. Найти вероятность
    того, что интересующие бухгалтера
    данные содержатся не более, чем в двух
    справочниках.

  7. Три
    автомата изготавливают детали. Первый
    автомат изготавливает деталь высшего
    качества с вероятностью 0.9, второй – с
    вероятностью 0.7 и третий – с вероятностью
    0.6. Наугад берут по одной детали с каждого
    автомата. Найти вероятность того, что
    среди них не менее двух высшего качества.

  8. На
    двух станках обрабатываются однотипные
    детали. Вероятность изготовления
    нестандартной детали для первого станка
    равна 0.03, в для второго – 0.02. Обработанные
    детали складываются в одном месте.
    Среди них 67% с первого станка, а остальные
    – со второго. Наугад взятая деталь
    оказалась стандартной. Найти вероятность
    того, что она изготовлена на первом
    станке.

  9. В
    мастерскую поступили две коробки
    однотипных конденсаторов. В первой
    коробке было 20 конденсаторов, из которых
    2 неисправных. Во второй коробки 10
    конденсаторов, из которых 3 неисправных.
    Конденсаторы были переложены в один
    ящик. Найти вероятность того, что наугад
    взятый из ящика конденсатор окажется
    исправным.

  10. На
    трёх станках изготавливают однотипные
    детали, которые поступают на общий
    конвейер. Среди всех деталей 20% с первого
    автомата, 30% — со второго и 505 – с третьего.
    Вероятность изготовления стандартной
    детали на первом станке равна 0.8, на
    втором – 0.6 и на третьем – 0.7. Взятая
    деталь оказалась стандартной. Найти
    вероятность того, эта деталь изготовлена
    на третьем станке.

  11. Комплектовщик
    получает для сборки 40% деталей с завода
    А,
    а остальные – с завода В.
    Вероятность того, что деталь с завода
    А
    – высшего качества, равна 0.8, а с завода
    В
    – 0.9. Комплектовщик наугад взял одну
    деталь и она оказалась не высшего
    качества. Найти вероятность того, что
    эта деталь с завода В.

  12. Для
    участия в студенческих спортивных
    соревнованиях выделено 10 студентов из
    первой группы и 8 – из второй. Вероятность
    того, что студент из первой группы
    попадёт в сборную академии, равна 0.8, а
    со второй – 0.7. Наугад выбранный студент
    попал в сборную. Найти вероятность
    того, что он из первой группы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как составить письмо на аренду земли
  • Как найти девушку в борисове
  • Как найти ответы с помощью кода элемента
  • Если ошиблись в назначении платежа как исправить
  • Как найти порабощенного карателя в дивайн рпг