Как найти сумму арифметической прогрессии калькулятор

Арифметической прогрессией называется такая последовательность чисел, в которой разность между последующим и предыдущим членами остается неизменной. Эта неизменная разность называется разностью прогрессии.
Любой член арифметической прогрессии можно вычислить по формуле
a_n=a_1+d(n-1)

Сумма первых n членов арифметической прогрессии выражается формулой
S_n=frac{(a_1+a_n)n}{2}

Калькулятор n-го члена и суммы n членов:

PLANETCALC, Арифметическая прогрессия

Арифметическая прогрессия

Первый член прогрессии а1

Показать все члены прогрессии

Точность вычисления

Знаков после запятой: 2

Сумма арифметической прогрессии Sn

Онлайн калькулятор. Сумма арифметической прогрессии

Используя этот онлайн калькулятор для вычисления суммы арифметической прогрессии, вы сможете очень просто и быстро найти значение суммы арифметической прогрессии зная значения двух членов арифметической прогрессии, или значения одного члена прогрессии и шага прогрессии или значения первого и последнего члена арифметической прогрессии.

Воспользовавшись онлайн калькулятором для вычисления суммы арифметической прогрессии, вы получите детальное решение вашего примера, которое позволит понять алгоритм решения задач и закрепить пройденный материал.

Найти сумму арифметической прогрессии

значение первого и последнего членов арифметической прогрессии (a1, an)

значение первого члена арифметической прогрессии и шаг прогрессии (a1, d)

значение одного из членов арифметической прогрессии и шаг прогрессии (ai, d)

значения двух членов арифметической прогрессии (ai, aj)

Введите данные:

Найти значение суммы первых n членов арифметической прогрессии

Вводить можно числа или дроби (-2.4, 5/7, …). Более подробно читайте в правилах ввода чисел.

Когда речь идет о таком параметре, как сумма арифметической прогрессии, подразумевается всегда сумма первых членов арифметической прогрессии или сумма членов прогрессии с k по n, то есть количество членов, которые берутся для суммы, строго ограничено в заданных условием пределах. В противном случае задание не будет иметь решения, так как вся числовая последовательность именно арифметической прогрессии начинается с конкретного числа — первого члена a1, и продолжается бесконечно.

Бытует мнение, что формула суммы арифметической прогрессии была открыта еще Гауссом, как быстрый и точный способ расчета суммы чисел в определенной последовательности. Он заметил, что такая прогрессия является симметричной, то есть сумма симметрично расположенных с начала и конца членов прогрессии является постоянной для данного ряда.

a1+an=a2+a(n-1)=a3+a(n-2)=⋯

Соответственно, он нашел данную сумму и умножил ее на половину от общего количества чисел в последовательности, участвующих в расчете суммы. Таким образом, была выведена формула суммы арифметической прогрессии

Пример. Предположим, задано условие: «Найдите сумму первых десяти (10) членов арифметической прогрессии». Для этого понадобится следующие данные: разность прогрессии и первый ее член. Если в задаче дан какой-либо n член арифметической прогрессии вместо первого, тогда сначала нужно воспользоваться разделом, где представлена формула нахождения первого члена прогрессии, и найти его. Затем исходные данные вбиваются в калькулятор и он производит расчеты, складывая первый и десятый члены, и умножая полученную сумму на половину от общего количества складываемых членов – на 5. Аналогично происходит, если нужно найти сумму первых шести членов или любого другого количества.

В случае, когда необходимо найти сумму членов арифметической прогрессии, начинающихся не с первого, а с пятого члена, к примеру, тогда среднее арифметическое остается тем же, а общее количество членов берется как увеличенная на единицу разность между порядковыми номерами взятых членов.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»

Смотрите также

Сумма арифметической прогрессии, формула.

Сумма арифметической прогрессии выражается формулой:

[s_n = frac{(a_1+a_n)n}{2} = frac{(a_1+(a_1+d(n-1)))n}{2}]

(a1 — первый член прогрессии; d — разность прогрессии; n — номер члена прогрессии)

Вычислить, найти сумму арифметической прогрессии по формуле (1).

a1 

Вычислить

нажмите кнопку для расчета

Сумма арифметической прогрессии

стр. 81

Калькулятор суммы членов арифметической прогрессии поможет найти сумму членов по двум формулам. Первая формула применяется если вам известны первый член прогрессии, n-й член и количество суммируемых элементов. Вторая формула используется если вы знаете первый член, разность и количество элементов для суммирования.

Формулы суммы членов арифметической прогрессии

Чтобы найти сумму первых членов арифметической прогрессии, можно воспользоваться одной из нижеприведенных формул:

1) {S_n=dfrac {a_1+a_n}{2} cdot n},

2) {S_n=dfrac {2a_1+d(n-1)}{2} cdot n}

a1 — первый член прогрессии,

an — член прогрессии под номером n,

d — разность прогрессии (разница между членами прогрессии),

n — номер члена

Примеры нахождения суммы арифметической прогрессии

Задача 1

Дана арифметическая прогрессия: -4; -2; 0… Найдите сумму первых десяти ее членов.

Решение

Первый член прогрессии a1 = -4.

Чтобы найти разность прогрессии, нужно вычесть из второго члена первый. В нашем случае d = a2 — a1 = -2 — (-4) = 2.

Количество суммируемых членов равно 10, т. е. n = 10. Подставим значения во вторую формулу и получим результат:

S_n=dfrac {2a_1+d(n-1)}{2} cdot n = dfrac {2 cdot -4+2(10-1)}{2} cdot 10 = dfrac {-8+18}{2} cdot 10 = 50

Ответ: 50

Используем калькулятор для проверки.

Задача 2

Найдите сумму первых 10 членов арифметической прогрессии -23; -20;…

Решение

Первый член прогрессии a1 = -23.

Найдем шаг прогрессии: d = a2 — a1 = -20 — (-23) = 3.

Найдем десятый член прогрессии по формуле: a_n=a_1+(n-1)cdot d = -23 + (10-1) cdot 3 = -23 + 27 = 4

Чтобы найти разность прогрессии, нужно вычесть из второго члена первый. В нашем случае d = a2 — a1 = -2 — (-4) = 2.

Подставим значения в первую формулу и получим результат:

S_n=dfrac {a_1+a_n}{2} cdot n = dfrac {-23+4}{2} cdot 10 = dfrac {-19}{2} cdot 10 = -9.5 cdot 10 = -95

Ответ: -95

Проверим ответ на калькуляторе .

Понравилась статья? Поделить с друзьями:
  • Как я нашла трусы в машине
  • Подбородок с ямкой как исправить
  • Как найти запреты на авто
  • Как найти минимальный поток в графе
  • Как fallout 4 где найти бетон