Как найти сумму бесконечной геометрической прогрессии формула

Рассмотрим бесконечную геометрическую прогрессию b1,b2,b3…bn…

Bычислим суммы двух, трёх, четырёх и т. д. членов прогрессии:

S1=b1;S2=b1+b2;S3=b1+b2+b3…Sn=b1+b2+b3+…+bn…

Получилась последовательность S1,S2,S3…Sn…

Эта последовательность может сходиться или расходиться, как и любая другая числовая последовательность.

Если последовательность Sn сходится к пределу S, тогда число S называют суммой геометрической прогрессии (не следует путать с суммой n членов геометрической прогрессии).

В случае, когда эта последовательность расходится, то о сумме геометрической прогрессии не говорят, однако сумму первых n членов геометрической прогрессии вычислить можно.

Формула суммы первых n членов геометрической прогрессии:

если Sn=b1+b2+…+bn, то Sn=b1(qn−1)q−1.

Если знаменатель 

q

геометрической прогрессии

(bn)

 удовлетворяет неравенству 

q<1

, то сумма прогрессии

S

 существует и вычисляется по формуле  

limn→∞Sn=b11−q

.

Формулы для нахождения суммы бесконечной геометрической прогрессии

Содержание:

  • Что такое геометрическая прогрессия
  • Бесконечная убывающая геометрическая прогрессия — что из себя представляет
  • Сумма первых n членов геометрической прогрессии
  • Как найти q в геометрической прогрессии
  • Примеры решения задач

Что такое геометрическая прогрессия

Геометрическая прогрессия являет собой последовательность чисел. Когда каждому натуральному числу n поставлено в соответствие число (Xn), то говорят, что представлена числовая последовательность. Она имеет вид: (X_1, X_2)
,…,(X_n), или ({[X_n]}). Для задания последовательности необходимо знать закон, по которому каждому натуральному числу n соответственно поставлено общее число последовательности (f(n)=X_n.)

Геометрическая прогрессия — последовательность с заданным первым членом (b_1), в которой каждый следующий, начиная со второго, получается умножением предыдущего на одно и то же число (q).

Числа ( b_1) и q не могут равняться нулю, поскольку в таком случае все члены прогрессии, начиная со второго, будут равны нулю.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Геометрическую прогрессию определяют как произведение между ее знаменателем и n-м членом:

(b_n=b_{n-1}cdot q,)

Где (b_n)(n-й) член прогрессии, (q) — знаменатель прогрессии.

Геометрическая прогрессия может быть задана рекуррентным соотношением:

(b_1=b,) (b_{n+1}=b_ncdot q,) (nin N,) (bneq0)(qneq0.)

Примечание

Рекуррентное соотношение задается формулой, выражающей (Xn) через предшествующие ему члены последовательности.

Примеры геометрических прогрессий:

  • 1, 2, 4, 8, 16, 32 …; (b_1 = 1), (q = 2;)
  • 1, 3, 9, 27, 81…; (b_1 = 1), (q = 3;)
  • 2, -8, 32, -128, 512…:(b_1 = 2), (q = -4.)

Каждый член геометрической прогрессии, начиная со второго, рассчитывается как модуль среднего геометрического соседних членов:

(left|b_nright|=sqrt{b_{n-1}cdot b_{n+1}},) (ngeq2, )

или

(b_n^2=b_{n-1}cdot b_{n+1}.)

Если (b_1 > 0) и (q > 1) или (b_1 < 0) и (0 < q < 1), то для геометрической последовательности характерно возрастание.

Если (b_1 > 0) и 0 < (q < 1) или (b_1 < 0) и (q > 1), то для нее характерно убывание.

Примеры геометрических прогрессий в жизни:

  1. Размножение бактерий крайне велико и осуществляется по геометрической прогрессии: каждая клетка делится на две, новые — делятся еще на две и т.д. Знание принципов размножения бактерий находит свое применение в биотехнологии, пищевой промышленности, медицине и т.д.
  2. Зная формулу суммы геометрической прогрессии, можно находить площади и объемы геометрических фигур. Еще Архимед заметил связь между прогрессиями и вывел формулу для нахождения площади сегмента параболы через сумму бесконечно убывающей геометрической прогрессии.
  3. Возрастание скорости химических реакций происходит в геометрической прогрессии при увеличении температуры по арифметической прогрессии.
  4. Начисление процентов по вкладу в банках может осуществляться по простой или сложной схеме: соответственно, проценты начисляются либо по арифметической, либо по геометрической прогрессиям.

Бесконечная убывающая геометрическая прогрессия — что из себя представляет

Геометрическая прогрессия называется бесконечно убывающей, если модуль ее знаменателя меньше единицы (|q| <1.)

Сумма S всех членов бесконечной убывающей геометрической прогрессии вычисляется как соотношение между первым членом геометрической прогрессии к разности между единицей и знаменателем прогрессии:

(S=frac{b_1}{1-q}.)

Доказательством этой формулы является то, что величина (q^n) по модулю становится все меньше и меньше и стремится к нулю, при этом величина n неограниченно возрастает.

Пример такой прогрессии:

1, (frac12,) (frac14,) (frac18), (frac1{16},…)

Если (q=1), то для вычисления суммы (S_n) первых n членов геометрической прогрессии применяют следующую формулу:

(S_n=b_1+…+b_n=frac{b_1-b_nq}{1-q}=frac{b_1left(1-q^nright)}{1-q}.)

Если (q≠1), то формула видоизменяется в:

(S_n=b_1n.)

Также для объяснения формулы, введем другое обозначение суммы первых членов прогрессии:

(S_n=b_1+b_2+…+b_n.)

Тогда можно видоизменить формулу нахождения суммы (S_n) первых n членов геометрической прогрессии:

(S_n=b_1frac{q^n-1}{q-1}.)

Как найти q в геометрической прогрессии

Вычисление знаменателя прогрессии (q) осуществляют через выведение из формулы на нахождение общего члена геометрической прогрессии:

(b_n=b_1q^{n-1} )

Отсюда:

(q=frac{b_{n+1}}{b_n}.)

Примеры решения задач

Задача № 1

Сумма первого и третьего членов геометрической прогрессии равна 35. Сумма первых 5 членов в 49 раз больше суммы их обратных величин.

Найти знаменатель и первый член геометрической прогрессии.

Решение:

По условиям задачи:

(b_1+b_1q^2=35.,)

(b_1left(1+q+q^2+q^3+q^4right)=49left(frac1{b_1}+frac1{b_1q}+frac1{b_1q^2}+frac1{b_1q^3}+frac1{b_1q^4}right).) (2)

Так как (1+q+q^2+q^3+q^4neq0) (иначе задача теряет смысл), то равенство (2) можно записать в виде:

(b_1^2q^4=49. ) (3)

Из (3) следует, что либо (b_1q^2=7,) либо (b_1q^2=-7.)

Если равно 7, то из (1) находим (b_1=28,) (q^2={textstylefrac14}), откуда (q=pmfrac12 )

Если равно -7, (b_1=42,) (\q^2=-{textstylefrac16}). В этом случае второе условие задачи теряет смысл. 

Конечный результат:

(b_1=28,) (q=pmfrac12. )

Задача № 2

(S_n) — сумма первых n членов геометрической прогрессии.

Доказать, что: (S_nleft(S_{3n}-S_{2n}right)=left(S_{2n}-S_nright)^2). (1)

Доказательство:

Пусть (b_k — k-й) член, (q)— знаменатель геометрической прогрессии. Тогда:

(S_{m+k}=S_m+b_1q^m+b_1q^{m+1}+…+b_1q^{m+k-1},)

откуда:

(S_{m+k}-S_m=q^mleft(b_1+b_1q+…+b_1q^{k-1}right))

или

(S_{m+k}-S_m=q^mS_k) (2).

Полагая в (2) сначала (m = 2_n,) (k = n), а затем (m = n), (k = n), получаем

(S_{3n}-S_{2n}=q^{2n}cdot S_n)(S_{2n}-S_n=q^ncdot S_n.) (3)

А из равенств (3) следует равенство (1).

Задача № 3

Сумма бесконечно убывающей геометрической прогрессии равна 4. Сумма возведенных в третью степень ее членов равна 192.

Найти первый член и знаменатель этой прогрессии.

Решение:

Обозначим: (b_1) — первый член, (S) — сумма прогрессии, (q) — знаменатель, (S_1) — сумма возведенных в третью степень ее членов.

Тогда

(S=frac{b_1}{1-q}),( S_1=frac{b_1^3}{1-q^3}.)

Далее получаем

(frac{S^3}{S_1}-frac{1-q^3}{{(1-q)}^3}=frac{4^3}{192}=frac13 )

(3(1+q+q^2)=1-2q+q^2,;qneq1..)
Полученное уравнение, записанное в виде

(2q^2+5q+2=0)

имеет корни (q_1 = −2,) (q_2 = − ½.)

Так как (|q| < 1), отбрасываем первый корень.

Следовательно:

(q=-frac12,;b_1=4(1-q)=6.)

Задача № 4

(S_n)первых трех членов геометрической прогрессии равна 351. (S_n) следующих трех членов равна 13.

Найти первый член и знаменатель прогрессии.

Решение:

Запишем условия задачи в виде системы уравнений:

(left{begin{array}{l}b_1+b_2+b_3=351,\b_4+b_5+b_6=13end{array}right.Leftrightarrow left{begin{array}{l}b_1+b_1q+b_1q^2=351,\b_1q^3+b_1q^4+b_1q^5=13end{array}right.Leftrightarrow left{begin{array}{l}b_1(1+frac13+frac19)=351,\q=frac13end{array}right.Leftrightarrowleft{begin{array}{l}frac{13}9b_1=351,\q=frac13end{array}Leftrightarrowleft{begin{array}{l}b_1=frac{351cdot9}{13}=243,\q=frac13.end{array}right.right..)

Ответ: (b_1=243,;q=frac13.)

Задача № 5

Геометрическая прогрессия содержит четное число членов. Их сумма в три раза больше суммы членов, стоящих на нечетных местах.

Найти знаменатель прогрессии?

Решение:

Определим, что в прогрессии 2n членов и (S_{2n}) — сумма всех членов, а (S_n^ast) — сумма членов, стоящих на нечетных местах.

Тогда (S_{2n}=frac{b_1(1-q^{2n})}{1-q}.)

И 

(S_n^ast=b_1+b_3+…+b_{2n-1}=b_1+b_1q^2+…+b_1q^{2n-2}=frac{b_1(1-q^{2n)}}{1-q^2}.)

Где (b_1) — первый член прогрессии, а (q ≠ 1) — знаменатель прогрессии.

По условию задачи:

(S_{2n}=3S_n^astRightarrowfrac{b_1(1-q^{2n)}}{`1-q}=3frac{b_1(1-q^{2n)}}{1-q^2}Rightarrow1+q=3Rightarrow q=2.)

Ответ: (q=2. )

Теория вопроса

Геометрическая прогрессия – это бесконечная последовательность чисел, записанная в виде: b1, b2, …, bn, …, где b1 — первый член, b2 — второй член, bn —  «энный» член прогрессии.

Каждый член этой прогрессии, начиная со второго, равен предыдущему, умноженному на постоянное для этой последовательности число «q» ,

Число «q» называется знаменателем прогрессии. 

Любой член геометрической прогрессии вычисляется по формуле:

bn =  b1  q n — 1 .

Сумма  «n»  первых членов геометрической прогрессии вычисляется как:

Интерес также представляет «Бесконечно убывающая геометрическая прогрессия». Это геометрическая прогрессия, у которой  | q | < 1 . Для неё определяется понятие суммы членов бесконечно убывающей геометрической прогрессии, а именно: это число «к», которому неограниченно приближается сумма  «n» первых членов рассматриваемой прогрессии при неограниченном возрастании числа  «n». 

Сумма членов бесконечно убывающей геометрической прогрессии вычисляется по формуле:

Приведем примеры задач, где необходимо использовать эти формулы.

Пример 1

Найти девятый член (b(9)) заданной последовательности чисел: 1, 3, 9, 27, …

Решение

Данная последовательность чисел является геометрической, так как при делении каждого её члена на предыдущий получается одно и то же число «3»:

3 : 1 = 3

9 : 3 = 3

27 : 9 = 3

Следовательно, знаменателем рассматриваемой последовательности является число q = 3.

Применим формулу для нахождения суммы  «n»  первых членов геометрической прогрессии и найдем b(9):

bn =  b1  q n — 1 

b9 =  1 х  3 9 — 1 =  1 х 3 8 = 1 х 6561 = 6561

Пример 2

Найти сумму членов бесконечно убывающей геометрической прогрессии:

Решение

Применим формулу для вычисления суммы бесконечно убывающей геометрической прогрессии. В нашем примере  b1 = 1,  q = 1/2.

Тогда:

Как видите, без знания формул найти требуемые элементы геометрической последовательности не представляется возможным.

Больше уроков и заданий по всем школьным предметам в онлайн-школе «Альфа». Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

Геометрическая прогрессия — это еще один частный случай числовых последовательностей.

Геометрической  прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число. 

Очевидно, что первый член последовательности, и, следовательно, все ее члены, отличны от нуля.

Число q={b_k}/{b_{k-1}} называется знаменателем геометрической прогрессии.

Основное свойство геометрической прогрессии.

Мы видим, что

b_k={b_{k-1}}q

b_k={b_{k+1}}/q  

Перемножив эти два равенства, получим:

{b_k}^2={b_{k-1}}*{b_{k+1}}

Итак,

квадрат любого члена геометрической прогрессии, начиная со второго, равен произведению двух соседних:

Нетрудно доказать, что

квадрат любого члена геометрической прогрессии, начиная с номера k>l , равен произведению двух соседних:

Формулу n-го члена геометрической прогрессии можно получить аналогично формуле n-го члена арифметической прогрессии, выписав несколько первых членов и установив закономерность.

Формула n-го члена геометрической прогрессии:

ВАЖНО! Зная первый член и знаменатель геометрической прогрессии, можно найти любой ее член.

Несложно получить формулу суммы n членов геометрической прогрессии.

S_n=b_1+b_1{q}+b_1{q}^2+ b_1{q}^3+b_1{q}^{n-1}  (1)

Умножим обе части равенства на q

S_{n}q= b_1{q}+b_1{q}^2+b_1{q}^3+ b_1{q}^4+b_1{q}^{n} (2)

Вычтем из равенства (2) равенство (1). Получим:

S_{n}q-S_{n}=b_1{q}^{n}-b_1 (остальные слагаемые в правой части равенства взаимно уничтожатся)

S_{n}(q-1)=b_1({q}^{n}-1 )

Отсюда получаем формулу суммы n членов геометрической прогрессии:

(1)

Бесконечно убывающая геометрическая прогрессия.

Если знаменатель геометрической прогрессии delim{|}{q}{|}<1 , то каждый следующий член прогрессии по модулю меньше предыдущего. Если в этой прогрессии бесконечное число членов, то при n{right}{infty}, ~b_n{right}0

Такая геометрическая прогрессия называется бесконечно убывающей.

Сумму членов бесконечно убывающей геометрической прогрессии мы находим по формуле:

(2)

ВАЖНО! Формулу суммы членов бесконечно убывающей геометрической прогрессии (2) мы используем только в том случае, если в условии в явном виде указано, что нужно найти сумму бесконечного числа членов. Если указано конкретное число n, то пользуемся формулой (1) суммы n членов, даже если delim{|}{q}{|}<1 .

Рассмотрим примеры задач.

1. Дана последовательность c_n=5(-2)^n. Докажите, что эта последовательность является геометрической прогрессией.

Докажем, что для любого номера n отношение {c_n}/{c_{n-1}}=const

 c_{n-1}=5(-2)^{n}

{c_n}/{c_{n-1}}={5(-2)^{n}} /{5(-2)^{n-1}}=-2 —  мы видим, что отношение {c_n}/{c_{n-1}} не зависит от номера n и равно числу -2, следовательно, данная последовательность является геометрической прогрессией.

2. Дана геометрическая прогрессия b_n=2(-3)^n

1. Найдите пятый член прогрессии.

2. Найдите сумму первых восьми членов прогрессии.

1. b_5=2(-3)^{5}=-486

2. S_5={b_1(q^5-1)}/{q-1}

Найдем b_1 и q.

b_1=2(-3)^1=-6

b_2=2(-3)^2=18

q={b_2}/{b_1}={18}/{-6} =-3

S_5={(-6)((-3)^5-1)}/{(-3)-1}={(-6)(-243-1)}/{-4}=-3*122=-366

Ответ: 1. -162; 2. -366

3. Найдите сумму бесконечной геометрической прогрессии 8;~2;~1/2;...

Сумму бесконечной геометрической прогрессии найдем по формуле S={b_1}/{1-q}. (В задаче в явном виде указано, что мы имеем дело с бесконечной геометрической прогрессией.)

b_1=8; q=2/8=1/4

S=8/{1-{1/4}}=8*4/3={32}/3=10{2/3}

Ответ: 10{2/3}

4. Дана геометрическая прогрессия (c_n) с положительными членами, в которой c_4=24;~c_6=96.

а) Найдите c_1.

б) Определите количество членов прогрессии, начиная с первого, сумма которых равна 45.

а) Запишем условие задачи, выразив его через c_1 и q. Получим систему уравнений:

delim{lbrace}{matrix{2}{1}{{c_1*q^3=24} {c_1*q^5=96} }}{ } 

Разделим второе уравнение на первое, получим

q^2=4; q_1=2;~q_2=-2.

По условию наша прогрессия с положительными членами, поэтому q>0 .

Найдем c_1. Для этого подставим q=2 в первое уравнение системы.

c_1*2^3=24;~c_1=3

б) По условию S_n=45

 

S_n={c_1(q^n-1)}/{q-1}={3(2^n-1)}=45

2^n-1=15

2^n=16

n=4

Ответ: а) 3; б) 4.

5. Сумма членов бесконечной геометрической прогрессии (b_n) в три раза больше ее первого члена. Найдите отношение {b_2}/{b_4}.

Выразим условие задачи через b_1 и q

S={b_1}/{1-q}

Т.к. по условию S=3b_1, получим

{b_1}/{1-q}=3b_1. Отсюда 1/{1-q}=3

1-q=1/3;~~q=2/3

Нам нужно найти {b_2}/{b_4}={b_1*q}/{b_1*q^3}=1/{q^2}.

 1/{q^2} 1/{(2/3)^2}=9/4=2,25

Ответ: 2,25

 
И.В. Фельдман, репетитор по математике.


 

 

Числовая последовательность

Если ты уже читал тему «Арифметическая прогрессия» ты можешь смело пропускать этот блок и переходить к самой сути.

Если нет, то советую ознакомиться, чтобы иметь общее представление о том, что такое прогрессия в целом и с чем ее едят.

Итак, сядем и начнем писать какие-нибудь числа. Например: ( displaystyle 4,text{ }7,text{ }-8,text{ }13,text{ }-5,text{ }-6,text{ }0,text{ }ldots )

Писать можно любые числа, и их может быть сколько угодно (в нашем случае их ( displaystyle 7)).

Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое – второе и так далее до последнего, то есть, можем их пронумеровать. Это и есть пример числовой последовательности:

Числовая последовательность – это множество чисел, каждому из которых можно присвоить уникальный номер.

Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и ( displaystyle n)-ное число) всегда одно.

Число с номером ( displaystyle n) называетмя ( displaystyle n)-ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например, ( displaystyle a)), и каждый член этой последовательности – той же буквой с индексом, равным номеру этого члена: ( displaystyle {{a}_{1}},text{ }{{a}_{2}},text{ }…,text{ }{{a}_{10}},text{ }…,text{ }{{a}_{n}}).

В нашем случае:

Самые распространенные виды прогрессии это арифметическая и геометрическая. В этой теме мы поговорим о втором виде – геометрической прогрессии.

Ограничения геометрической прогрессии

Первый член {( displaystyle {{b}_{1}})} не равен ( displaystyle 0) и ( displaystyle mathbf{q}text{ }ne text{ }0).

Эти ограничения не случайны!

Допустим, что их нет, и первый член прогрессии все же равен ( displaystyle 0), а q равно, хм.. пусть ( displaystyle 2), тогда получается:

( displaystyle {{b}_{1}}=0)

( displaystyle {{b}_{1}}=0cdot 2=0…) и так далее.

Согласись, что это уже никакая не прогрессия.

Как ты понимаешь, те же самые результаты мы получим, если ( displaystyle {{b}_{1}}) будет каким-либо числом, отличным от нуля, а ( displaystyle q=0).

В этих случаях прогрессии просто не будет, так как весь числовой ряд будут либо все нули, либо одно число, а все остальные нули.

Теперь поговорим поподробнее о знаменателе геометрической прогрессии, то есть о ( displaystyle q).

Знаменатель геометрической прогрессии

Повторим: ( displaystyle q) – это число, во сколько раз изменяется каждый последующий член геометрической прогрессии.

Как ты думаешь, каким может быть ( displaystyle q)? Правильно, положительным и отрицательным, но не нулем (мы говорили об этом чуть выше).

Допустим, что ( displaystyle q) у нас положительное. Пусть в нашем случае ( displaystyle q=3), а ( displaystyle {{b}_{1}}=4).

Чему равен второй член ( displaystyle {{b}_{2}}) и ( displaystyle {{b}_{3}})? Ты без труда ответишь, что:

( displaystyle {{b}_{2}}=4cdot 3=12)

( displaystyle {{b}_{3}}=12cdot 3=36)

Все верно. Соответственно, если ( displaystyle q>0), то все последующие члены прогрессии имеют одинаковый знак – они положительны.

А что если ( displaystyle q) отрицательное? Например, ( displaystyle q=-3), а ( displaystyle {{b}_{1}}=4). Чему равен второй член ( displaystyle {{b}_{2}}) и ( displaystyle {{b}_{3}})?

Это уже совсем другая история

( displaystyle {{b}_{2}}=4cdot -3=-12)

( displaystyle {{b}_{3}}=-12cdot left( -3 right)=36)

Попробуй посчитать ( displaystyle 4) член данной прогрессии. Сколько у тебя получилось? У меня ( displaystyle -108).

Таким образом, если ( displaystyle q<0), то знаки членов геометрической прогрессии чередуются.

То есть, если ты увидишь прогрессию, с чередующимися знаками у ее членов, значит ее знаменатель на ( displaystyle 100%) отрицательный.

Это знание может помочь тебе проверять себя при решении задач на эту тему.

Теперь немного потренируемся:

Пример 1. Попробуй определить, какие числовые последовательности являются геометрической прогрессией, а какие арифметической:

  • ( displaystyle 3;text{ }6;text{ }12;text{ }24;text{ }48;text{ }56ldots )
  • ( displaystyle 1;text{ }12;text{ }23;text{ }34;text{ }45text{ }ldots )
  • ( displaystyle -99;text{ }33;text{ }-11ldots )
  • ( displaystyle 5;text{ }7;text{ }9;text{ }11;text{ }13ldots ) 
  • ( displaystyle -6;text{ }5;text{ }17;text{ }28;text{ }39ldots ) 
  • ( displaystyle 64;text{ }16;text{ }4;text{ }1ldots ) 
  • ( displaystyle 2;text{ }4;text{ }8;text{ }18ldots )

Разобрался? Сравним наши ответы:

  • Геометрическая прогрессия – 3, 6.
  • Арифметическая прогрессия – 2, 4.
  • Не является ни арифметической, ни геометрической прогрессиями — 1, 5, 7.

Пример 2. Найти 6-й член прогрессии

Вернемся к нашей последней прогрессии ( displaystyle q=-3), а ( displaystyle {{b}_{1}}=4) и попробуем так же как и в арифметической найти ее ( displaystyle 6) член.

Как ты уже догадываешься, есть два способа его нахождения:

1-й способ. Последовательно умножаем каждый член на ( displaystyle q).

  • ( displaystyle {{b}_{1}}=4)
  • ( displaystyle {{b}_{2}}=4cdot left( -3 right)=-12)
  • ( displaystyle {{b}_{3}}=-12cdot left( -3 right)=36)
  • ( displaystyle {{b}_{4}}=36cdot left( -3 right)=-108)
  • ( displaystyle {{b}_{5}}=-108cdot left( -3 right)=324)
  • ( displaystyle {{b}_{6}}=324cdot left( -3 right)=-972)

Итак, ( displaystyle 6)-ой член описанной геометрической прогрессии равен ( displaystyle -972).

2-й способ. По формуле, которая поможет найти тебе любой член геометрической прогрессии.

( displaystyle {{b}_{6}}={{b}_{1}}cdot q{{ }^{6-1}})

Если нам нужно найти значение числа прогрессии с порядковым номером, то мы умножаем первый член геометрической прогрессии ( displaystyle {{b}_{1}}) на знаменатель ( displaystyle q) в степени, которая на ( displaystyle 1) единицу меньше, чем порядковый номер искомого числа.

( displaystyle {{b}_{6}}=4cdot {{left( -3 right)}^{6-1}}=4cdot {{left( -3 right)}^{5}}=-972)

Попробуем «обезличить» данную формулу – приведем ее в общий вид и получим:

( displaystyle {{b}_{n}}={{b}_{1}}cdot q{{ }^{n-1}}) — уравнение членов геометрической прогрессии, где

  • n — порядковый номер члена прогрессии;
  • b1 — первый член прогрессии;
  • q — знаменатель.

Данная формула верна для всех значений — как положительных, так и отрицательных.

Как найти член геометрической прогрессии, зная два соседних. Формула в общем виде:

( displaystyle {{b}_{n}}=sqrt{{{b}_{n+1}}cdot {{b}_{n-1}}} ), при ( displaystyle n>2)

Не забывай про условие при ( displaystyle n>2)?

Подумай, почему оно важно, например, попробуй самостоятельно просчитать ( displaystyle {{b}_{n}} ), при ( displaystyle n=1). Что получится в этом случае?

Правильно, полная глупость так как формула выглядит так:

( displaystyle {{b}_{1}}=sqrt{{{b}_{1+1}}cdot {{b}_{1-1}}} )

Соответственно, не забывай это ограничение.

Возьмем, к примеру, простую геометрическую прогрессию, в которой нам известны ( displaystyle {{b}_{2}}=6) и ( displaystyle {{b}_{4}}=54).

И посчитаем, чему же равно ( displaystyle {{b}_{3}})

( displaystyle {{b}_{3}}=sqrt{6cdot 54}=sqrt{324}=…)

Правильный ответ – ( displaystyle {{b}_{3}}=pm 18)!

Теперь, когда ты усвоил основные моменты и вывел формулу на свойство геометрической прогрессии, найди ( displaystyle {{b}_{n}} ), зная ( displaystyle {{b}_{n+1}}) и ( displaystyle {{b}_{n-1}})

  • ( displaystyle {{b}_{n+1}}=4), ( displaystyle {{b}_{n-1}}=36)
  • ( displaystyle {{b}_{n+1}}=-3), ( displaystyle {{b}_{n-1}}=-12)
  • ( displaystyle {{b}_{n+1}}=-2), ( displaystyle {{b}_{n-1}}=-32)

Сравни полученные ответы с правильными:

  • ( displaystyle {{b}_{n}}=pm 12 )
  • ( displaystyle {{b}_{n}}=pm 6 )
  • ( displaystyle {{b}_{n}}=pm 8 )

Как найти равноудаленные члены геометрической прогрессии

Как ты думаешь, а если нам были бы даны не соседние с искомым числом значения членов геометрической прогрессии, а равноудаленные от него.

Например, нам необходимо найти ( displaystyle {{b}_{3}} ), а даны ( displaystyle {{b}_{1}} ) и ( displaystyle {{b}_{5}} ). Можем ли мы в этом случае использовать выведенную нами формулу?

Да! Формула работает не только при соседствующих с искомым членах геометрической прогрессии, но и с равноудаленными от искомого членами.

И она приобретает вид:

( displaystyle {{b}_{n}}=sqrt{{{b}_{n+k}}cdot {{b}_{n-k}}} ), при ( displaystyle k<n, kin N)

То есть, если в первом случае мы говорили, что ( displaystyle k=1), то сейчас мы говорим, что ( displaystyle k) может быть равен любому натуральному числу, которое меньше ( displaystyle n).

Главное, чтобы ( displaystyle k) был одинаков для обоих заданных чисел.

Потренируйся на конкретных примерах, только будь предельно внимателен!

Как найти неравноудаленные члены геометрической прогрессии

На самом деле это не так сложно, как кажется! Давай с тобой распишем, из чего состоит каждое данное нам и искомое числа.

( displaystyle {{b}_{3}}={{b}_{1}}cdot {{q}^{2}} )

( displaystyle {{b}_{6}}={{b}_{5}}cdot q={{b}_{1}}cdot {{q}^{5}} )

( displaystyle {{b}_{4}}={{b}_{3}}cdot q={{b}_{1}}cdot {{q}^{3}})

Итак, у нас есть ( displaystyle {{b}_{3}}) и ( displaystyle {{b}_{6}}). Посмотрим, что с ними можно сделать?

Предлагаю разделить ( displaystyle {{b}_{6}}) на ( displaystyle {{b}_{3}}). Получаем:

( displaystyle frac{{{b}_{6}}}{{{b}_{3}}}=frac{{{b}_{1}}cdot {{q}^{5}}}{{{b}_{1}}cdot {{q}^{2}}}={{q}^{3}})

Подставляем в формулу наши данные:

( displaystyle frac{{{b}_{6}}}{{{b}_{3}}}=frac{486}{18}=27)

Следующим шагом мы можем найти ( displaystyle q) – для этого нам необходимо взять кубический корень из полученного числа.

( displaystyle {{q}^{3}}=27 Rightarrow q=sqrt[3]{27}=3)

А теперь смотрим еще раз что у нас есть. У нас есть ( displaystyle {{b}_{3}}), а найти нам необходимо ( displaystyle {{b}_{4}}), а он, в свою очередь равен:

( displaystyle {{b}_{4}}={{b}_{3}}cdot q)

Все необходимые данные для подсчета мы нашли. Подставляем в формулу:

( displaystyle {{b}_{4}}=18cdot 3=54)

Наш ответ: ( displaystyle 54).

Попробуй решить еще одну такую же задачу самостоятельно:

Дано: ( displaystyle {{b}_{3}}=18), ( displaystyle {{b}_{5}}=648)
Найти: ( displaystyle {{b}_{2}})

Сколько у тебя получилось? У меня:

Получим:

( displaystyle {{S}_{n}}q={{b}_{1}}q+{{b}_{2}}q+{{b}_{3}}q+…+{{b}_{n-2}}q+{{b}_{n-1}}q+{{b}_{n}}q)

Посмотри внимательно: что общего в последних двух формулах? Правильно, общие члены, например ( displaystyle {{b}_{2}}={{b}_{1}}q) и так далее, кроме первого и последнего члена. Давай попробуем вычесть из 2-го уравнения 1-ое.

Что у тебя получилось?

( displaystyle {{S}_{n}}q-{{S}_{n}}={{b}_{n}}q-{{b}_{1}})

Теперь вырази ( displaystyle {{b}_{n}}) через формулу члена геометрической прогрессии и подставь полученное выражение в нашу последнюю формулу:

( displaystyle {{S}_{n}}q-{{S}_{n}}={{b}_{1}}{{q}^{n-1}}q-{{b}_{1}}={{b}_{1}}{{q}^{n}}-{{b}_{1}})

Сгруппируй выражение. У тебя должно получиться:

( displaystyle {{S}_{n}}(q-1)={{b}_{1}}({{q}^{n}}-1))

Все, что осталось сделать – выразить ( displaystyle {{S}_{n}}):

( displaystyle {{S}_{n}}=frac{{{b}_{1}}({{q}^{n}}-1)}{q-1}) или ( displaystyle {{S}_{n}}=frac{{{b}_{1}}(1-{{q}^{n}})}{1-q})

Соответственно, в этом случае ( displaystyle qne 1).

А что если ( displaystyle q=1)? Какая формула работает тогда? Представь себе геометрическую прогрессию при ( displaystyle q=1). Что она из себя представляет?

Правильно ряд одинаковых чисел, соответственно формула будет выглядеть следующим образом:

( displaystyle {{S}_{n}}=n{{b}_{1}})

Для начала запишем какую-нибудь геометрическую прогрессию, состоящую из ( displaystyle 5) членов.

Допустим, ( displaystyle {{b}_{1}}=1), а ( displaystyle q=frac{1}{2}), тогда:

  • ( displaystyle {{b}_{2}}=1cdot frac{1}{2}=frac{1}{2})
  • ( displaystyle {{b}_{3}}=frac{1}{2}cdot frac{1}{2}=frac{1}{4})
  • ( displaystyle {{b}_{4}}=frac{1}{4}cdot frac{1}{2}=frac{1}{8})
  • ( displaystyle {{b}_{5}}=frac{1}{8}cdot frac{1}{2}=frac{1}{16})

Мы видим, что каждый последующий член меньше предыдущего в ( displaystyle frac{1}{2}) раза, но будет ли какое-либо число ( displaystyle {{b}_{n}}=0)?

Ты сразу же ответишь – «нет». Вот поэтому и бесконечно убывающая – убывает, убывает, а нулем никогда не становится.

Чтобы четко понять, как это выглядит визуально, давай попробуем нарисовать график нашей прогрессии. Итак, для нашего случая формула ( displaystyle {{b}_{n}}={{b}_{1}}cdot q{{ }^{n-1}}) приобретает следующий вид:

( displaystyle {{b}_{n}}=1cdot {{left( frac{1}{2} right)}^{n-1}}={{left( frac{1}{2} right)}^{n-1}})

На графиках нам привычно строить зависимость ( displaystyle x) от ( displaystyle y), поэтому:

( displaystyle {{b}_{n}}=y(x)),
( displaystyle {{left( frac{1}{2} right)}^{n-1}}={{left( frac{1}{2} right)}^{x-1}})

Суть выражения не изменилась.

В первой записи у нас была показана зависимость значения члена геометрической прогрессии от его порядкового номера.

А во второй записи – мы просто приняли значение члена геометрической прогрессии за ( displaystyle y), а порядковый номер обозначили не как ( displaystyle n), а как ( displaystyle x).

Все, что осталось сделать – построить график. Посмотрим, что у тебя получилось. Вот какой график получился у меня:

Видишь?

Функция убывает, стремится к нулю, но никогда его не пересечет, поэтому она бесконечно убывающая.

Отметим на графике наши точки, а заодно и то, что обозначает координата ( displaystyle x) и ( displaystyle y):

Попробуй схематично изобразить график геометрической прогрессии при ( displaystyle q=2), если первый ее член также равен ( displaystyle 1).

Проанализируй, в чем разница с нашим предыдущим графиком?

Справился? Вот какой график получился у меня:

Сумма членов бесконечно убывающей геометрической прогрессии

Итак, для начала посмотрим еще раз на вот этот рисунок бесконечно убывающей геометрической прогрессии из нашего примера:

А теперь посмотрим на формулу суммы геометрической прогрессии, выведенную чуть ранее:

( displaystyle {{S}_{n}}=frac{{{b}_{1}}({{q}^{n}}-1)}{q-1}) или ( displaystyle {{S}_{n}}=frac{{{b}_{1}}(1-{{q}^{n}})}{1-q})

К чему у нас стремится ( displaystyle {{q}^{n}})? Правильно, на графике видно, что оно стремится к нулю.

То есть при ( displaystyle nto infty ), ( displaystyle {{q}^{n}}) будет почти равно ( displaystyle 0), соответственно, при вычислении выражения ( displaystyle 1-{{q}^{n}}) мы получим почти ( displaystyle 1).

В связи с этим, мы считаем, что при подсчете суммы бесконечно убывающей геометрической прогрессии, данной скобкой можно пренебречь, так как она будет равна ( displaystyle 1).

История возникновения геометрической прогрессии

Еще в древности итальянский математик Леонардо из Пизы (более известный под именем Фибоначчи) занимался решением практических нужд торговли.

Перед монахом стояла задача определить, с помощью какого наименьшего количества гирь можно взвесить товар?

В своих трудах Фибоначчи доказывает, что оптимальной является такая система гирь: ( displaystyle 1,text{ }2,text{ }4,text{ }8,text{ }16…)

Это одна из первых ситуаций, в которой людям пришлось столкнуться с геометрической прогрессией, о которой ты уже наверное слышал и имеешь хотя бы общее понятие.

Как только полностью разберешься в теме, подумай, почему такая система является оптимальной?

В настоящее время, в жизненной практике, геометрическая прогрессия проявляется при вложении денежных средств в банк под сложные проценты, или при оценке скорости распространения гриппа (или коронавируса), или при… создании финансовых пирамид!

Интересно? Давай разбираться.

Как быстро Вася заразит весь класс гриппом

Ученик 5 А класса Вася, заболел гриппом, но продолжает ходить в школу. Каждый день Вася заражает двух человек, которые, в свою очередь, заражают еще двух человек и так далее. Всего в классе ( displaystyle 31) человек.

Через сколько дней гриппом будет болеть весь класс?

Решение:

Итак, первый член геометрической прогрессии это Вася, то есть ( displaystyle 1) человек. ( displaystyle 2)-ой член геометрической прогрессии, это те два человека, которых он заразил в первый день своего прихода.

Общая сумма членов прогрессии равна количеству учащихся 5А.

Соответственно, мы говорим о прогрессии, в которой:

( displaystyle begin{array}{l}{{b}_{1}}=1\q=2\{{S}_{n}}=31end{array})

Подставим наши данные в формулу суммы членов геометрической прогрессии:

( displaystyle {{S}_{n}}=frac{{{b}_{1}}({{q}^{n}}-1)}{q-1})

( displaystyle 31=frac{1({{2}^{n}}-1)}{2-1}={{2}^{n}}-1)

( displaystyle begin{array}{l}{{2}^{n}}=31+1\{{2}^{n}}=32\{{2}^{n}}={{2}^{5}}\n=5end{array})

Весь класс заболеет за ( displaystyle 5) дней. Не веришь формулам и числам? Попробуй изобразить «заражение» учеников самостоятельно. Получилось?

Посчитай самостоятельно, за сколько дней ученики заболели бы гриппом, если каждый заражал бы по ( displaystyle 3) человека, а в классе училось ( displaystyle 26) человек.

Какое значение у тебя получилось? У меня получилось, что все начали болеть спустя ( displaystyle 3) дня.

Как ты видишь, подобная задача и рисунок к ней напоминает пирамиду, в которой каждый последующий «приводит» новых людей. Однако, рано или поздно настает такой момент, когда последние не могут никого привлечь.

В нашем случае, если представить, что класс изолирован, ( displaystyle 16) человек из ( displaystyle 31) замыкают цепочку (( displaystyle 51,6%)).

Таким образом, если бы ( displaystyle 31) человек были вовлечены в финансовую пирамиду, в которой деньги давались в случае, если ты приведешь двух других участников, то ( displaystyle 16) человек (( displaystyle {{b}_{5}}={{b}_{1}}{{q}^{4}}) или в общем случае ( displaystyle {{b}_{n}}={{b}_{1}}{{q}^{n}})) не привели бы никого, соответственно, потеряли бы все, что вложили в эту финансовую аферу.

Все, что было сказано выше, относится к убывающей или возрастающей геометрической прогрессии, но, как ты помнишь, у нас есть особый вид – бесконечно убывающая геометрическая прогрессия.

Как же считать сумму ее членов? И почему у данного вида прогрессии есть определенные особенности? Давай разбираться вместе.

Легенда о Сете, создателе шахмат

Узнав, что она изобретена одним из его подданных, царь решил лично наградить его. Он вызвал изобретателя к себе и приказал просить у него все, что он пожелает, пообещав исполнить даже самое искусное желание.

Сета попросил время на размышления, а когда на другой день Сета явился к царю, он удивил царя беспримерной скромностью своей просьбы. Он попросил выдать за первую клетку шахматной доски ( displaystyle 1) пшеничное зерно, за вторую ( displaystyle 2) пшеничных зерна, за третью ( displaystyle -4), за четвертую ( displaystyle -8) и т.д.

Царь разгневался, и прогнал Сета, сказав, что просьба слуги недостойна царской щедрости, но пообещал, что слуга получит свои зерна за все ( displaystyle 64) клетки доски.

А теперь вопрос: используя формулу суммы членов геометрической прогрессии, посчитай, сколько зерен должен получить Сета?

Начнем рассуждать.

Так как по условию за первую клетку шахматной доски Сета попросил ( displaystyle 1) пшеничное зерно, за вторую ( displaystyle 2), за третью ( displaystyle -4), за четвертую ( displaystyle -8) и т.д., то мы видим, что в задаче речь идет о геометрической прогрессии.

Чему равно ( displaystyle q) в этом случае? Правильно.

( displaystyle q=frac{2}{1}=frac{4}{2}=frac{8}{4}=2)

Всего клеток шахматной доски ( displaystyle 64). Соответственно, ( displaystyle n=64).

Все данные у нас есть, осталось только подставить в формулу и посчитать.

( displaystyle {{S}_{n}}=frac{1({{2}^{64}}-1)}{2-1}={{2}^{64}}-1)

Чтобы представить хотя бы приблизительно «масштабы» данного числа, преобразуем ( displaystyle {{2}^{64}}), используя свойства степени:

( displaystyle {{2}^{64}}={{2}^{10}}cdot {{2}^{10}}cdot {{2}^{10}}cdot {{2}^{10}}cdot {{2}^{10}}cdot {{2}^{10}}cdot {{2}^{4}})

Раскроем далее значения ( displaystyle {{2}^{10}}) и ( displaystyle {{2}^{4}}). Как ты знаешь, ( displaystyle {{2}^{10}}=1024), а ( displaystyle {{2}^{4}}=64).

Подставим данное значение в предыдущее выражение:

( displaystyle {{2}^{64}}=1024cdot 1024cdot 1024cdot 1024cdot 1024cdot 1024cdot 64)

Конечно, если ты хочешь, то можешь взять калькулятор и посчитать, что за число в итоге у тебя получится, а если нет, придется поверить мне на слово: итоговым значением выражения будет ( displaystyle 18~ 446~ 744~ 073~ 709~ 551~ 615).

То есть:

( displaystyle 18) квинтильонов ( displaystyle 446) квадрильонов ( displaystyle 744) триллиона ( displaystyle 73) миллиарда ( displaystyle 709) миллионов ( displaystyle 551) тысяч ( displaystyle 615).

Фух) Если желаете представить себе огромность этого числа, то прикиньте, какой величины амбар потребовался бы для вмещения всего количества зерна.

При высоте амбара ( displaystyle 4) м и ширине ( displaystyle 10) м длина его должна была бы простираться на ( displaystyle 300text{ }000text{ }000) км, — т.е. вдвое дальше, чем от Земли до Солнца.

Если бы царь был бы силен в математике, то он мог бы предложить самому ученому отсчитывать зерна, ведь чтобы отсчитать миллион зерен, ему бы понадобилось не менее ( displaystyle 10) суток неустанного счета, а учитывая, что необходимо отсчитать ( displaystyle 18) квинтильонов, зерна пришлось бы отсчитывать всю жизнь.

Задачи на вычисление сложных процентов

Ты наверняка слышал о так называемой формуле сложных процентов. Понимаешь ли ты, что она значит? Если нет, давай разбираться, так как осознав сам процесс, ты сразу поймешь, причем здесь геометрическая прогрессия.

Все мы ходим в банк и знаем, что существуют разные условия по вкладам: это и срок, и дополнительное обслуживание, и процент с двумя различными способами его начисления – простым и сложным.

С простыми процентами все более или менее понятно: проценты начисляются один раз в конце срока вклада.

То есть, если мы говорим о том, что мы кладем 100 рублей на год под ( displaystyle 10%), то ( displaystyle 10%) зачислятся только в конце года.

Соответственно, к окончанию вклада мы получим ( displaystyle 110) рублей.

Сложные проценты — это такой вариант, при котором происходит капитализация процентов, т.е. их причисление к сумме вклада и последующий расчет дохода не от первоначальной, а от накопленной суммы вклада.

Капитализация происходит не постоянно, а с некоторой периодичностью. Как правило, такие периоды равны и чаще всего банки используют месяц, квартал или год.

Допустим, что мы кладем все те же ( displaystyle 100) рублей по ( displaystyle 10%) годовых, но с ежемесячной капитализацией вклада. Что у нас получается?

( displaystyle 1) месяц — ( displaystyle 100cdot left( 1+frac{10}{100cdot 12} right))

Все ли тебе здесь понятно? Если нет, давай разбираться поэтапно.

Мы принесли в банк ( displaystyle 100) рублей. К концу месяца у нас на счете должна появиться сумма, состоящая из наших ( displaystyle 100) рублей плюс процентов по ним, то есть:

( displaystyle 100+100cdot x%) 

Согласен?

Мы можем вынести ( displaystyle 100) за скобку и тогда мы получим:

( displaystyle 100+100cdot x%=100cdot left( 1+x% right))

Согласись, эта формула уже больше похожа на написанную нами в начале. Осталось разобраться с процентами

В условии задачи нам сказано про ( displaystyle 10%) годовых. Как ты знаешь, мы не умножаем ( displaystyle 100) на ( displaystyle 10) – мы переводим проценты в десятичные дроби, то есть:

( displaystyle 10%=frac{10}{100})

Верно? Сейчас ты спросишь, а откуда взялось число ( displaystyle 12)? Очень просто!

Повторюсь: в условии задачи сказано про ГОДОВЫЕ проценты, начисление которых происходит ЕЖЕМЕСЯЧНО.

Как ты знаешь, в году ( displaystyle 12) месяцев, соответственно, банк будет начислять нам в месяц ( displaystyle 12) часть от годовых процентов:

( displaystyle 10% ежегодно =frac{10}{100cdot 12} ежемесячно)

Осознал? А теперь попробуй написать, как будет выглядеть эта часть формулы, если я скажу, что проценты начисляются ежедневно.

Справился? Давай сравним результаты:

( displaystyle 10% ежегодно =frac{10}{100cdot 365} ежедневно)

Молодец!

Вернемся к нашей задаче: напиши, сколько будет начислено на наш счет на второй месяц, с учетом, что проценты начисляются на накопленную сумму вклада.

Вот, что получилось у меня:

( displaystyle 100cdot left( 1+frac{10}{100cdot 12} right)cdot left( 1+frac{10}{100cdot 12} right))

Я думаю, что ты уже заметил закономерность и увидел во всем этом геометрическую прогрессию.

Напиши, чему будет равен ее ( displaystyle 12) член, или, иными словами, какую сумму денежных средств мы получим в конце ( displaystyle 12) месяца.

Сделал? Проверяем!

Еще один тип задач на сложные проценты (о прибыли)

Компания «Звезда» начала инвестировать в отрасль в 2000 году, имея капитал ( displaystyle 5000) долларов. Каждый год, начиная с 2001 года, она получает прибыль, которая составляет ( displaystyle 100%) от капитала предыдущего года.

Сколько прибыли получит компания «Звезда» по окончанию 2003 года, если прибыль из оборота не изымалась?

Думаю, ты уже знаешь, как и что считать, но на всякий случай распишу подробно:

( displaystyle {{b}_{1}}=5000) — капитал компании «Звезда» в 2000 году.
( displaystyle {{b}_{2}}=5000cdot left( 1+frac{100%}{100} right)=5000cdot left( 1+1 right)=5000cdot 2=10000) — капитал компании «Звезда» в 2001 году.
( displaystyle {{b}_{3}}=5000cdot left( 1+frac{100%}{100} right)cdot left( 1+frac{100%}{100} right)=5000cdot 4=20000) — капитал компании «Звезда» в 2002 году.
( displaystyle {{b}_{4}}=5000cdot left( 1+frac{100%}{100} right)cdot left( 1+frac{100%}{100} right)cdot left( 1+frac{100%}{100} right)=5000cdot 8=40000) — капитал компании «Звезда» в 2003 году.

Либо мы можем написать кратко:

( displaystyle {{b}_{n}}={{b}_{1}}cdot q{{ }^{n-1}})

Для нашего случая:

( displaystyle {{b}_{1}}=5000)

( displaystyle n=4) — 2000 год, 2001 год, 2002 год и 2003 год.
( displaystyle q =2) — увеличивается на 100%, то есть в 2 раза.

Соответственно:

( displaystyle {{b}_{2003 года}}=5000cdot 2{{ }^{4-1}}=5000cdot {{2}^{3}}=5000cdot 8=40000) рублей

Заметь, в данной задаче у нас нет деления ни на ( displaystyle 12), ни на ( displaystyle 365), так как процент дан ЕЖЕГОДНЫЙ и начисляется он ЕЖЕГОДНО.

То есть, читая задачу на сложные проценты, обрати внимание, какой процент дан, и в какой период он начисляется, и только потом приступай к вычислениям.

Теперь ты знаешь о геометрической прогрессии все.

Бонус: Вебинар из нашего курса по подготовке к ЕГЭ по математике

Экономические задачи на вклады очень часто требуют знания геометрической прогрессии.

Эти задачи требуют также очень подробного и чёткого описания решения.

По сути, мы составляем математическую модель какой-то жизненной ситуации (например, связанной с банковскими вкладами или кредитами), и важно научиться ничего не пропускать при описании этой модели: описывать словами все введённые обозначения, обосновывать уравнения, которые мы записываем, и всё в таком духе.

Если не написать эти объяснения, вы гарантированно получите 0 баллов даже за правильно найденный ответ!

В этом видео мы узнаем, как работают вклады, научимся решать и, главное, правильно оформлять решение таких задач.

ЕГЭ №17. Экономическая задача. Вклады

Понравилась статья? Поделить с друзьями:
  • Как найти точку если известно растояние
  • Как найти точку входа на бинарных опционах
  • Как составить текст для инстаграмма
  • Как найти через сколько минут встретятся
  • Как найти номер вхождения элемента массива