Как найти сумму целых решений уравнения

math4school.ru

Уравнения в целых числах

Немного теории

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

способ перебора вариантов;

применение алгоритма Евклида;

представление чисел в виде непрерывных (цепных) дробей;

разложения на множители;

решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

метод бесконечного спуска.

Задачи с решениями

1. Решить в целых числах уравнение x 2 – xy – 2y 2 = 7.

Запишем уравнение в виде (x – 2y)(x + y) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2y = 7, x + y = 1;

2) x – 2y = 1, x + y = 7;

3) x – 2y = –7, x + y = –1;

4) x – 2y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

2. Решить в целых числах уравнение:

а) 20х + 12у = 2013;

в) 201х – 1999у = 12.

а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

Ответ: решений нет.

б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

Поскольку числа 5 и 7 взаимно простые, то

Значит, общее решение:

х = 1 + 7k, у = 2 – 5k,

где k – произвольное целое число.

Ответ: (1+7k; 2–5k), где k – целое число.

в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел

x0 = 1273·12 = 15276, y0 = 128·12 = 1536

является решением уравнения 201х – 1999у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,

или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),

х = 1283 + 1999n, у = 129 + 201n, где n – целое число.

Ответ: (1283+1999n, 129+201n), где n – целое число.

3. Решить в целых числах уравнение:

а) x 3 + y 3 = 3333333;

б) x 3 + y 3 = 4(x 2 y + xy 2 + 1).

а) Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе «Делимость целых чисел и остатки»), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

б) Перепишем исходное уравнение в виде (x + y) 3 = 7(x 2 y + xy 2 ) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

а) в простых числах уравнение х 2 – 7х – 144 = у 2 – 25у;

б) в целых числах уравнение x + y = x 2 – xy + y 2 .

а) Решим данное уравнение как квадратное относительно переменной у. Получим

у = х + 9 или у = 16 – х.

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х имеем

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

б) Рассмотрим данное уравнение как квадратное уравнение относительно x:

x 2 – (y + 1)x + y 2 – y = 0.

Дискриминант этого уравнения равен –3y 2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x 2 + y 2 + z 2 = x 3 + y 3 + z 3 ?

Попробуем подбирать такие тройки, где у = –z. Тогда y 3 и z 3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид

Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n 2 +1. Подставляя в x 2 (x–1) = 2y 2 такое число, после несложных преобразований получаем:

y = xn = n(2n 2 +1) = 2n 3 +n.

Все тройки, полученные таким образом, имеют вид (2n 2 +1; 2n 3 +n; –2n 3 – n).

6. Найдите такие целые числа x, y, z, u, что x 2 + y 2 + z 2 + u 2 = 2xyzu.

Число x 2 + y 2 + z 2 + u 2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.

Если все четыре числа x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.

Если ровно два из чисел x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.

Поэтому все числа x, y, z, u чётны. Тогда можно записать, что

и исходное уравнение примет вид

Теперь заметим, что (2k + 1) 2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x1, y1, z1, u1 нечётны, то x1 2 + y1 2 + z1 2 + u1 2 не делится на 8. А если ровно два из этих чисел нечётно, то x1 2 + y1 2 + z1 2 + u1 2 не делится даже на 4. Значит,

и мы получаем уравнение

Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2 n при всех натуральных n, что возможно лишь при x = y = z = u = 0.

7. Докажите, что уравнение

(х – у) 3 + (y – z) 3 + (z – x) 3 = 30

не имеет решений в целых числах.

Воспользуемся следующим тождеством:

(х – у) 3 + (y – z) 3 + (z – x) 3 = 3(х – у)(y – z)(z – x).

Тогда исходное уравнение можно записать в виде

(х – у)(y – z)(z – x) = 10.

Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде

Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.

8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у 2 .

если х = 1, то у 2 = 1,

если х = 3, то у 2 = 9.

Этим случаям соответствуют следующие пары чисел:

Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как

5! + 6! + . . . + х! = 10n,

можем записать, что

1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.

Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.

Ответ: (1; 1), (1; –1), (3; 3), (3; –3).

9. Решите следующую систему уравнений в натуральных числах:

a 3 – b 3 – c 3 = 3abc, a 2 = 2(b + c).

3abc > 0, то a 3 > b 3 + c 3 ;

таким образом имеем

b 2 2 + х = у 4 + у 3 + у 2 + у.

Разложив на множители обе части данного уравнения, получим:

х(х + 1) = у(у + 1)(у 2 + 1),

х(х + 1) = (у 2 + у)(у 2 + 1)

Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:

Произведение (у 2 + у)(у 2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х5 = 5, х6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:

Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)

Задачи без решений

1. Решить в целых числах уравнение:

б) х 2 + у 2 = х + у + 2.

2. Решить в целых числах уравнение:

а) х 3 + 21у 2 + 5 = 0;

б) 15х 2 – 7у 2 = 9.

3. Решить в натуральных числах уравнение:

4. Доказать, что уравнение х 3 + 3у 3 + 9z 3 = 9xyz в рациональных числах имеет единственное решение

5. Доказать, что уравнение х 2 + 5 = у 3 в целых числах не имеет решений.

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №9. Решение уравнений в целых числах.

Перечень вопросов, рассматриваемых в теме

  1. понятие диофантовых уравнений;
  2. теоремы для решения уравнений в целых числах;
  3. основные методы решения уравнений в целых числах.

Глоссарий по теме

Диофантовыми уравнениями называются уравнения вида

Неопределенные уравнения – уравнения, содержащие более одного неизвестного. Под одним решением неопределенного уравнения понимается совокупность значений неизвестных, которая обращает данное уравнение в верное равенство.

Теорема 1. Если НОД(а, b) = d, то существуют такие целые числа х и у, что имеет место равенство ах + bу = d.

Теорема 2. Если уравнение ах + bу = 1, если НОД(а, b) = 1, достаточно представить число 1 в виде линейной комбинации чисел а и b.

Теорема 3. Если в уравнении ах + bу = с НОД(а, b) = d>1 и с не делится на d, то уравнение целых решений не имеет.

Теорема 4. Если в уравнении ах + bу = с НОД(а, b) = d>1 и с 1 и с не делится на d, то уравнение целых решений не имеет.

Для доказательства теоремы достаточно предположить противное.

Найти целое решение уравнения 16х — 34у = 7.

(16,34)=2; 7 не делится на 2, уравнение целых решений не имеет.

Теорема 4. Если в уравнении ах + bу = с НОД(а, b) = d>1 и с 2 + 23 = у 2

Перепишем уравнение в виде: у 2 — х 2 = 23, (у — х)(у + х) = 23

Так как х и у – целые числа и 23 – простое число, то возможны случаи:

; ; ; ;

Решая полученные системы, находим:

; ;;;

4. Выражение одной переменной через другую и выделение целой части дроби.

Решить уравнение в целых числах: х 2 + ху – у – 2 = 0.

Выразим из данного уравнения у через х:

Так как х, у – целые числа, то дробь должна быть целым числом.

Это возможно, если х – 1 =

; ;

; ;

5. Методы, основанные на выделении полного квадрата.

Найдите все целочисленные решения уравнения: х 2 — 6ху + 13у 2 = 29.

Преобразуем левую часть уравнения, выделив полные квадраты,

х 2 — 6ху + 13у 2 = (х 2 — 6ху + 9у 2 ) + 4у 2 = (х — 3у) 2 + (2у) 2 = 29, значит (2у) 2 29.

Получаем, что у может быть равен .

1. у = 0, (х — 0) 2 = 29. Не имеет решений в целых числах.

2. у = -1, (х + 3) 2 + 4 =29, (х + 3) 2 = 25, х + 3 = 5 или х + 3 = -5

3. у = 1, (х — 3) 2 +4 =29,

(х — 3) 2 =25, х – 3 = 5 или х – 3 = -5

4. у = -2, (х + 6) 2 + 16 = 29, (х + 6) 2 = 13. Нет решений в целых числах.

5. у=2, (х-6) 2 +16=29, (х-6) 2 =13. Нет решений в целых числах.

Ответ: (2; -1); (-8; -1); (8; 1); (-2; 1).

6. Решение уравнений с двумя переменными как квадратных

относительно одной из переменных.

Решить уравнение в целых числах: 5х 2 +5у 2 +8ху+2у-2х+2=0.

Рассмотрим уравнение как квадратное относительно х:

5х 2 + (8у — 2)х + 5у 2 + 2у + 2 = 0

D = (8у — 2) 2 — 4·5(5у 2 + 2у + 2) = 64у 2 — 32у + 4 = -100у 2 — 40у – 40= = -36(у 2 + 2у + 1) = -36(у + 1) 2

Для того, чтобы уравнение имело решения, необходимо, чтобы D = 0.

-36(у + 1) 2 = 0. Это возможно при у = -1, тогда х = 1.

7. Оценка выражений, входящих в уравнение.

Решить в целых числах уравнение:

(х 2 + 4)(у 2 + 1) = 8ху

Заметим, что если – решение уравнения, то – тоже решение.

И так как х = 0 и у = 0 не являются решением уравнения, то, разделив обе части уравнения на ху, получим:

,

Пусть х > 0, у > 0, тогда, согласно неравенству Коши,

,

тогда их произведение , значит,

Отсюда находим х = 2 и у = 1 – решение, тогда х = -2 и у = -1 – тоже решение.

8.Примеры уравнений второй степени с тремя неизвестными.

Рассмотрим уравнение второй степени с тремя неизвестными: х 2 + у 2 = z 2 .

Геометрически решение этого уравнения в целых числах можно истолковать как нахождение всех пифагоровых треугольников, т.е. прямоугольник треугольников, у которых и катеты х,у и гипотенуза z выражаются целыми числами.

По формуле х = uv, , где u и v – нечетные взаимно простые числа (u > v > 0) можно найти те решения уравнения х 2 + у 2 = z 2 , в которых числа х,у и z не имеют общих делителей (т.е. взаимно простые).

Для начальных значений u и v формулы приводят к следующим часто встречающимся равенствам:

3 2 + 4 2 = 5 2 (u = 1, v = 3), 5 2 + 12 2 = 13 2 (u = 1, v = 5), 15 2 + 8 2 = 17 2 (u = 3, v = 5)

Все остальные целые положительные решения этого уравнения получаются умножением решений, содержащихся в формулах, на произвольный общий множитель а.

Разбор решения заданий тренировочного модуля

№1. Тип задания: выбор элемента из выпадающего списка

Решите уравнение 9х+22у-1=0

Решение: Решим данное уравнение, воспользовавшись теоремой 2:

2. 1 = 9 — 4∙2 = 9 — (22 — 9∙2) ∙2 = 9∙5 + 22∙(-2),

т.е. х0= 5, у0= -2 — решение данного уравнения

№2. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.

Найдите целое решение уравнения 3х+9у=3

Решение: Решим данное уравнение: 3х+9у=3

Разделим обе части уравнения на 3, получим:

  1. 3 = 1 ∙ 2 + 1
  2. 1 = 3 — 1∙2, т.е. х0= 1, у0= 0 — решение данного уравнения

Профильный ЕГЭ по математике. Задание №19. Уравнения в целых числах.

Мы привыкли решать уравнения с одной переменной. А если переменных в одном уравнении целых две? А если 4? С такими ситуациями мы встречаемся, решая задачу 19 Профильного ЕГЭ по математике. И обычно нам помогает то, что эти переменные — целые.

Возьмем. нет, не реальную задачи 19. Возьмем такую, о которых пишут: «Она взорвала интернет».

А началось все с того, что один британский школьник лет 10-11 попросил маму помочь с домашним заданием. А мама не смогла. И папа тоже. И, уложив дите спать, родители отправились куда? — Правильно, в интернет! На форум для родителей. Но и там никто не смог решить задачу, только перессорились. И на других форумах тоже.

А вы справитесь с задачей, которая поставила в тупик столько взрослых людей?

1. На берегу стоят три маяка. Первый включается на три секунды, затем выключается на три секунды. Второй включается на четыре секунды и затем выключается на четыре секунды. Третий включается на пять секунд, затем выключается на пять секунд. Все три маяка начинают работать одновременно.

а) Через сколько минут после начала работы все три маяка снова одновременно включатся?

б) В какой момент времени все три маяка одновременно отключатся?

По условию, все три маяка включаются одновременно. Маяк может либо светить, либо нет. Нарисуем графики их работы:

а) В какие моменты включаются первый и второй маяки? Первый маяк включается через 6 секунд после начала работы, через 12, через секунд.

Второй маяк — через 8 секунд после начала работы, через — то есть через секунд.

Очевидно, что одновременное включение первого и второго маяков произойдет через 24 секунды после начала работы, поскольку 24 — это наименьшее общее кратное чисел 6 и 8 (то есть наименьшее число, которое делится на 6 и на 8).

Третий маяк включается через секунд после начала работы. Найдем наименьшее общее кратное чисел 6, 8 и 10, то есть наименьшее число, которое делится на 6, на 8 и на 10.

Поскольку , наименьшее общее кратное чисел 6, 8 и 10 должно делиться на , на 3 и на 5. Это число 120. Значит, через секунд после начала работы все три маяка включатся одновременно.

Можно сказать, что все три графика работы маяков — периодические функции, причем период для первого маяка равен 6, для второго 8, для третьего 10.

б) В какие же моменты одновременно отключаются все три маяка?

Первый маяк отключается через секунд после начала работы.

Второй маяк — через секунд после старта, а третий — через секунд после старта. Если существует такой момент, что все три маяка отключаются одновременно, то должны выполняться условия:

Эта система не имеет решений. В самом деле, величины и — четные. Тогда в первом уравнении в левой части — нечетная величина, а в правой — четная. Во втором уравнении левая часть четна, правая нечетная. Нет такого момента, когда все три маяка одновременно отключились!

Мы увидели один из принципов решения уравнений в целых числах. Если левая часть уравнения четна, то и правая должна быть четна. Если левая делится на 10, то и правая должна делиться на 10.

Следующая задача предлагалась когда-то на реальном ЕГЭ, часто встречалась в Демоверсиях ЕГЭ, а теперь появилась и в возможной демоверсии ОГЭ — которая пока называется «перспективной моделью измерительных материалов для государственной итоговой аттестации». Правда, в задаче для ОГЭ осталось два пункта из трех, а именно (а) и (в). Но мы решим задачу полностью.

2. На доске написано более 42, но менее 54 целых чисел. Среднее арифметическое этих чисел равно — 7, среднее арифметическое всех положительных из них равно 6, а среднее арифметическое всех отрицательных из них равно — 12.

а) Сколько чисел написано на доске?

б) Каких чисел больше: положительных или отрицательных?

в) Какое наибольшее количество положительных чисел может быть среди них?

Напомним, что среднее арифметическое нескольких чисел есть сумма этих чисел, делённая на их количество.

В условии сказано, что на доске написаны положительные и отрицательные числа. Есть ли среди этих чисел нули? — Да, могут быть и нули. Они не внесут вклад в сумму чисел, зато повлияют на их среднее арифметическое.

Пусть на доске написано чисел. Тогда их сумма: Обозначим: — количество положительных чисел, — количество отрицательных чисел, — количество нулей. Таким образом,

Пусть и — суммы положительных и отрицательных чисел соответственно. Имеем: , и так как , то:

а) Правая часть данного равенства делится на 6. Поскольку 6 и 7 взаимно просты, число n делится на 6. Между числами 42 и 54 есть только одно такое число:

б) Из равенства получаем после сокращения на 6:

Сложим полученные равенства: Так как 104 при делении на 3 дает остаток 2, число также даёт остаток 2: Отсюда: , или

Составляем разность: так что — отрицательных чисел написано больше.

в) Из равенства видим, что

Приведём пример с (тогда ). Пусть написано 12 чисел 6, 34 числа и два нуля. Этот набор удовлетворяет условию задачи: среднее арифметическое положительных чисел равно, очевидно, 6; среднее арифметическое отрицательных чисел равно , а среднее арифметическое всех чисел:

Следовательно, наибольшее возможное количество положительных чисел равно 12.

Видите, как из уравнения с тремя неизвестными мы получили всё. Как в сказке про суп из топора.

И еще одна задача. Сколько чисел на доске — не знаем. Есть одинаковые или все разные — не знаем. Переменных штук, то есть в 2 раза больше, чем самих чисел. И все-таки мы это решим!

3. (ЕГЭ-2015) На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 2970. В каждом числе поменяли местами первую и вторую цифры (например, число 16 заменили на число 61).

а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в три раза меньше, чем сумма исходных чисел.

б) Могла ли сумма получившихся чисел быть ровно в пять раз меньше, чем сумма исходных чисел?

в) Найдите наименьшее возможное значение суммы получившихся чисел

Двузначные числа на доске — это числа вида , где — первая цифра, — вторая.

§2.
РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА

1)
Квадратные уравнения.

,
.
(1)

Функция
,
где
,
называется квадратичной функцией.
График этой функции – парабола, координаты
вершины которой равны:
.
При

ветви параболы направлены вверх, а при

– вниз.


– дискриминант квадратного уравнения
(1).
При

уравнение (1) имеет два корня:
,
;
при

один корень (два равных корня)
,
а при

уравнение (1) корней не имеет.

Приведенное квадратное уравнение:

.
(2)
Теорема
Виета.

Если квадратное уравнение (2) имеет корни

и
,
то
.

Обратная
теорема.

Если числа

и

таковы, что
,
то они являются
корнями квадратного уравнения
.


Разложение
квадратного трехчлена на линейные
множители
:
если

и

корни квадратного уравнения (1), то

.

12

2)
Неравенства второй степени.

.
Случай
1.

.

Неравенство


решений
нет

решений нет

Случай
2
.
.

Неравенство

решений нет

решений нет


3)
Рациональные уравнения и неравенства.

Многочленом


ой степени ()
от переменной

называется выражение

,

где

– заданные действительные числа
,
причем

.
Многочленами
нулевой степени являются отличные от
нуля действительные числа. Число

единственный многочлен,

13

степень
которого не определена.

Уравнение
,
где

– многочлен
-ой
степени,
,
называется алгебраическим уравнением
-ой
степени.

Если

– корень многочлена
,
т.е.
,
то

без остатка делится на ():

,

где

многочлен степени
.
Многочлен

можно найти либо делением «уголком»
многочлена

на
(),
либо группировкой слагаемых многочлена

и выделением из них множителя
.


Основными методами решения уравнения
,
где


– многочлен степени

(,
являются метод разложения левой части
уравнения на множители и метод введения
новой переменной.
Уравнение вида
,
где

и

многочлены, называется рациональным.
Это уравнение равносильно системе

Рациональные неравенства – это
неравенства вида
,
где

и

многочлены. Основной метод решения
рациональных неравенств – метод
интервалов
.

Рассмотрим
сначала неравенство
.
Находим корни уравнения
.
Пусть

корни этого уравнения, расположенные
в порядке возрастания.

Числовая
прямая точками

разбивается на ин-

14

тервалы,
в каждом из которых функция

сохраняет знак.

Для
определения знаков значений функции в
полученных интервалах достаточно найти
знак значения функции в любой точке
соответствующего интервала.

Множеством
всех решений неравенства

будет объединение всех промежутков, в
которых функция

сохраняет отрицательный знак.

Имеют
место следующие соотношения:

,



Аналогично решаются неравенства вида
.

Пример 1.
Решить уравнение
.

Решение.
Перепишем уравнение в виде
.
Но

и
.
Поэтому получаем:

Квадратное
уравнение

корней не имеет
(т.к.).
Следовательно, исходному уравнению
удовлетворяет только значение
.

Ответ:
– 1.

15

Пример
2.
Найти сумму
корней уравнения:

.

Решение.
Так как

,
то исходное уравнение принимает вид:

.
(3)
Обозначим
.
Тогда уравнение (3) принимает вид:

Исходное
уравнение равносильно совокупности
уравнений:

Первое
уравнение имеет корни

, а второе уравнение корней не имеет (
).

.

Ответ:
– 5.

Пример
3.
Решить
уравнение

.
(4)
Решение.
Квадратный трехчлен

обращается в нуль при

и
;
поэтому
.
(4)

Ответ:
2.

16

Пример
4.
Найти сумму
корней уравнения

.
(5)
Решение.
ОДЗ уравнения (5):
.

При

числитель дроби, стоящей в левой части
уравнения, обращается в
:

.
Следовательно, многочлен

без остатка делится на
:


.

Уравнение
(5) можно представить в виде:

.

При

это уравнение равносильно уравнению
.
Корни последнего уравнения:
.

Ответ:
1.


Пример 5.

Найти сумму целых решений неравенства

.
(6)

17

Решение.
(6)
.

Решениями
последнего

неравенства являются

все числа из множества

Целые
решения неравенства (6):
;

;


Ответ:


Пример
6.
Найти
наименьшее целое решение неравенства:

.
(7)

Решение.

(7)


.

Применяя
метод интервалов,
получим множество
решений
исходного неравенства:
.

Наименьшее
целое решение:
.

Ответ:
0.

Заметим,
что в процессе решения предыдущей задачи
может возникнуть желание упростить
неравенство

,
(8)
сократив числитель и
знаменатель дроби на
.
Такое уп-

18

рощение,
сделанное без всяких ограничений,
приведет к ошибке. Неравенство

неравносильно неравенству (8), так как
число

входит в множество его решений, не
являясь в то же время решением неравенства
(8).

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО
РЕШЕНИЯ

1.
Найти сумму
корней уравнения:
а)
.
(Ответ:
0)

б)
.
(Ответ:
)

2.
Решить уравнение:
а)
.
(Ответ:
–1)

б)
.
(Ответ:
–1)

в)
.
(Ответ:
2)

г)
.
(Ответ:
–8; 4)

д)
.
(Ответ:
–2)

е)
.
(Ответ:
–0,75)

ж)
.
(Ответ:
1)

19

3.
Найти меньший корень уравнения:

а)
.
(Ответ:
– 4)

б)
.
(Ответ:
– 5)

в)
.
(Ответ:
0,5)

г)

.
(Ответ:
– 10)

4.
Найти
наименьшее целое значение
,
удовлетворяющее

неравенству:

а)
.
(Ответ:
– 3)

б)
.
(Ответ:
2)

в)
.
(Ответ:
– 10)

г)
.
(Ответ:
2 )

д)
.
(Ответ:
3 )

е)

.
(Ответ:
– 1)

ж)
.
(Ответ:
8 )

5.
Найти сумму целых решений неравенства:

.
(Ответ:
0 )

20

6.
Найти сумму целых решений неравенства,
принадлежащих
отрезку
:

а)
.
(Ответ:
– 48)

б)
.
(Ответ:
3)

в)
.
(Ответ:
460)

г)
.
(Ответ:
– 440)

21

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Уравнения в целых числах – уравнения с двумя и более неизвестными переменными и целыми коэффициентами. Решениями таких уравнений являются целые числа. Также такие уравнения называются диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который изучал такие уравнения еще до нашей эры.

При решении уравнений в целых и натуральных числах можно выделить следующие способы.

1 способ. Метод перебора вариантов.

Решим уравнение  $ (x-2)(y+3)=4 $  в целых числах.

Так как x и у целые числа, совершим перебор вариантов:

$ {x-2=1;; y+3=4rightarrow;x=3;;y=1\ x-2=4;; y+3=1rightarrow;x=6;;y=-2\ x-2=-1;; y+3=-4rightarrow;x=1;;y=-7\ x-2=-4;; y+3=-1rightarrow;x=-2;;y=-4\ x-2=2;; y+3=2rightarrow;x=4;;y=-1\ x-2=-2;; y+3=-2rightarrow;x=0;;y=-5\} $

Ответ: (3; 1), (6; -2), (1; -7), (-2; -4), (4; -1), (0; -5).

Решим уравнение 10х + 10у = 2019 в целых числах.

Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

Ответ: решений нет.

Пусть нужно решить уравнение в целых числах:  $ 5x+4y=22. $

Методом перебора находим решение  $ x_1=2;;y_1=3. $

Получаем систему уравнений:

$ {begin{cases}5x=4y=22\5cdot2=4cdot3=22end{cases}\ 5(x-2)=4(y-3)=0\ 5(x-2)=-4(y-3)} $

$ x-2=frac{-4(y-3)}{5} $

Из полученного равенства видно, что число (х – 2) будет целым тогда и только тогда, когда (у – 3) делится на 5, т.е. у – 3 = 5n, где n какое-нибудь целое число.

Имеем:

$ { y=3+5n\ x-2=-4cdotfrac{5n}{5}=-4n\ x=2-4n} $

Тем самым все целые решения исходного уравнения можно записать в таком виде:

$ (2-4n;;3=5n),; где; n in Z. $

Ответ:  $ (2-4n;;3=5n),; где; n in Z. $

2 способ. Алгоритм Евклида

Пусть нужно решить уравнение в целых числах:  $ 5x+7y=6. $

Сделаем это с помощью Алгоритма Евклида. Ищем НОД чисел 5 и 7 с помощью него:

НОД (5, 7) = НОД (5, 7-5) = НОД (5, 2) = НОД (5 — 2∙2, 2) = НОД (1, 2) = 1

Запишем этот процесс в обратном порядке:

$ 1=2-1=2-(5-2cdot2)=2cdot3-5cdot1=(7-5)cdot3-5cdot1=7cdot3-5cdot4. $

То есть:

$ 1=5cdot(-4)+7cdot3 $

Тогда:

$ { 1cdot6=5cdot(-4)cdot6+7cdot3cdot6\ 6=5cdot(-24)+7cdot18\ 6=5x+7y} $

Тогда  $ { x=-24 ;и ; y=18} $  является решением уравнения.

Общее решение записывается в виде:

$ { x=-24+7n; ; y=18+5n,} $  где n – любое целое число.

Выполним проверку:

$ { 5(-24+7n)+7(18+5n)=6\ -120+35n+126+35n=6\ 70n=0} $

$ { n} $  – любое целое.

Верно.

Это не всевозможные способы решения. Зачастую для решения диофантовых уравнений требуются более тонкие рассуждения, связанные с делимостью, перебором остатков, оценками частей уравнения, тождественными преобразованиями и т.п.

Пример.

Решим уравнение:

$ 3^{x}+4^{y}=5^{z} $

Разложить на множители и выразить переменную мы здесь не можем. Воспользуемся методом перебора остатков.

Если левая часть уравнения в целых числах кратна какому-то числу, то и другая обязательно должна быть кратна этому же числу. Отсюда следует, что и остатки от деления обеих частей уравнения на одно и то же число будут давать одинаковые остатки.

Будем делать выводы о делимости одной части уравнения на какое-либо число (или смотреть, какой остаток от деления при этом получается) и проверять, при каких значениях переменных вторая часть уравнения также делится на это число (либо даёт такой же остаток).

Левая часть кратна 5. И остатки от деления на 5 у обеих частей также будут равны.

Про пятёрку уже сказали, что правая часть делится на неё без остатка, значит и левая тоже должна делиться.

Рассмотрим остатки от деления на 4.

 Z   $ 5^{z} $  Остаток при делении на 4
 1  5  1
 2  25  1
 3  125  1
 4  625  1

Видим простую закономерность, что 5 в любой степени при делении на 4 будет давать остаток 1.

Теперь левая часть: будет делиться на 4 без остатка.

Рассмотрим остатки от деления на 4 числа  $ 3^{x} $

 Z   $ 3^{x} $  Остаток при делении на 4
 1  3  3
 2  9  1
 3  27  3
 4  81  1
 5  243  3

И так далее. Закономерность: при чётных х остаток 1, при нечётных остаток 3.

Отсюда делаем вывод, что х — число чётное, значит, мы можем представить его как х = 2n.

Теперь рассмотрим остатки при делении обеих частей на 3.

Правая часть:

 Z   $ 5^{z} $  Остаток при делении на 3
 1  5  2
 2  25  1
 3  125  2
 4  625  1

И так далее. Видим закономерность, что при чётных z остаток равен 1, при нечетных z остаток равен 2.

Рассмотрим левую часть. Число  $ 3^{x} $  даёт остаток 0 при делении на 3.

Рассмотрим остатки от деления на 3 числа  $ 4^{y} $

 Z   $ 4^{y} $  Остаток при делении на 3
 1  4  1
 2  16  1
 3  64  1
 4  256  1
 5  1024  1

Получается, что левая часть при делении на 3 может давать только остаток 1. Значит, и правая тоже. Это происходит при чётных z.

Вернёмся к нашему уравнению  $ 3^{x}+4^{y}=5^{z} $

Рассмотрев все остатки от деления, мы делаем выводы, что х и z — чётные числа. Тогда х = 2n, z = 2m, где m, n натуральные. Подставим в уравнение:

$ 3^{2n}+4^{y}=5^{2m} $ , заметим также, что  $ 4^{y}=2^{2y} $

Теперь мы можем разложить на множители, используя формулу разности квадратов:

$ 2^{2y}=5^{2m}-3^{2n} $

$ (5^{m}-3^{n})(5^{m}+3^{n})=2^{2y} $ . Получается, что обе скобки должны быть степенями двойки. Мы не можем сделать никаких обоснованных выводов. Наша группировка неудачная. Попробуем иначе:

$ { 5^{2m}-2^{2y}=3^{2n}\ (5^{m}-2^{y})(5^{m}+2^{y})=3^{2n}} $

Теперь у нас обе скобки являются произведением троек. Рассмотрим такую ситуацию,

$ acdot b=3^{2n} $ , это означает, что и а, и b кратны 3. Либо одно из чисел кратно 3, а другое равно 1.

Рассмотрим случай, когда и а, и b кратны трём. Вспомним основные свойства делимости.

Ключевым признаком здесь будет второй: в нашем случае разность a-b также будет делиться на 3.

Рассмотрим разность скобок:

$ 5^{m}+2^{y}-(5^{m}-2^{y})=2cdot 2^{y} $  — это число никогда не будет кратно 3. Значит, в нашем произведении один из множителей равен 1, а другой равен 32n. Так как  $ 5^{m}+2^{y}> 1 $ ,

$ 5^{m}-2^{y}=1,5^{m}+2^{y})=3^{2n} $ Итак, мы с вами уже решаем немного другое уравнение, с переменными m и n, которые зависят от х и у. И пришли к выводу, что  $ 5^{m}+2^{y}=1 $

 m    $ 5^{m} $  y    $ 2^{y} $
 0  1  0  1
 1  5  1  2
 2  25  2  4
 3  125  3  8

Эта таблица показывает, что  $ 5^{m}+2^{y}=1 $  только в одном случае при m = 1, y = 2. При их увеличении разница между и будет всё больше, поэтому это единственное решение.

Тогда z = 2m = 2, x = 2.

Ответ: (2, 2, 2)

Что значит найдите сумму целых решений неравенства

Обновлено 5 марта, 2022

Сумма целых решений неравенства

Нужно найти сумму целых решений неравенства , удовлетворяющих условию x >= -1

Не пойму с чего начать. И не пойму как выразить x 🙁

Допустим знак корня распространяется на оба множителя
Замена 7–3x=u
√((u+2)(u–2)) ≥ 0
(u+2)(u–2) ≥ 0
u ≤ –2 ∨ u ≥ 2
7–3x ≤ –2 ∨ 7–3x ≥ 2
–3x ≤ –9 ∨ –3x ≥ –5
x ≥ 3 ∨ x ≤ 5/3
Если добавить условие x ≥ -1, то решение будет составлять множество [-1;5/3]∪[3;+∞), в котором бесконечно много целых решений.
При таком условии вопрос некорректен.

Значит имелось в виду, что знак корня распространяется только на первый множитель
√(u+2) (u-2) ≥ 0
число под корнем должно быть неотрицательным
второй множитель может быть отрицательным, только если первый равен нулю
u+2 ≥ 0 ∧ ((u–2) ≥ 0 ∨ u+2 = 0)
u ≥ –2 ∧ (u ≥ 2 ∨ u = –2)
(u ≥ –2 ∧ u = –2) ∨ (u ≥ –2 ∧ u ≥ 2)
u=–2 ∨ u ≥ 2
7–3x = –2 ∨ 7–3x ≥ 2
–3x=–9 ∨ –3x ≥ –5
x=3 ∨ x ≤ 5/3
с добавлением условия x≥–1 решение будет составлять множество [–1;5/3]∪ <3>
целые решения это числа –1,0,1,3
их сумма равна 2
!поправочка, их сумма равна 3, конечно

Выпишите ОДЗ: x ≤ 3; Затем методом интервалов найдите решения. Должно получиться так:

Сумма целых решений, удовлетворяющих условию: -1 + 0 + 1 + 3 = 3

Источник

если сделать замену: х²-8х+18=t, то можно увидеть, что левая часть примет вид: t²-8t+18

то есть структура левой части не поменялась, поэтому данное уравнение относится к виду:

 f(f(x))=x

Для решения таких уравнений, есть теорема:

Уравнение f(f(x))=x, имеет такие же корни, что и уравнение f(x)=x

поэтому решим сначала уравнение:

 x^2-8x+18=x \ x^2-9x+18=0 \ \ x_1=3 \ x_2=6\ \

Теперь раскроем скобки исходного уравнения:

 (x^2-8x+18)^2-8(x^2-8x+18)+18=x \ (x^2-8x+18)(x^2-8x+18)-8x^2+64x-144+18=x \ x^4-8x^3+18x^2-8x^3+64x^2-144x+18x^2-144x+324-8x^2+\+63x-144+18=0 \ \ x^4-16x^3+92x^2-225x+198=0

и разделим столбиком на:

 (x-3)(x-6)=x^2-6x-3x+18=x^2-9x+18

(см. рисунок)

получается

 x^2-7x+11=0 \ \ D=49-44=5 \ \ x_{3,4}=frac{7^+_-sqrt{5}}{2}

Таким образом, корни уравнения:

 (x^2-8x+18)^2-8(x^2-8x+18)+18=x

равны

 x_1=3 \ x_2=6 \ x_3=frac{7-sqrt{5}}{2}  \ x_4=frac{7+sqrt{5}}{2}

Сумма целых решений:

3+6=9

Ответ: 9

Понравилась статья? Поделить с друзьями:
  • Составить предложение со словом согласованно как наречие
  • Киевские девушки как найти
  • Как найти сотрудников летом
  • Финализированный диск cd rw как исправить
  • Как составить приказ образец в доу