Как найти сумму элементов геометрической прогрессии

запиши периодическую дробь (0,(8)) обыкновенной дробью.

Решение.

Достаточно очевидно, что (0,(8)=0,8+0,08+0,008+…)  Слагаемые в правой части равенства образуют бесконечно убывающую геометрическую прогрессию, первый член которой равен (0,8), знаменатель равен (0,1). Найдём сумму по  формуле:

S=b11−q=0,81−0,1

.

Осталось выполнить нужные действия с десятичными дробями:

0,81−0,1=0,80,9=89

.

Таким образом, бесконечная периодическая десятичная дробь (0,(8)) обращается в обыкновенную дробь (8/9).

Ответ: (0,(8)=8/9).

Геометрическая прогрессия

  1. Понятие геометрической прогрессии
  2. Формула n-го члена геометрической прогрессии
  3. Свойства геометрической прогрессии
  4. Сумма первых n членов геометрической прогрессии
  5. Примеры

п.1. Понятие геометрической прогрессии

Геометрической прогрессией называют числовую последовательность, каждый член которой bn, начиная со второго, равен произведению предыдущего члена bn-1 и некоторого постоянного числа q: $$ mathrm{ b_n=b_{n-1}q, ninmathbb{N}, n ge 2, qne 0, qne 1, b_1ne 0 } $$ Число q называют знаменателем геометрической прогрессии.

Например:
1. Последовательность 1, 3, 9, 27, … является геометрической прогрессией с b1 = 1, q = 3.

2. Последовательность (mathrm{9, -3, 1, -frac13, frac19,…}) является геометрической прогрессией с b1 = 9, (mathrm{q=-frac13}).

п.2. Формула n-го члена геометрической прогрессии

По определению геометрической прогрессии мы получаем рекуррентную формулу для n-го члена: bn = bn-1q. Из неё можно вывести аналитическую формулу:

b2 = b1q,   b3 = b2q = (b1q)q = b1q2,   b4 = b3q = (b1q2)q = b1q3,…

Получаем:

bn = b1qn-1

Например:
Найдём b5, если известно, что (mathrm{b_1=frac12, q=2}).
По формуле n-го члена получаем: (mathrm{b_5=b_1q^4=frac12cdot 2^4=2^3=8})

п.3. Свойства геометрической прогрессии

Свойство 1. Экспоненциальный рост/падение

Геометрическая прогрессия с положительными первым членом и знаменателем b1 > 0, q > 0 является показательной функцией вида f(n) = kqn: $$ mathrm{ b_n=frac{b_1}{q}q^n } $$

Свойство 1

Свойство 1

При b1 > 0, q > 1 прогрессия экпоненциально растёт

При b1 > 0, 0 < q < 1 прогрессия экпоненциально падает

Свойство 2. Признак геометрической прогрессии

Для того чтобы числовая последовательность была геометрической прогрессией необходимо и достаточно, чтобы каждый её член, начиная со второго, был средним геометрическим предыдущего и последующего членов: $$ mathrm{ left{b_nright} — text{геометрическая прогрессия} Leftrightarrow b_n=sqrt{b_{n-1}b_{n+1}}, ninmathbb{N}, n geq 2 } $$ Следствие: аждый член прогрессии является средним геометрическим двух равноудалённых от него членов: $$ mathrm{ b_n=sqrt{b_{n-k}b_{n+k}}, ninmathbb{N}, kinmathbb{N}, n geq k+1 } $$

Например:
Найдём b9, если известно, что (mathrm{b_7=frac{1}{16}, b_{11}=4})
По следствию из признака геометрической прогрессии: (mathrm{b_9=sqrt{b_7b_{11}}=sqrt{frac{1}{16}cdot 4}=frac12})

Свойство 3. Равенство сумм индексов

Если {bn} – геометрическая прогрессия, то из равенства сумм индексов следует равенство произведений членов: $$ mathrm{ m+k=p+q Rightarrow b_mb_k=b_pb_q } $$ Следствие: произведение членов, равноудалённых от концов прогрессии, является постоянной величиной: $$ mathrm{ b_1b_n = b_2b_{n-1}=b_3b_{n-2}=… } $$

Например:
Найдём b6, если известно, что b2 = 5, b4 = 10, b8 = 40
По равенству сумм индексов b2b8 = b4b6
Откуда (mathrm{b_6=frac{b_2b_8}{b_4}=frac{5cdot 40}{10}=20})

п.4. Сумма первых n членов геометрической прогрессии

Сумма первых n членов геометрической прогрессии равна $$mathrm{ S_n=frac{b_nq-b_1}{q-1}, qne 1} $$

Если учесть, что bn = b1qn-1, получаем ещё одну формулу для суммы: $$mathrm{ S_n=b_1frac{q^n-1}{q-1}, qne 1} $$

Например:
Найдём сумму первых 10 степеней двойки: 2 + 22 + 23 + … + 210
В этом случае b1 = 2, q = 2, n = 10
Получаем: (mathrm{ S_{10}=2cdot frac{2^{10}-1}{2-1}=2cdot (1024-1)=2046})

п.5. Примеры

Пример 1. Найдите знаменатель геометрической прогрессии и сумму первых 10 членов, если:
а) b5 = 9, b8 = 243
Найдём отношение $$ mathrm{ frac{b_8}{b_5}=frac{b_1cdot q^7}{b_1cdot q^4}=q^3, frac{b_8}{b_5}=frac{243}{9}=27=3^3, q^3=3^3Rightarrow q = 3 } $$ Найдём 1-й член: $$ mathrm{ b_1=frac{b_5}{q^4}=frac{9}{3^4}=frac{3^2}{3^4}=frac{1}{3^2}=frac19 } $$ Сумма: $$ mathrm{ S_{10}=b_1frac{q^{10}-1}{q-1}=frac{3^{10}-1}{9cdot 2}=frac{29524}{9}=3280frac49 } $$ Ответ: q = 3, S10 = (mathrm{3280frac49})

б) b1 = 3, bn = 96, Sn = 189
По формуле суммы: $$ mathrm{ S_{n}=frac{b_nq-b_1}{q-1}Rightarrow 189 =frac{96q-3}{q-1}Rightarrow 189(q-1)=96q-3Rightarrow 93q=186Rightarrow q = 2 } $$ Сумма: $$ mathrm{ S_{10}=b_1frac{q^{10}-1}{q-1}=3cdot frac{2^{10}-1}{2-1}=3cdot 1023=3069 } $$ Ответ: q = 2, S10 = 3069

Пример 2. Между числами (mathrm{40frac12 text{и} 5frac13}) вставьте такие четыре числа, чтобы они вместе с данными числами образовали геометрическую прогрессию.
По условию (mathrm{b_1=40frac12, b_6=5frac13}) $$ mathrm{ frac{b_6}{b_1}=q^5, frac{b_6}{b_1}=5frac13 : 40frac12=frac{16}{3} : frac{81}{2}=frac{16}{3} cdot frac{2}{81}=frac{32}{243}=frac{2^5}{3^5}=left(frac23right)^5 } $$ Знаменатель (mathrm{q=frac23})
Находим промежуточные члены прогрессии: begin{gather*} mathrm{ b_2=b_1q=40frac12cdotfrac23=frac{81}{2}cdot frac23=27, b_3=b_2q=27cdotfrac23=18, }\ mathrm{ b_4=b_3q=18cdotfrac23=12, b_5=b_4q=12cdotfrac23=8 } end{gather*} Ответ: 27, 18, 12 и 8

Пример 3. Найдите первый и последний члены геометрической прогрессии, если: $$ left{ begin{array}{ l } mathrm{b_4-b_2=0,6} & \ mathrm{b_5-b_3=1,2} & \ mathrm{S_n=12,7} & end{array}right. $$ Заметим, что b4=b2q2,   b5=b3q2. Для первых двух уравнений получаем: $$ left{ begin{array}{ l } mathrm{b_2q^2-b_2=0,6} & \ mathrm{b_3q^2-b-3=1,2} & end{array}right. Rightarrow left{ begin{array}{ l } mathrm{b_2(q^2-1)=0,6} & \ mathrm{b_3(q^2-1)=1,2} & end{array}right. $$ Делим второе уравнение на первое: $$ mathrm{ frac{b_3(q^2-1)}{b_2(q^2-1)}=frac{1,2}{0,6}Rightarrowfrac{b_3}{b_2}=q=2 } $$ Подставляем найденное значение знаменателя прогрессии в первое уравнение: $$ mathrm{ b_2(2^2-1)=0,6 Rightarrow b_2=frac{0,6}{3}=0,2 Rightarrow b_1=frac{b_2}{q}=frac{0,2}{2}=0,1 } $$ Для третьего уравнения можем записать: begin{gather*} mathrm{ S_n=b_1frac{q^n-1}{q-1}=0,1cdotfrac{2^n-1}{2-1}=frac{2^n-1}{10}=12,7 Rightarrow 2^n-1=127 Rightarrow }\ mathrm{ Rightarrow 2^n=128=2^7 Rightarrow n=7 } end{gather*} 7-й член b7 = b1q6 = 0,1 · 26 = 6,4
Ответ: b1 = 0,1;   b7 = 6,4

Пример 4. В геометрической прогрессии, все члены которой положительны, сумма первого и второго членов равна 48, а сумма третьего и четвёртого членов равна 12. Найдите значение n, при котором Sn = 63. $$ text{По условию} left{ begin{array}{ l } mathrm{b_1+b_2=48} & \ mathrm{b_3+b_4=12} & \ mathrm{S_n=63} & end{array}right. $$ Заметим, что b3 = b1q2,   b_4=b_2q2. Второе уравнение можно переписать в виде: $$ mathrm{ b_3+b_4=b_1q^2+b2q^2=underbrace{(b_1+b_2)}_{=48} q^2=12 Rightarrow q^2=frac{12}{48}=frac14 Rightarrow q=frac12 } $$ Берём положительное значение q, т.к. по условию все члены положительны.
Из первого уравнения $$ mathrm{ b_1+b_2=b_1(1+q)=48 Rightarrow b_1=frac{48}{1+frac12}=48cdotfrac23=32 } $$ Для третьего уравнения можем записать: begin{gather*} mathrm{ S_n=b_1frac{q^n-1}{q-1}=b_1frac{1-q^n}{1-q}=32cdotfrac{1-frac{1}{2^n}}{1-frac12}=64left(1-frac{1}{2^n}right)=63 }\ mathrm{ 64-frac{64}{2^n}=63 Rightarrow 1=frac{2^6}{2^n} Rightarrow n=6 } end{gather*} Ответ: 6

Пример 5. Бактерия, попав в организм, делится надвое каждые 20 мин. Сколько бактерий будет в организме через сутки?
Сутки – это 24 · 60 = 1440 мин, или n = 1440 : 20 = 72 цикла деления.
По условию необходимо найти

N = N0 · 2n,   где N0 = 1
N = 272 = 4 722 366 482 869 645 213 696 ≈ 4,7 · 1021

Ответ: 4,7 · 1021 бактерий

Определение

Геометрическая прогрессия — числовая последовательность, в которой каждый следующий член отличается от предыдущего в определенное количество раз. Частное двух соседних элементов геометрической прогрессии постоянно.

Формула n-ого члена геометрической прогрессии

    [b_2=b_1 cdot q]

    [b_3=b_2 cdot q=b_1 cdot q cdot q=b_1 cdot q^2]

    [ldots]

    [b_n=b_1cdot q^{n-1}]

Пример 1. Найдите знаменатель геометрической прогрессии, если третий элемент геометрической прогрессии равен 28, а 6-ый — 224.

Решение.

Третий элемент прогрессии равен b_3=b_1 cdot q^2, а шестой элемент прогрессии — b_{6}=b_1 cdot q^5. Сложим данные равенства.

Получим:

    [frac{b_{6}}{b_3}=frac{q^5}{q^2};]

    [q=sqrt[3]{frac{224}{28}};]

    [q=sqrt[3]{8};]

    [q=2.]

Ответ: 2.

Сумма геометрической прогрессии

Запишем сумму n элементов геометрической прогрессии:  

    [S_n=b_1+b_2+b_3+ldots+b_n=b_1+b_1q+b_1q^2+ldots+b_1q^{n-1}.]

Прибавим к левой и правой части равенства  b_1q^n.

Получим:

    [S_n+b_1q^n=b_1+b_1q+b_1q^2+ldots+b_1q^{n-1}+b_1q^n=b_1+q cdot S_n]

    [S_n(1-q)=b_1-b_1q^n]

S_n=b_1frac{1-q^n}{1-q}, если q neq 1.

Если q=1, то S_n=b_1 cdot n.

Пример 2. Найдите сумму чисел frac{1}{2}+frac{1}{4}+frac{1}{8}+frac{1}{16}+frac{1}{32}.

Решение.

frac{1}{2}+frac{1}{4}+frac{1}{8}+frac{1}{16}+frac{1}{32}=frac{1}{2}cdot frac{1-{left ( frac{1}{2}right )}^5}{1-frac{1}{2}}=1-frac{1}{32}=frac{31}{32}.

Ответ: frac{31}{32}.

Бесконечно убывающей геометрической прогрессией называется бесконечная геометрическая прогрессия, знаменатель которой удовлетворяет условию |q|<1.

При неограниченном возрастании n сумма S_n=b_1frac{1-q^n}{1-q}, первых n членов бесконечно убывающей геометрической прогрессии стремится к числу S=frac{b_1}{1-q}, которое называется суммой бесконечно убывающей геометрической прогрессии.

Пример 3. Переведите бесконечную периодическую дробь 0,(8) в обыкновенную дробь.

Решение.

0,(8)=frac{8}{10}+frac{8}{100}+frac{8}{1000}+frac{8}{10000}+ldots=frac{0,8}{1-frac{1}{10}}=frac{0,8}{0,9}=frac{8}{9}

Ответ:frac{8}{9}.

Характеристическое свойство геометрической прогрессии

    [b_n^2=b_{n-1} cdot b_{n+1}]

Пример 4. Выписано несколько последовательных членов геометрической прогрессии:

    [ldots;189; x; 21; 7; ldots .]

Найдите x.

Решение.

    [x^2=189 cdot 21]

    [x^2=13969]

x=63, так как в данной геометрической прогрессии x>0.

Ответ: 63.

Определение

Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

Другими словами, последовательность (bn) – геометрическая последовательность, если для натурального n выполняются условия:

bn+1= bn×q,

где q некоторое число, которое называется знаменатель прогрессии, и bn≠0

Примером такой последовательности может быть ряд чисел 2; 10; 50; 250;…., откуда видно, что каждое последующее больше предыдущего в пять раз, значит, каждый член равен предыдущему, умноженному на одно и то же число 5. Или, например, ряд чисел 20; -2; 0,2; -0,02……, где видно, что каждое последующее умножали на одно и то же число (-0,1).

Так как по определению геометрической прогрессии мы имеем одно и то же число, то это и есть число q. Оно называется «знаменатель» геометрической прогрессии. Он находится путем деления соседних членов – последующего на предыдущий, то есть q=bn+1bn. Знаменатель не может быть равным нулю!

Для того чтобы задать геометрическую прогрессию, надо знать ее первый член и знаменатель. Например, если b1=4, q=3, то получим прогрессию: 4; 12; 36; ….и так далее. Ну, а зная первый член и знаменатель, можно найти любой член геометрической прогрессии: b2=b1q; b3=(b1q)q=b1q2; b4==((b1q)q)q=b1q3. Так можно продолжать и дальше, но из этих записей видно, что можно найти n-ый член геометрической последовательности, если умножить первый член на знаменатель, степень которого на 1 меньше порядкового номера искомого члена, то есть bn=b1 qn1 . Мы получили формулу n-ого члена геометрической прогрессии.

Формула n-ого члена геометрической прогрессии

bn=b1 ×qn1

Рассмотри на примерах применение формулы bn=b1 qn1 для указанного члена геометрической прогрессии.

Пример №1. Найти четвертый член геометрической прогрессии, если известно, что b1=6, q=3. Составляем формулу для b4:

b4=b1 q41=b1 q3

Подставляем в формулу значения, указанные в задании и вычисляем результат: b4=6×33=162.

Найти шестой член геометрической прогрессии 2; -6;……. Здесь для нахождения b6 надо знать знаменатель q. Для его нахождения надо -6 разделить на 2, получим -3, то есть q=-3. Теперь составляем формулу для b6, подставляем значения и вычисляем ответ:

b6=b1 q61=b1 q5=2×(3)5=486

Свойство геометрической прогрессии

Квадрат любого члена геометрической прогрессии, начиная со второго, равен произведению предыдущего и последующего ее членов. Формула:

b2n=bn1×bn+1

Верным является и утверждение, обратное данному: если в последовательности чисел, отличных от нуля, квадрат каждого члена, начиная со второго, равен произведению предыдущего и последующего членов, то эта последовательность чисел является геометрической прогрессией.

Другими словами, с помощью данной формулы можно найти неизвестный член геометрической прогрессии, соседние члены которого известны. Рассмотрим применение данного свойства на примерах.

Пример №2. Найти b5, если задана геометрическая прогрессия, в которой b4=32, b6=128. Составляем формулу, подставляем в нее значения и вычисляем:

b25=b51×b5+1=b4 ×b6 =32×128=4096

Этим действием мы нашли квадрат пятого члена геометрической прогрессии, поэтому извлекаем квадратный корень из числа 4096 для нахождения значения b5: b5=4096=64

Найти у, если дана геометрическая прогрессия …..24; у; 96. Видим, что у находится между соседними известными числами 24 и 96. Поэтому, следуя свойству, умножаем данные числа и извлекаем квадратный корень из полученного числа: у=24×96=2304=48.

Формула суммы n первых членов геометрической прогрессии

Формула суммы членов геометрической прогрессии с известными членами

Sn=bnqb1q1 , где q1

Для нахождения суммы по данной формуле нужно знать первый и последний член геометрической прогрессии, а также ее знаменатель.

Также есть вторая формула, по которой можно находить сумму нескольких первых членов прогрессии, зная только первый ее член и знаменатель:

Формула суммы членов геометрической прогрессии с известным первым членом и знаменателем

Sn=b1(qn1)q1, где q1

Рассмотрим применение данных формул на примере, решив его двумя способами.

Пример №3. Найти сумму пяти первых членов геометрической прогрессии, если известно, что b1=2; b5=162; q=-3.

Способ №1 (первая формула). Составим формулу для нахождения S5:

S5=b5qb1q1

Подставим значения b1=2; b5=162 и найдем результат:

S5=162(3)231=48624=4884=122

Способ №2 (вторая формула).

 Sn=b1(qn1)q1

Для решения нам нужен первый член и знаменатель: b1=2; q=-3. Составим формулу:

S5=b1(q51)q1

Подставим в формулу данные значения и вычислим сумму:

S5=2((3)51)31=2(2431)4=4884=122

Таким образом, мы увидели, что у нас получился один и тот же результат 122 в обоих способах решения. Выбор формулы зависит от данных в условии задачи.

Задание OM1420222

У Кати есть попрыгунчик (каучуковый шарик). Она со всей силы бросила его об асфальт. После первого отскока попрыгунчик подлетел на высоту 400 см, а после каждого следующего отскока от асфальта подлетал на высоту в 2 раза меньше предыдущей. После какого по счету отскока высота, на которую подлетит попрыгунчик, станет меньше 20 см?


Определим, к какой последовательности относится наша задача. По условию имеем, что после каждого следующего отскока от асфальта подлетал на высоту в 2 раза меньше предыдущей. Это геометрическая прогрессия. Теперь выпишем, что известно по условию и определим, что надо найти: первый член прогрессии b1=400, знаменатель q=12, n – количество отскоков, значит, найти надо n при bn<20.

Подставим в формулу n-ого члена геометрической прогрессии наши данные:

bn=b1qn-1=400(12)n1<20

Разделим обе части неравенства на 400: (12)n1<120

Будем рассматривать случаи, начиная с n=3: (12)31<120; (12)2<120; (14)<120 неверно

При n=4: (12)41<120; (12)3<120; (18)<120 неверно

При n=5: (12)51<120; (12)4<120; (116)<120 неверно

При n=6: (12)61<120; (12)5<120; (132)<120 верно. Следовательно, после 6 отскока высота, на которую подлетит попрыгунчик, станет меньше 20 см.

К данной задаче можно сделать проверку, а также она является простейшим способом для её решения. Рассмотрим этот способ:

1 отскок – 400 см

2 отскок – 200 см (разделили на 2, так как по условию сказано, что с каждым отскоком высота уменьшалась в 2 раза)

3 отскок – 100 см

4 отскок – 50 см

5 отскок – 25 см

6 отскок – 12,5 см, а это меньше, чем 20 см, как требуется в условии. Поэтому пишем в ответ число 6.

Ответ: 6

pазбирался: Даниил Романович | обсудить разбор

Даниил Романович | Просмотров: 6.4k

Сумма членов геометрической прогрессии находится по одной из формул:

Формулы суммы членов геометрической прогрессии

1) {S_n= frac{b_1-b_1 cdot q^n}{1-q}},

2) {S_n= frac{b_1 cdot (1-q^n)}{1-q}}

b1 — первый член прогрессии,

q — знаменатель прогрессии,

n — номер члена

Для нахождения суммы членов геометрической прогрессии вы можете воспользоваться нашим онлайн калькулятором. Просто введите данные и получите результат. А узнать больше про геометрическую прогрессию можно на странице.

Пример нахождения суммы арифметической прогрессии

Задача 1

Дана арифметическая прогрессия: 1; 3; 9; … Найдите сумму первых восьми ее членов.

Решение

Первый член прогрессии b1 = 1.

Чтобы найти знаменатель прогрессии, нужно разделить ее второй член на первый. В нашем случае q = b2 / b1 = 3 / 1 = 3.

Количество суммируемых членов равно 8, т. е. n = 8. Подставим значения в формулу и получим результат:

S_n= dfrac{b_1 cdot (1-q^n)}{1-q} = dfrac{1 cdot (1-3^8)}{1-3} = dfrac{1 cdot (1-6561)}{-2} = dfrac{-6560}{-2} = 3280

Ответ: 3280

Используем калькулятор для проверки.

Понравилась статья? Поделить с друзьями:
  • Как найти секс в дели
  • Как найти present perfect passive
  • Как найти парня для развлечений
  • Как найти личную страницу в интернете
  • Взрывной характер как исправить