Как найти сумму коэффициентов при четных степенях

�������

������� ����� ������������� ��� ޣ���� �������� � ����������, ������� ���������� �� ���������  f(x) = (x³ – x + 1)100  � ���������� ��������� ������ � ���������� �������� ���������.

���������

��� ���������, ���� ���������� � ������ ���������  x = 1  �  x = –1?

�������

���� � ��������� f(x) ����������  x = 1,  �� �� ������� ����� ���� ������������� ��� �������� xk. ���� �� ����������  x = –1,  �� �� ������� ����� �������� ���� ������������� ��� ޣ���� � Σ������ ��������. ������� ����� ������������� ��� ޣ���� �������� �����  ½ (f(1) + f(–1)) = 1.

�����

1.

��������� � ���������� �������������

Разложение многочлена на множители. Часть 3. Теорема Безу и схема Горнера

Разложение  многочлена на множители.  Теорема Безу и схема Горнера

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим,  каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена  Подготовка к ГИА и ЕГЭ  на  двучлен Подготовка к ГИА и ЕГЭ равен Подготовка к ГИА и ЕГЭ.

Но для нас важна не сама теорема, а следствие из нее:

Если число Подготовка к ГИА и ЕГЭ является корнем многочлена Подготовка к ГИА и ЕГЭ, то многочлен   Подготовка к ГИА и ЕГЭ делится без остатка на двучлен Подготовка к ГИА и ЕГЭ.

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на Подготовка к ГИА и ЕГЭ, где Подготовка к ГИА и ЕГЭ — корень многочлена. В результате мы  получаем многочлен,    степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена , и как разделить многочлен на двучлен.

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число Подготовка к ГИА и ЕГЭ является корнем многочлена.

Например, в многочлене Подготовка к ГИА и ЕГЭ сумма коэффициентов равна нулю: Подготовка к ГИА и ЕГЭ. Легко проверить, что Подготовка к ГИА и ЕГЭ является корнем многочлена.

Если сумма коэффициентов многочлена  при четных степенях Подготовка к ГИА и ЕГЭ равна сумме коэффициентов при нечетных степенях, то число Подготовка к ГИА и ЕГЭявляется корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку Подготовка к ГИА и ЕГЭ, а Подготовка к ГИА и ЕГЭ — четное число.

Например, в многочлене Подготовка к ГИА и ЕГЭ сумма коэффициентов при четных степенях Подготовка к ГИА и ЕГЭ:  Подготовка к ГИА и ЕГЭ, и сумма коэффициентов при нечетных степенях Подготовка к ГИА и ЕГЭ:   Подготовка к ГИА и ЕГЭ. Легко проверить, что Подготовка к ГИА и ЕГЭ является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени Подготовка к ГИА и ЕГЭ (то есть многочлена, в котором старший коэффициент — коэффициент при Подготовка к ГИА и ЕГЭ — равен единице) справедлива формула Виета:

Подготовка к ГИА и ЕГЭ, где Подготовка к ГИА и ЕГЭ — корни многочлена Подготовка к ГИА и ЕГЭ.

Если многочлен не является приведенным, то его можно сделать таковым, разделив на старший коэффициент.

Есть ещё Подготовка к ГИА и ЕГЭ формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни приведенного многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен Подготовка к ГИА и ЕГЭ.

Для этого многочлена произведение корней равно Подготовка к ГИА и ЕГЭ

Делители числа Подготовка к ГИА и ЕГЭ: Подготовка к ГИА и ЕГЭ; Подготовка к ГИА и ЕГЭ; Подготовка к ГИА и ЕГЭ

Сумма всех коэффициентов многочлена равна Подготовка к ГИА и ЕГЭ, следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях Подготовка к ГИА и ЕГЭ:  Подготовка к ГИА и ЕГЭ

Сумма коэффициентов при нечетных степенях Подготовка к ГИА и ЕГЭ: Подготовка к ГИА и ЕГЭ

Подготовка к ГИА и ЕГЭ, следовательно, число -1 также не является корнем многочлена.

Проверим, является ли число 2 корнем  многочлена: Подготовка к ГИА и ЕГЭ, следовательно, число 2  является корнем многочлена. Значит, по теореме Безу, многочлен Подготовка к ГИА и ЕГЭ делится без остатка на двучлен Подготовка к ГИА и ЕГЭ.

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен Подготовка к ГИА и ЕГЭ  на двучлен Подготовка к ГИА и ЕГЭ столбиком:

Разложение многочлена на множители. Теорема Безу и схема Горнера

Есть и другой способ деления многочлена на двучлен — схема Горнера.

Разложение многочлена на множители. Теорема Безу и схема Горнера

Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 — так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен Подготовка к ГИА и ЕГЭна двучлен Подготовка к ГИА и ЕГЭ и в результате деления мы получаем многочлен Подготовка к ГИА и ЕГЭ, то коэффициенты многочлена  Подготовка к ГИА и ЕГЭ мы можем найти по схеме Горнера:

Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число Подготовка к ГИА и ЕГЭ является корнем многочлена Подготовка к ГИА и ЕГЭ, то остаток от деления многочлена на Подготовка к ГИА и ЕГЭ равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы «убиваем двух зайцев»: одновременно проверяем, является ли число Подготовка к ГИА и ЕГЭ корнем многочлена Подготовка к ГИА и ЕГЭ и делим этот многочлен на двучлен Подготовка к ГИА и ЕГЭ.

Пример. Решить уравнение:

Подготовка к ГИА и ЕГЭ

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Делители числа 24: Подготовка к ГИА и ЕГЭ

2. Проверим, является ли число 1  корнем многочлена.

Сумма коэффициентов многочлена Подготовка к ГИА и ЕГЭ, следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен Подготовка к ГИА и ЕГЭ с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.

Так как член, содержащий Подготовка к ГИА и ЕГЭ отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при Подготовка к ГИА и ЕГЭ пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.

В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен Подготовка к ГИА и ЕГЭ без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

aa

Будем делить дальше. Нам нужно найти корни многочлена Подготовка к ГИА и ЕГЭ. Корни также ищем среди делителей свободного члена, то есть теперь уже  числа -24.

Легко проверить, что числа 1 и -1 не являются корнями многочлена Подготовка к ГИА и ЕГЭ

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена Подготовка к ГИА и ЕГЭ:

Разложение многочлена на множители. Теорема Безу и схема Горнера

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 — число, не равное нулю, следовательно, многочлен Подготовка к ГИА и ЕГЭ делится на двучлен Подготовка к ГИА и ЕГЭ  с остатком, и число 2 не является корнем многочлена.

Идем дальше.

В) Проверим, является ли число -2 корнем многочлена Подготовка к ГИА и ЕГЭ. Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:

Отлично! В остатке мы получили ноль, следовательно, многочлен Подготовка к ГИА и ЕГЭ разделился на двучлен Подготовка к ГИА и ЕГЭ без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена Подготовка к ГИА и ЕГЭ на двучлен Подготовка к ГИА и ЕГЭ в таблице изображены зеленым цветом.

aa

В результате деления мы получили квадратный трехчлен Подготовка к ГИА и ЕГЭ, корни которого легко находятся по теореме Виета: Подготовка к ГИА и ЕГЭ

Итак, корни исходного уравнения Подготовка к ГИА и ЕГЭ:

{Подготовка к ГИА и ЕГЭ}

Ответ: {Подготовка к ГИА и ЕГЭ}

И.В. Фельдман, репетитор по математике.

Нажмите, чтобы узнать подробности

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше

Теорема Безу: остаток от деления многочлена P(x) на двучлен xa равен P(a).

Следствие. Если число a является корнем многочлена P(x), то многочлен

P(x)=a0xn+a1xn-1+..+an

делится без остатка на двучлен xa.

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на xa, где a — корень многочлена. В результате мы получаем многочлен, степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена, и как разделить многочлен на двучлен.

  1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Если сумма всех коэффициентов многочлена равна нулю, то число 1 является корнем многочлена.

Если сумма коэффициентов многочлена при четных степенях x равна сумме коэффициентов при нечетных степенях, то число -1 является корнем многочлена.

Например, в многочлене 3x5 -2x3 -7x+6 сумма коэффициентов равна нулю:

3 – 2 – 7 + 6 = 0. Следовательно х = 1 является корнем многочлена.

В многочлене 5x4 +3x3 +2x2+5x+1 сумма коэффициентов при четных степенях х: 5 + 2 + 1 = 8, и сумма коэффициентов при нечетных степенях х: 3 + 5 = 8. Следовательно

х = -1 является корнем многочлена. Если ни 1, ни -1 не являются корнями многочлена, то

из формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Например, многочлен 2x3 -3x2+5x-14

Делители свободного члена:+1,-1,+2,-2,+7,-7,+14,-14.

Корень х =2,

2.Деление многочлена на многочлен производится по тому же принципу – столбиком (уголком) и функция представляется в виде суммы «целой части» и дробной части.

Вася Иванов

Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

This is not an answer to the combinatorial question, but it can help to check whether a combinatorial answer could be correct.

The following code constructs the polynomial via python’s sympy and loops through the coefficients. Here p.coeff() is a list of all coefficients. p.monoms is a list of tuples with the degree of each variable. sum([m % 2 for m in monom]) == 0]) is a way to select all tuples that have only even terms.

from sympy import symbols, poly

k = 6
m = 6
n = 6
x = [symbols(f'x{i}') for i in range(1, n + 1)]
p = poly((k + sum(x)) ** m)
print(sum([coeff for coeff, monom in zip(p.coeffs(), p.monoms()) if sum([m % 2 for m in monom]) == 0]))

The result is 217392.

Понравилась статья? Поделить с друзьями:
  • Как найти коэффициент загруженности
  • Как исправить ошибку инициализации платформы net framework на виндовс 7
  • Как составить рушник
  • Как найти свой сервер доты
  • Как найти жилье в благовещенской