Как найти сумму коэффициентов в овр

Сумма коэффициентов в уравнении окислительно восстановительной реакции

Сумма,или подбор стехиометрических коэффициентов при написании уравнений окислительно-восстановительных реакций основан на равенстве числа электронов,отдаваемых восстановителем и получаемых окислителем.

Искомая сумма вычисляется в несколько этапов.Рассмотрим на примере реакции лабораторного получения хлора окислением хлороводорода HCl перманганатом калия KMnO4,который при этом восстанавливается до иона Mn+2.

1.Уравнения полуреакций в явном виде(при участии молекул воды):

MnO4[-] + 8H[+] + 5e -> Mn[+2] + 4H2O

2Cl[-] — 2e -> Cl2[0]

2.Необходимо уравнять число электронов в обеих полуреакциях,Первое уравнение надо умножить на 2,второе на 5:

2MnO4[-] + 16H[+] + 10e -> 2Mn[+2] + 8H2O

10Cl[-] — 10e->5Cl2

3.Суммируем уравнения и получаем уравнение в ионном виде:

2MnO4[-] + 16H[+] + 10Cl[-] -> 2Mn[+2] + 8H2O + 5Cl2[0]

В конечном уравнении правая часть должна быть равна левой,включая сумму зарядов ионов(в нашем случае +4,так как 16−10−2=2×2).

Химическая реакция. Химическое уравнение

Химическими реакциями называют явления, при которых одни вещества превращаются в другие.

Химическим уравнением называют условную запись химической реакции с помощью формул веществ и коэффициентов.

Признаками химических реакций являются:

  • выделение газа
  • выпадение или исчезновение осадка
  • изменение цвета
  • изменение запаха
  • выделение тепла и света

Давайте порассуждаем вместе

1. Сумма коэффициентов в уравнении реакции между оксидом магния и оксидом азота (V) равна

1) 5

2) 2

3) 3

4) 4

Ответ: Составим уравнение реакции MgO + N2O5 = Mg(NO3)2 Сумма коэффициентов в уравнении равна 1 + 1 + 1 = 3

2. Сумма коэффициентов в уравнении реакции между оксидом фосфора (V) и оксидом натрия

3. Сумма коэффициентов в уравнении реакции между магнием и оксидом углерода (IV)

1) 4

2) 5

3) 6

4) 2

Ответ: 2Mg + CO2 = 2MgO + C сумма коэффициентов равна 2 + 1 + 2 + 1 = 6

4. Сумма коэффициентов в левой части уравнения реакции между оксидом железа (II) и алюминием

1) 5

2) 4

3) 3

4) 2

Ответ: 3FeO + 2Al = Al2O3 + 3Fe сумма коэффициентов в левой части равна 3 + 2 = 5

5. Сумма коэффициентов в правой части уравнения реакции термического разложения перманганата калия

1) 5

2) 2

3) 3

4) 4

Ответ: 2KMnO4 = K2MnO4 + MnO2 + O2сумма коэффициентов в правой части равна 1+ 1 + 1 = 3

6. Сумма коэффициентов в правой части уравнения реакции между оксидом железа (III) и водородом

1) 8

2) 3

3) 6

4) 5

Ответ: Fe2O3 + 3H2 = 2Fe + 3H2O сумма коэффициентов в правой части равна 2 + 3 = 5

7. К физическим явлениям относится процесс

1) горение свечи

2) плавление свинца

3) скисание молока

4) разложение малахита

Ответ: к физическим явлениям относится процесс плавления свинца, т.к. при физических явлениях изменяется агрегатное состояние, а само вещество не меняется.

Коэффициенты и как правильно их расставлять в химической формуле

Химическое уравнение – отражение взаимодействия соединений формулами. Согласно закону сохранения массы в обеих сторонах уравнения должно быть равное количество атомов. Этот закон соблюдается с помощью расстановки коэффициентов.

Алгоритм расстановки коэффициентов

  1. Подсчет количества атомов в обеих частях уравнения.
  2. Нахождение наименьшего общего кратного у элементов, количество которых в обеих частях уравнения отличается.
  3. Разделение наименьшего общего кратного на индексы атомов.
  4. Расстановка полученных коэффициентов.
  5. Пересчет количества атомов.

Примеры расстановки коэффициентов в уравнениях

В реакции участвуют углерод С, водород Н и кислород О. При подсчете атомов можно получить следующие результаты:

  1. один атом углерода слева и один справа;
  2. четыре водорода слева и два справа;
  3. два кислорода слева и три справа.

Количество атомов углерода совпадает, поэтому соединения углерода не нуждаются в коэффициентах.

Чтобы поставить коэффициент перед водородом, необходимо найти наименьшее общее кратное – 2. Поэтому вода Н2О нуждается в коэффициенте 2.

Стоит обратить внимание на то, что из-за постановки коэффициента перед водой количество кислорода увеличивается. В данном варианте уравнения слева находится два кислорода, а справа – четыре. Перед кислородом нужен коэффициент 2.

Как расставить коэффициенты в окислительно-восстановительных реакциях (ОВР)

1. В уравнении нужно найти восстановитель и окислитель. Для этого следует расставить степени окисления у каждого атома.

H + Cl — +K + Mn +7 O -2 4=Mn +2 Cl — 2+K + Cl — +Cl 0 2+H + 2O -2

Теперь можно определить восстановитель и окислитель.

Mn +7 +5ē→Mn +2 (окислитель)

2Cl — -2ē→Cl 0 2 (восстановитель)

2. Затем необходимо найти наименьшее общее кратное принятых и отданных электронов. В данной реакции оно равно 10. Таким образом, у соединений марганца должен стоять коэффициент 2, а коэффициент 5 должен стоять только у газа хлора в правой части уравнения. Перед соляной кислотой в левой части уравнения коэффициент ставить рано, т. к. водород не изменил степень окисления.

3. Необходимо уравнять металлы. Слева два атома калия, а справа один, поэтому перед хлоридом калия необходимо поставить коэффициент 2.

4. Нужно уравнять количество хлора. Справа 16 атомов хлора, а слева только один. Перед соляной кислотой ставят коэффициент 16.

5. Затем необходимо посчитать количество водорода. Слева 16 атомов водорода, а справа 2, поэтому перед водой нужен коэффициент 8.

6. В обеих частях уравнения по 8 атомов кислорода.

Как расставить коэффициенты в окислительно-восстановительных реакциях с органическими веществами

Чтобы расставить степени окисления в органическом соединении, необходимо расписать полную формулу вещества.

Каждый атом углерода связан с тремя атомами водорода и одним углерода. Водород в данном соединении играет роль восстановителя, поэтому отдает электроны. Таким образом, атом углерода получает три электрона и принимает степень окисления -3.

С -3 -7ē→С +4 (восстановитель, окисление)

2О 0 +4ē→О -2 2 (окислитель, восстановление)

Исходя из метода электронного баланса, в уравнении стоят следующие коэффициенты.

Химические уравнения

При составлении химических уравнений используют математические знаки «+», «−», «=», а также числа — они выступают в качестве коэффициентов и индексов.

Коэффициенты показывают число частиц (атомов или молекул), а индексы — число атомов, которые входят в состав молекулы.

Химические коэффициенты и индексы

Химическую реакцию можно изобразить в виде схемы:

Схематическое изображение химической реакции

На схеме протекание реакции представлено нагляднее, но сложные химические процессы изобразить таким способом сложно. Поэтому их записывают в виде химического уравнения.

Вещества, которые вступают в реакцию, называют исходными веществами, или реагентами. Вещества, которые образуются в результате, называют продуктами реакции.

Исходные вещества и продукты реакции

Давайте разберем этот пример химического уравнения. Здесь видно, что из двух молекул водорода и одной молекулы кислорода образуются две молекулы воды. Реагенты в данном случае — водород и кислород, продукт реакции — вода.

Новые вещества образуются вследствие перегруппировки исходных атомов. В результате химической реакции атомы химических элементов никуда не исчезают и не возникают новые, их число остается неизменным — это следует из закона сохранения массы веществ.

Закон сохранения массы веществ лежит в основе химии и используется при составлении уравнений химических реакций.

Алгоритм составления уравнения химической реакции

Рассмотрим, как составлять уравнения химических реакций, на примере взаимодействия магния и кислорода с образованием оксида магния.

Записываем химические формулы исходных веществ в левой части уравнения. Напоминаем: молекулы H2, N2, O2, F2, Cl2, Br2, I2 двухатомны. Между исходными веществами ставим «+», а затем знак «=».

Алгоритм составления химической реакции. Шаг 1

После знака равенства записываем химическую формулу продукта. Химическую формулу необходимо составить с учетом валентностей химических элементов.

Алгоритм составления химической реакции. Шаг 2

Согласно закону сохранения массы веществ, число атомов каждого химического элемента до и после реакции должно быть одинаковым. Давайте посмотрим, как расставлять коэффициенты в химических уравнениях, чтобы закон выполнялся.

Из составленной химической реакции видно, что количество атомов магния слева и справа от знака равенства одинаково, но атомов кислорода слева два, а справа один.

Чтобы уравнять число атомов в химическом уравнении, находим наименьшее общее кратное (НОК), в нашем случае — 2. А затем делим НОК на количество атомов кислорода в реагентах и полученное число записываем в виде коэффициента.

Алгоритм составления химической реакции. Шаг 3

Проверим количество атомов магния до и после знака «=». Если перед химической формулой уже стоит коэффициент, то для подсчета количества атомов необходимо умножить коэффициент на индекс, который относится к этому химическому элементу.

Алгоритм составления химической реакции. Шаг 4

Чтобы уравнять количество атомов магния в химической реакции, посчитаем НОК и разделим его на количество атомов с каждой стороны от знака «=». Результат деления и будет являться коэффициентом (повторяем расстановку коэффициентов в химическом уравнении из 3-го пункта).

Алгоритм составления химической реакции. Шаг 5

Получаем уравнение химической реакции, в котором в исходных веществах и продуктах реакции по 2 атома магния и кислорода.

Алгоритм составления химической реакции. Шаг 6

Сумма коэффициентов в этом химическом уравнении равна 5 (2 + 1 + 2 = 5).

Коэффициенты, которые стоят в химическом уравнении перед веществами, указывают на мольное соотношение исходных веществ и продуктов реакции, по которому и производятся расчеты.

Типы химических реакций

Химические реакции можно классифицировать по различным признакам:

По числу и составу исходных веществ и продуктов реакции.

По изменению степени окисления.

По тепловому эффекту.

По агрегатному состоянию.

По наличию или отсутствию катализатора.

По числу и составу исходных веществ и продуктов реакции

По этому признаку выделяют 4 типа реакций: реакции соединения, реакции разложения, реакции замещения и реакции обмена.

Реакции соединения — это реакции, в результате которых из нескольких более простых веществ образуется одно более сложное.

Например, простые вещества барий и кислород взаимодействуют с образованием сложного вещества оксида бария:

Также к реакциям соединения относится взаимодействие оксида натрия с водой с образованием более сложного вещества гидроксида натрия. Оно более сложное, так как состоит уже из трех атомов химических элементов, в отличие от веществ-реагентов, которые состоят из двух атомов:

Реакции разложения — это реакции, в результате которых из одного более сложного вещества образуется несколько более простых веществ. Является процессом, обратным реакции соединения.

Пример такой реакции — разложение нитрата серебра на несколько более простых веществ: серебро, оксид азота (IV) и кислород.

Реакции замещения — это такие реакции, в результате которых атомы простого вещества замещают атомы одного химического элемента в сложном веществе. Также возможно замещение функциональных групп в сложном веществе.

Например, замещение атомов водорода в молекуле соляной кислоты на атомы цинка:

Реакции обмена — это реакции между двумя сложными веществами, в результате которых вещества обмениваются своими составными частями.

Для наглядности показали все типы химических реакций по этому признаку на схеме:

Типы химических реакций

По изменению степени окисления

По этому признаку выделяют два вида реакций:

реакции, протекающие без изменения степени окисления;

окислительно-восстановительные реакции (ОВР) — реакции, протекающие с изменением степени окисления нескольких элементов.

В ОВР всегда участвуют вещество-окислитель и вещество-восстановитель. Другие исходные вещества, принимающие участие в реакции, выступают в качестве среды, в которой протекает эта реакция.

Окислитель — вещество, в состав которого входит ион или атом, который в процессе реакции принимает электроны, тем самым понижая свою степень окисления.

Восстановитель — вещество, в состав которого входит ион или атом, который в процессе реакции отдает электроны, тем самым повышая свою степень окисления.

Из определений можно сделать вывод, что в ходе реакции протекает два процесса: принятие электронов (восстановление) и отдача электронов (окисление). Протекают они одновременно.

По тепловому эффекту

По тепловому эффекту реакции делятся на эндотермические и экзотермические.

Эндотермические реакции протекают с поглощением теплоты (−Q). Буквой Q обозначается количество теплоты.

К таким реакциям относятся практически все реакции разложения. Пример:

Экзотермические реакции протекают с выделением теплоты (+Q).

К таким реакциям относятся практически все реакции соединения. Пример:

По агрегатному состоянию исходных веществ

По этому признаку все реакции разделяют на гомогенные и гетерогенные.

Гомогенные реакции протекают в одной фазе.

К гомогенным реакциям относятся те, исходные вещества которых находятся либо в жидком агрегатном состоянии, либо в газообразном. Например, взаимодействие двух газообразных веществ — водорода и хлора:

Агрегатное состояние указывается в правом нижнем углу: «г» — газообразное, «ж» — жидкое, «тв» — твердое.

Гетерогенные реакции протекают на границе раздела фаз.

Как правило, такие реакции протекают между веществами, которые находятся в разных агрегатных состояниях:

Также к гетерогенным относятся реакции между двумя несмешивающимися жидкостями. Собрали несколько примеров гетерогенных реакций:

Между какими веществами протекает

Между жидкостью и твердым веществом

Сода и уксусная кислота

Между твердым веществом и газом

Между жидким веществом и газом

Между двумя несмешивающимися жидкостями

По наличию или отсутствию катализатора

По этому признаку выделяют реакции каталитические и некаталитические.

Каталитические реакции — реакции, протекающие с участием катализатора

Катализатор — вещество, которое ускоряет реакцию, участвует в ней, но остается неизменным после окончания этой реакции.

Наличие катализатора указывается над знаком равенства как kat или формула конкретного вещества, выступающего в роли катализатора.

Пример каталитической реакции

Некаталитические реакции — реакции, протекающие без участия катализатора.

По обратимости

Различают обратимые и необратимые реакции.

Обратимые реакции — реакции, протекающие в двух противоположных направлениях.

При составлении уравнений обратимых реакций вместо знака равенства используют знак «⇄».

К обратимым реакциям относят реакции ионного обмена, диссоциации электролитов и многие другие:

Необратимые реакции — реакции, которые протекают только в одном направлении.

Чтобы научиться составлять уравнения химических реакций, нужно только одно — практика. Много практики школьники получают на онлайн-курсах по химии в Skysmart. Интересные задания на интерактивной платформе, примеры из жизни и опытные преподаватели обязательно приведут к желаемому результату — и просто помогут полюбить химию.

k-tree

Электронный учебник

Калькулятор ОВР

Калькулятор ОВР — это способ составить уравнение электронного и массового баланса в уравнении окислительно-восстановительной реакции

Статья об окислительно-восстановительных реакциях здесь.

Сумма коэффициентов в уравнении окислительно−восстановительной реакции, схема которой
$Cu + HNO_{3} → Cu(NO_{3})_{2} + NO + H_{2}O$, равна
1) 16
2) 18
3) 20
4) 22

reshalka.com

ГДЗ учебник по химии 9 класс класс Габриелян. §40. Примените свои знания. Номер №10

Решение

Сумма коэффициентов в уравнении окислительно−восстановительной реакции, схема которой
$Cu + HNO_{3} → Cu(NO_{3})_{2} + NO + H_{2}O$, равна 20:
$3Cu + 8HNO_{3} = 3Cu(NO_{3})_{2} + 2NO + 4H_{2}O$
Сумма коэффициентов в уравнении окислительно−восстановительной реакции, схема которой
$Cu + HNO_{3} → Cu(NO_{3})_{2} + NO + H_{2}O$, равна
1) 16
2) 18
3) 20
4) 22
Ответ: 3).

Окислительно-восстановительные реакции. Окислитель и восстановитель

Окислительно-восстановительными называют реакции, которые сопровождаются изменением степеней окисления химических элементов, входящих в состав реагентов.

Окислением называют процесс отдачи электронов атомом, молекулой или ионом, который сопровождается повышением степени окисления.

Восстановлением называют процесс присоединения электронов атомом, молекулой или ионом, который сопровождается понижением степени окисления.

Окислителем называют реагент, который принимает электроны в ходе окислительно-восстановительной реакции. (Легко запомнить: окислитель — грабитель.)

Восстановителем называют реагент, который отдаёт электроны в ходе окислительно-восстановительной реакции.

Окислительно-восстановительные реакции делят на реакции межмолекулярного окисления-восстановления, реакции внутримолекулярного окисления-восстановления, реакции диспропорционирования и реакции конмутации.

Для составления окислительно-восстановительных реакций используют метод электронного баланса.

Составление уравнения окислительно-восстановительной реакции осуществляют в несколько стадий.

  1. Записывают схему уравнения с указанием в левой и правой частях степеней окисления атомов элементов, участвующих в процессах окисления и восстановления.
  2. Определяют число электронов, приобретаемых или отдаваемых атомами или ионами.
  3. Уравнивают число присоединённых и отданных электронов введением множителей, исходя из наименьшего кратного для коэффициентов в процессах окисления и восстановления.
  4. Найденные коэффициенты (их называют основными) подставляют в уравнение реакции перед соответствующими формулами веществ в левой и правой частях.

Пример 1. Реакция алюминия с серой. Записываем схему реакции и указываем изменение степеней окисления:

Атом серы присоединяет два электрона, изменяя свою степень окисления от 0 до –2. Он является окислителем. Атом алюминия отдаёт три электрона, изменяя свою степень окисления от 0 до +3. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Подставляем найденные коэффициенты в уравнение реакции и окончательно получаем:

Пример 2. Окисление фосфора хлором. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления хлора изменяется от 0 до –1, при этом молекула хлора присоединяет два электрона. Хлор является окислителем.

Атом фосфора отдаёт пять электронов, изменяя свою степень окисления от 0 до +5. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Электронное уравнение для хлора записывают именно так, поскольку окислителем является молекула хлора, состоящая из двух атомов, и каждый из этих атомов изменяет свою степень окисления от 0 до –1. Коэффициент 5 относится к молекуле хлора в левой части уравнения, а количество атомов хлора в правой части уравнения 5 × 2 = 10.

Подставляем найденные коэффициенты в уравнение реакции и окончательно получаем:

Пример 3. Восстановление оксида железа (II, III) алюминием. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления железа изменяется от +8/3 до 0, при этом три иона железа (поскольку в исходном оксиде их содержится именно три) присоединяют восемь электронов (3 × 8/3 = 8). Железо является окислителем.

Алюминий отдаёт три электрона, изменяя свою степень окисления от 0 до +3. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединенных и отданных электронов:

Электронное уравнение для алюминия записывают именно так, поскольку в состав оксида алюминия входят два атома алюминия. Таким образом, в левой части уравнения основной коэффициент перед оксидом железа (II, III) будет равен 3, а перед алюминием 4 × 2 = 8.

Количество атомов железа в правой части уравнения реакции составит 3 × 3 = 9. Количество молекул оксида алюминия будет равно 8/2 = 4. Окончательно получаем:

Проверяем баланс по кислороду. В левой части уравнения 3 × 4 = 12. В правой части уравнения 4 × 3 = 12. Таким образом, число атомов каждого элемента в отдельности в левой и в правой части химического уравнения равны между собой, и реакция уравнена правильно.

Этот пример наглядно показывает, что дробная степень окисления хотя и не имеет физического смысла, но позволяет правильно уравнять окислительно-восстановительную реакцию.

Очень часто окислительно-восстановительные реакции проходят в растворах в нейтральной, кислой или щелочной среде. В этом случае химические элементы, входящие в состав вещества, образующего среду реакции, свою степень окисления не меняют.

Пример 4. Окисление йодида натрия перманганатом калия в среде серной кислоты. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Атом марганца принимает пять электронов, изменяя свою степень окисления от +7 до +2. Перманганат калия является окислителем.

Два йодид-иона отдают два электрона, образуя молекулу I20. Йодид натрия является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов введением множителей:

Найденные коэффициенты подставим в уравнение реакции перед соответствующими формулами веществ в левой и правой частях.

Серная кислота является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет, но сульфат-анион связывает выделяющиеся в результате реакции катионы калия, натрия и марганца. Подсчитаем число сульфат-ионов в правой части. Оно равно 2 + 1 + 5 = 8. Следовательно, перед серной кислотой следует поставить коэффициент 8. Число атомов водорода в левой части уравнения равно 8 × 2 = 16. Отсюда вычисляем коэффициент для воды: 16/2 = 8.

Таким образом, уравнение реакции будет иметь вид:

Правильность баланса проверяем по кислороду. В левой части его 2 × 4 = 8 (перманганат калия); в правой — 8 × 1 = 8 (вода). Следовательно, уравнение составлено правильно.

Пример 5. Окисление сульфида калия манганатом калия в водной среде. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Ион марганца принимает два электрона, изменяя свою степень окисления от +6 до +4. Манганат калия является окислителем.

Сульфид-ион отдаёт два электрона, образуя молекулу S0. Сульфид калия является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов введением множителей:

Основные коэффициенты в уравнении реакции равны единице:

Вода является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет.

Гидроксид-ионы связывают выделяющиеся в результате реакции катионы калия. Таких катионов четыре (2 × 2), число атомов водорода также 4 (4 × 1), поэтому перед молекулой воды ставим коэффициент два (4/2 = 2):

Пример 6. Окисление аммиака хлоратом калия в щелочной среде. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Хлор принимает шесть электронов, изменяя свою степень окисления от +5 до –1. Хлорат калия является окислителем.

Азот отдаёт восемь электронов, изменяя свою степень окисления от –3 до +5. Аммиак является восстановителем.

Составляем уравнение электронного баланса, уравниваем число присоединённых и отданных электронов введением множителей, сокращаем кратные коэффициенты:

Проставляем найденные основные коэффициенты в уравнение реакции:

Гидроксид калия является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет.

Катионы калия связывают выделяющиеся в результате реакции нитрат-ионы. Таких анионов три. Следовательно, перед гидроксидом калия ставим коэффициент три:

Число атомов водорода в левой части уравнения равно девяти в аммиаке (3 × 3) = 9 и трём в гидроксиде калия (3 × 1), а их общее число 9 + 3 = 12. Следовательно, перед водой ставим коэффициент (12/2) = 6. Окончательно уравнение реакции будет иметь вид:

Убеждаемся ещё раз в правильности расстановки коэффициентов, сравнивая число атомов кислорода в левой и правой его частях. Оно равно 15.

Довольно часто одно и то же вещество одновременно является окислителем и создаёт среду реакции. Такие реакции характерны для концентрированной серной кислоты и азотной кислоты в любой концентрации. Кроме того, в подобные реакции, но в качестве восстановителя, вступают галогенводородные кислоты с сильными окислителями.

Пример 7. Окисление магния разбавленной азотной кислотой. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления азота изменяется от +5 до +1, при этом два атома азота присоединяют восемь электронов. Азотная кислота является окислителем.

Магний отдаёт два электрона, изменяя свою степень окисления от 0 до +2. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Подставляем найденные коэффициенты перед окислителем и восстановителем в левой части уравнения реакции и перед продуктами окисления и восстановления в правой части уравнения реакции:

При этом в правой части уравнения реакции имеется 4 × 2 = 8 нитрат-ионов, не изменивших свою степень окисления. Очевидно, что для этого в правую часть уравнения реакции следует добавить ещё 8 молекул HNO3. Тогда общее количество молекул азотной кислоты в правой части уравнения составит 2 + 8 = 10.

В этих молекулах содержатся 10 × 1 = 10 атомов водорода. Такое же количество атомов водорода должно быть и в правой части уравнения. Следовательно, перед молекулой воды следует подставить коэффициент 10/2 = 5, и уравнение окончательно будет иметь вид:

Окончательно проверяем правильность баланса, подсчитывая число атомов кислорода в левой и правой частях уравнения. В левой части 10 × 3 = 30. В правой части (2 × 3) × 4 = 24 в нитрате магния, 1 в оксиде азота (I) и 5 × 1 = 5 в молекуле воды. Итого 24 + 1 + 5 = 30. Таким образом, реакция полностью уравнена.

Пример 8. Взаимодействие соляной кислоты с оксидом марганца (IV). Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления марганца изменяется от +4 до +2, при этом марганец присоединяет два электрона. Оксид марганца (IV) является окислителем.

Два хлорид-иона отдают два электрона, образуя молекулу Cl20, хлористый водород является восстановителем.

Составляем электронное уравнение и уравниваем число присоединённых и отданных электронов, сокращаем кратные коэффициенты:

При этом коэффициент 1 изначально относится к двум хлорид-ионам и к одной молекуле Cl2. Подставляем найденные коэффициенты перед окислителем и восстановителем в левой части уравнения реакции и перед продуктами окисления и восстановления в правой части уравнения реакции:

При этом в правой части уравнения реакции имеется 1 × 2 = 2 хлорид-иона, не изменивших свою степень окисления. Эти хлорид-ионы в окислительно-восстановительной реакции не участвовали. Очевидно, что для этого в правую часть уравнения реакции следует добавить 2 молекулы HCl. Тогда общее количество молекул HCl в правой части уравнения составит 2 + 2 = 4. В этих молекулах будет содержаться 4 × 1 = 4 атома водорода. Такое же количество атомов водорода должно быть и в правой части уравнения. Тогда перед молекулой воды следует подставить коэффициент 4/2 = 2, и уравнение в окончательном виде будет иметь вид:

Проверяем правильность баланса, подсчитывая число атомов кислорода в левой и правой частях уравнения. В левой части оно составляет 1 × 2 = 2 в оксиде марганца (IV), а в правой части 2 × 1 = 2 в молекуле воды. Таким образом, реакция полностью уравнена.

В качестве окислителя могут выступать нейтральные атомы и молекулы, положительно заряженные ионы металлов, сложные ионы и молекулы, содержащие атомы металлов и неметаллов в состоянии положительной степени окисления и др.

Ниже приведены сведения о некоторых наиболее распространенных окислителях, имеющих важное практическое значение.

Кислород. Сильный окислитель, окислительная способность значительно возрастает при нагревании. Кислород взаимодействует непосредственно с большинством простых веществ, кроме галогенов, благородных металлов Ag, Au, Pt и благородных газов, с образованием оксидов:

Взаимодействие натрия с кислородом приводит к пероксиду натрия:

Более активные щелочные металлы (K, Rb, Cs) при взаимодействии с кислородом дают надпероксиды типа ЭО2:

В своих соединениях кислород, как правило, проявляет степень окисления –2. Применяется кислород в химической промышленности, в различных производственных процессах в металлургической промышленности, для получения высоких температур. С участием кислорода идут многочисленные чрезвычайно важные жизненные процессы: дыхание, окисление аминокислот, жиров, углеводов. Только немногие живые организмы, называемые анаэробными, могут обходиться без кислорода.

Реакции, иллюстрирующие окислительные свойства кислорода при его взаимодействии с различными неорганическими веществами, приведены в уроке 14.

Озон. Обладает ещё большей по сравнению с кислородом окислительной способностью. Озон окисляет все металлы, за исключением золота, платины и некоторых других, при этом, как правило, образуются соответствующие высшие оксиды элементов, реже — пероксиды и озониды, например:

Озон окисляет оксиды элементов с промежуточной степенью окисления в высшие оксиды.

Перманганат калия. Является сильным окислителем, широко применяется в лабораторной практике. Характер восстановления перманганата калия зависит от среды, в которой протекает реакция. В кислой среде перманганат калия восстанавливается до солей Mn2+, в нейтральной или слабощелочной — до MnO2, а в сильнощелочной он переходит в манганат-ион MnO42–. Данные переходы описываются следующими уравнениями

Перманганат калия способен окислять сульфиды в сульфаты, нитриты в нитраты, бромиды и йодиды — до брома и йода, соляную кислоту до хлора и т. д.:

Хромат и бихромат калия. Эти соединения широко применяют в качестве окислителей в неорганических и органических синтезах. Взаимные переходы хромат- и бихромат-ионов очень легко протекают в растворах, что можно описать следующим уравнением обратимой реакции:

Соединения хрома (VI) — сильные окислители. В окислительно-восстановительных процессах они переходят в производные Cr (III). В нейтральной среде образуется гидроксид хрома (III), например:

В кислой среде образуются ионы Cr3+:

В щелочной — производные анионного комплекса [Cr(OH)6]3–:

В качестве восстановителя могут выступать нейтральные атомы, отрицательно заряженные ионы неметаллов, положительно заряженные ионы металлов в низшей степени окисления, сложные ионы и молекулы, содержащие атомы в промежуточной степени окисления, электрический ток на катоде и др.

Ниже приведены сведения о некоторых наиболее распространённых восстановителях, имеющих важное практическое значение.

Углерод. Углерод широко применяют в качестве восстановителя в неорганических синтезах. При этом в качестве продуктов окисления может образовываться углекислый газ, или оксид углерода (II). При восстановлении оксидов металлов могут образовываться свободные металлы, реже — карбиды металлов.

Восстановительные свойства углерод проявляет также в реакции получения водяного газа:

Полученную смесь водорода и оксида углерода (II) широко применяют для синтеза органических соединений.

Оксид углерода (II). Широко применяют в металлургии при восстановлении металлов из их оксидов, например:

Водород. Широко применяют в качестве восстановителя в неорганических синтезах (водородотермия) для получения чистого вольфрама, молибдена, галлия, германия и т. д.:

Тренировочные задания

Используя метод электронного баланса, расставьте коэффициенты, определите окислитель и восстановитель в уравнении реакции, схема которой:

1. Al + H2O + KNO3 + KOH → K[Al(OH)4] + NH3↑.

2. KNO3 + Al → KAlO2 + Al2O3 + N2.

3. Na2O2 + H2SO4 + KMnO4 → O2↑ + MnSO4 + Na2SO4 + K2SO4 + H2O.

4. NaCl + H2SO4 + MnO2 → Cl2 + MnSO4 + Na2SO4 + H2O.

5. NaCl + H2SO4 + KMnO4 → Cl2 + MnSO4 + Na2SO4 + K2SO4 + H2O.

6. KNO2 + H2SO4 + MnO2 → MnSO4 + KNO + H2O.

7. KI + H2SO4 + KMnO4 → I2 + MnSO4 + K2SO4 + H2O.

8. KI + K2Cr2O7 + H2SO4 → I2 + Cr2(SO4)3 + K2SO4 + H2O.

9. C + K2Cr2O7 + H2SO4 → CO2 + Cr2(SO4)3 + K2SO4 + H2O.

10. PbO2 + HNO3 + KI → Pb(NO3)2 + I2 + KNO3 + H2O.

11. PbO2 + HNO3 + Mn(NO3)2 → Pb(NO3)2 + HMnO4 + H2O.

12. NaNO2 + KMnO4 + H2SO4 → NaNO3 + MnSO4 + K2SO4 + H2O.

13. KNO2 + KMnO4 + H2SO4 → KNO3 + MnSO4 + K2SO4 + H2O.

14. KNO2 + K2Cr2O7 + H2SO4 → KNO3 + Cr2(SO4)3 + K2SO4 + H2O.

15. KNO2 + KI + H2SO4 → NO + I2 + K2SO4 + H2O.

16. KNO2 + FeSO4 + H2SO4 → NO + Fe2(SO4)3 + K2SO4 + H2O.

17. Ca3(PO4)2 + C + SiO2 → CaSiO3 + P + CO.

18. Sb + HNO3 → Sb2O5 + NO2 + H2O.

19. H2O2 + H2SO4 + KMnO4 → MnSO4 + O2 + H2O + K2SO4.

20. S + HNO3 → H2SO4 + NO2 + H2O.

21. H2S + HNO3 → H2SO4 + NO2 + H2O.

22. H2S + KMnO4 → MnO2 + S + H2O + KOH.

23. H2S + K2Cr2O7 + H2SO4 → S + Cr2(SO4)3 + K2SO4 + H2O.

24. KMnO4 + Na2SO3 + H2SO4 → MnSO4 + Na2SO4 + K2SO4 + H2O.

25. KMnO4 + Na2SO3 + H2O → MnO2 + Na2SO4 + KOH.

26. KMnO4 + Na2SO3 + KOH → K2MnO4 + Na2SO4 + H2O.

27. K2Cr2O7 + K2SO3 + H2SO4 → Cr2(SO4)3 + K2SO4 + H2O.

28. H2SO4 + C → SO2 + CO2 + H2O.

29. H2SO4 + Zn → ZnSO4 + H2S + H2O.

30. H2SO4 + KBr → SO2 + Br2 + KHSO4 + H2O.

31. H2SO4 + KI → H2S + I2 + K2SO4 + H2O.

32. PbO2 + HCl → PbCl2 + Cl2 + H2O.

33. K2Cr2O7 + HCl → CrCl3 + Cl2 + KCl + H2O.

34. KMnO4 + HCl → MnCl2 + Cl2 + KCl + H2O.

35. KClO3 + HCl → KCl + Cl2 + H2O.

36. HClO3 + FeSO4 + H2SO4 → Fe2(SO4)3 + HCl + H2O.

37. NaBrO3 + NaBr + H2SO4 → Br2 + Na2SO4 + H2O.

38. HNO3 + I2 → HIO3 + NO2 + H2O.

39. HNO3 + I2 → HIO3 + NO + H2O.

40. H2SO4 + HI → I2 + H2S + S + H2O.

41. Fe2(SO4)3 + HI → FeSO4 + I2 + H2SO4.

42. HIO3 + FeSO4 + H2SO4 → Fe2(SO4)3 + I2 + H2O.

43. NaIO3 + NaI + H2SO4 → I2 + Na2SO4 + H2O.

44. KMnO4 + Cu2O + H2SO4 → MnSO4 + CuSO4 + K2SO4 + H2O.

45. HNO3 + Cu2S → CuSO4 + Cu(NO3)2 + NO2 + H2O.

46. H2SO4 + Cu2S → CuSO4 + SO2 + H2O.

47. Ag + HNO3 → AgNO3 + NO + H2O.

48. Zn + HNO3 → Zn(NO3)2 + N2O + H2O.

49. PH3 + KMnO4 + H2SO4 → H3PO4 + MnSO4 + K2SO4 + H2O.

50. FeSO4 + KMnO4 + H2SO4 → Fe2(SO4)3 + MnSO4 + K2SO4 + H2O.

51. H2S + KMnO4 + H2SO4 → S + MnSO4 + K2SO4 + H2O.

52. Ca3P2 + KMnO4 + H2SO4 → CaSO4 + H3PO4 + MnSO4 + K2SO4 + H2O.

Ответы

Like this post? Please share to your friends:
  • Как найти глагол от которого образовано причастие
  • Высокие бедра как это исправить
  • Вырожденная матрица это как найти
  • Как найти телефон по имел номеру
  • Как исправить прогорклое оливковое масло