Как найти сумму моменты всех сил

Рассмотрим решение задачи по составлению и определению суммы моментов внешних сил приложенных к заданной системе относительно её точек.

Задача
К составной планке, показанной на рисунке

Заданная схема для составления суммы моментов

приложены следующие нагрузки:

  1. Внешние сосредоточенные силы F1=10кН и F2=50кН расположенная под углом
  2. Сосредоточенный момент m=70кНм
  3. Равномерно-распределённая нагрузка q интенсивностью 20кН/м

Требуется составить и определить алгебраическую сумму моментов относительно точек A, B и D.

Решение

Обозначим характерные точки системы буквами и покажем систему координат x-y.

Система координат для расчета

Для записи и расчета уравнений суммы моментов надо мысленно закрепить систему в рассматриваемой точке и записать все внешние усилия, которые стремятся повернуть систему.

Момент силы определяется по формуле

Формула для расчета моментов

где h — расстояние от точки до линии действия силы называемое плечом.

Другие видео

При этом, по правилу знаков, нагрузки, поворачивающие систему против хода часовой стрелки записываются положительными и наоборот.

Знаки моментов

При записи уравнений суммы моментов:

  • Силы умножаются на плечо;
  • Равномерно распределенные нагрузки умножаются на длину (получается равнодействующая сила), полученное произведение умножается на плечо, которым служит расстояние от её середины до рассматриваемой точки;
  • Сосредоточенный момент в сумме моментов записывается как есть (с учётом знака).

Примеры составления суммы моментов сил

Определим алгебраические суммы моментов сил относительно произвольных точек системы.

Для некоторого упрощения решения задачи, распределенную нагрузку можно заменить её равнодействующей

Формула для расчета равнодействующей

которая при равномерном распределении приложена посередине:

Положение равнодействующей нагрузки

а сосредоточенную силу F2 можно разложить на составляющие, спроецировав её на оси x и y.

Проекции силы F на оси x и y

Получается упрощенная расчетная схема:

Упрощенная схема для расчета суммы моментов

Расчет суммы моментов относительно точки, к которой приложена сила

Для точки A:
Силы Rq и F2X создают момент, вращающий по ходу часовой стрелки, поэтому будут записаны со знаком минус.
Сила F2Y относительно точки A имеет обратное направление и создает положительный момент.

Определение суммы моментов относительно точки A

Здесь h1, h2 и h3 плечи моментов соответствующих сил и равнодействующей распределенной нагрузки относительно точки A.

Линия действия силы F1 проходит через саму точку A, следовательно, плечо равно нулю, поэтому момент этой силой в данном случае не создается.

Таким образом, относительно точки A уравнение суммы моментов будет иметь вид:

Уравнение суммы моментов относительно точки A

Здесь сумма моментов относительно точки A отрицательна, поэтому, если данную систему закрепить в этой точке, она будет вращаться по ходу часовой стрелки.

Определение суммы моментов относительно точки, в которой приложен момент

Для точки B надо помнить что момент приложенный в точке, относительно которой записывается сумма, в уравнении участвует.

Поэтому алгебраическая сумма моментов относительно точки B равна:

Алгебраическая сумма моментов относительно точки B

Знак «-» так же показывает на вращение системы по ХЧС.

Сумма моментов относительно точки, где действует распределенная нагрузка

Для точки D:
Здесь надо смотреть, как расположена равнодействующая нагрузки по отношению к рассматриваемой точке.
В данном случае она находится справа от точки и направлена вниз, следовательно, создает вращение по ходу часовой стрелки.

Плечом момента нагрузки служит расстояние между равнодействующей и точкой.

Уравнение суммы моментов для точки под распределенной нагрузкой (в точке D) запишется в виде:

Определение суммы моментов в точке D

Положительный результат показывает вращение системы против ХЧС.

Направления определенных сумм моментов относительно заданных точек

Направления сумм моментов

При определении суммы моментов следует помнить, что в отличие от сил и распределенных нагрузок, сосредоточенный момент будет иметь один и тот же знак относительно любой точки системы.

Уравнения суммы моментов можно составить относительно любых других точек системы, в том числе точек, которые лежат вне заданной системы. Но, как правило, при решении задач этого не требуется.

Для статичных, геометрически неизменяемых систем сумма моментов всегда равна нулю.

Другие примеры решения задач статики >

iSopromat.ru

Правила знаков для моментов и проекций сил на оси координат:

Правило знаков проекций сил

То есть, для уравнений сумм проекций сил на оси:
Проекции сил и нагрузок на координатную ось имеющие одинаковое направление принимаются положительными, а проекции усилий противоположного направления – отрицательными.

Например, для такой схемы нагружения:

уравнение суммы сил имеет вид

А так как суммы проекций разнонаправленных сил равны, то данное уравнение можно записать и так:

Здесь F(q) – равнодействующая от распределенной нагрузки, определяемая произведением интенсивности нагрузки на ее длину.

Правило знаков для моментов

Сосредоточенные моменты и моменты сил стремящиеся повернуть систему относительно рассматриваемой точки по ходу часовой стрелки записываются в уравнения с одним знаком, и соответственно моменты, имеющие обратное направление с противоположным знаком.


Например, для суммы моментов относительно точки A

или, что одно и то же

Здесь m(F) – моменты сил F относительно точки A.
M(q) – моменты распределенных нагрузок q относительно рассматриваемой точки.

При составлении уравнений статики для систем находящихся в равновесии (например при определении опорных реакций) правила знаков могут быть упрощены до следующего вида:
Нагрузки направленные в одну сторону принимаются положительными, а соответственно, нагрузки обратного направления записываются со знаком минус.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Как определить реакции в опорах?

Привет! В этой статье, предлагаю поговорить о реакциях опор, еще известных как опорные реакции. Для успешного освоения курса – «сопротивление материалов», каждый студент должен уметь определять реакции в опорах, и этому уделяют особое внимание на термехе. А курс термеха, по традиции, читают до сопромата. Для тех, кто проспал механику на первом курсе, я подготовил данную статью, чтобы каждый желающий мог приобрести навыки по расчету опорных реакций.

Что такое реакция опоры?

Реакция опоры – это та сила, которая возникает в опоре от действия внешней нагрузки. В зависимости от конструкции опоры и ее назначения, в ней может появляться разное количество реакций, это может быть как сила, так и момент.

В начале этой статьи, расскажу о том, что должен уже уметь читатель, для успешного освоения данного урока. Если у Вас есть проблемы по поднятым вопросам на старте статьи, переходите по ссылкам на другие материалы на нашем сайте, после чего возвращайтесь к нам на чай реакции. Во второй части статьи, посмотрим, как вычисляются реакции на простейшем примере – балки, загруженной по центру сосредоточенной силой. Тут я покажу, как пользоваться уравнениями равновесия статики, как их правильно составлять. Дальше по плану, научу учитывать распределенную нагрузку, на примере той же балки. И завершать данный урок, будет пример определения реакций для плоской рамы, загруженной всевозможными типами нагрузок. Где применим уже все фишки, о которых я буду рассказывать по ходу урока. Что же, давайте начнем разбираться с реакциями!

Что вы должны уже уметь?

В этом блоке статье, я расскажу, как и обещал, что Вы должны УЖЕ уметь, чтобы понять то, что я буду докладывать дальше, про реакции опор.

Должны уметь находить сумму проекций сил

Да, это то, что Вам когда-то рассказывали на термехе, как собственно, и опорные реакции. Если Вы шарите немного в этих проекциях, то можете смело переходить к следующему пункту. Если же нет, то специально на этот случай, у меня есть другая статья, про проекции сил. Переходите, просвещайтесь, после чего, обязательно, возвращайтесь сюда!

Должны уметь составлять сумму моментов относительно точки

Немного теории! Познакомимся для начала с самим понятием момент силы. Момент силы — это произведение силы на плечо. Где плечо — это кратчайшее расстояние от точки до силы, то есть перпендикуляр. Проиллюстрирую написанное:

На изображении показано, как определить момент силы F, относительно точки O.

Так же, для моментов, нужно задаться каким-то правилом знаков. Сила относительно точки может поворачивать как по часовой стрелке, так и против нее. Я в своих уроках буду придерживаться такого правила:

  • Если сила относительно точки крутит ПРОТИВ часовой стрелке, то момент положительный.
  • Если она крутит ПО часовой стрелки, то соответственно момент отрицательный.

Причем, это правило условно! Какое правило Вы будете использовать совсем не важно, результат получите тот же самый. В теоретической механике, к примеру, делают также как я рассказываю.

Должны разбираться в основных видах опор

Теперь поговорим о самих опорах. В этой статье, будем работать с двумя типами опор: шарнирно-подвижной и шарнирно-неподвижной.

Шарнирно-подвижная опора препятствует вертикальному перемещению элементу конструкции, в связи с чем, в ней, под действием внешней нагрузки возникает вертикальная реакция. Обозначают ее обычно как Ri, где i — точка крепления опоры.

Шарнирно-неподвижная опора имеет две реакции: вертикальную и горизонтальную. Так как препятствует перемещению в этих двух направлениях.

Вообще-то способов закрепления элементов конструкций и их условных обозначений достаточно много, но в рамках этой статьи их рассматривать не будем.

Примеры определения сил реакций опор

Вроде, всю подготовительную информацию дал, теперь будем рассматривать конкретные примеры. И начнем с простейшей расчетной схемы балки.

Определение реакций опор для балки

Возьмем балку на двух опорах, длиной 2 метра. Загрузим ее, посередине пролета, сосредоточенной силой:

Для этой расчетной схемы, выгодно записать такое условие равновесия:
То есть, будем составлять две суммы моментов относительно опорных точек, из которых можно сразу выразить реакции в опорах. В шарнирно-неподвижной опоре горизонтальная реакция будет равна нулю, ввиду того, что горизонтальные силы отсутствуют. Последним уравнением, взяв сумму проекций на вертикальную ось, сможем проверить правильность нахождения опорных реакций, это сумма должна быть равна нулю.

Введем систему координат, пустим ось х вдоль балки, а ось y вертикально. Обозначим реакции в опорах как RA и RB:

Запишем уравнение моментов, относительно точки А. Сила F поворачивает ПО часовой стрелки, записываем ее со знаком МИНУС и умножаем на плечо. Сила RB поворачивает ПРОТИВ часовой стрелки, пишем ее со знаком ПЛЮС и умножаем на плечо. Все это приравниваем к нулю:

Из полученного уравнения выражаем реакцию RB.

Первая реакция найдена! Вторая реакция находится аналогично, только теперь уравнение моментов записываем относительно другой точки:

После нахождения реакций, делаем проверку:

Определение реакций опор для балки с распределенной нагрузкой

Теперь рассмотрим балку, загруженную распределенной нагрузкой:


Перед тем как посчитать реакции опор, распределенную нагрузку нужно свернуть до сосредоточенной силы. Если умножить интенсивность q на длину участка, на которой действует нагрузка, получим силу Q. Сила Q будет находиться ровно посередине балки, как и сила F в нашем первом примере:

Подробно комментировать нахождение реакций в опорах здесь, не буду. Просто приведу решение:

Определение опорных реакций для плоской рамы

Теперь, после освоения азов по расчету реакций, предлагаю выполнить расчет плоской рамы. Для примера, возьмем раму, загруженную всевозможными видами нагрузок:

Проводим ряд действий с расчетной схемой рамы:

  • заменяем опоры на реакции;
  • сворачиваем распределенную нагрузку до сосредоточенной силы;
  • вводим глобальную систему координат x и y.

Для такой расчетной схемы, лучше использовать следующую форму условий равновесия:

Составив первое уравнение, относительно точки A, сразу найдем реакцию в опоре B:

Записав второе уравнение, сумму проекций на ось х, найдем горизонтальную реакцию HA:

И, наконец, третье уравнение, позволит найти реакцию RA:

Не пугайтесь отрицательного значения реакции! Это значит, что при отбрасывании опоры, мы не угадали с направлением этой силы.

Расчет же показал, что RA, направленна в другую сторону:

В итоге, получили следующие реакции в опорах рамы:

Осталось проверить наши расчеты! Для этого предлагаю записать уравнение моментов, относительно точки B. И если, эта сумму будет равна нулю, то расчет выполнен верно:

Как видим, расчет реакций выполнен правильно!

На этом заканчиваю данный урок. Если у Вас остались какие-то вопросы по нахождению опорных реакций, смело задавайте их в комментариях к этой статье. Обязательно на все отвечу!

Спасибо за внимание! Если понравилась данная статья, расскажите о ней своим одногруппникам, не жадничайте :)

Также рекомендую подписаться на наши соц. сети, чтобы быть в курсе обновлений материалов проекта.

Момент силы и правило моментов

теория по физике 🧲 статика

Статика — раздел механики, изучающий условия равновесия тел.

Виды равновесия

Устойчивое равновесие


Если тело вывести из устойчивого равновесия, то появляется сила, возвращающая его в положение равновесия. Устойчивому равновесию соответствует минимальное значение потенциальной энергии (Ep min).

Неустойчивое равновесие


Если тело вывести из неустойчивого равновесия, то возникает сила, удаляющая тело от положения равновесия. Неустойчивому равновесию соответствует максимальное значение потенциальной энергии (Ep max).

Безразличное равновесие


При выведении тела из положения безразличного равновесия дополнительных сил не возникает.

Момент силы

Момент силы — векторная физическая величина, модуль которой равен произведению модуля силы на плечо силы:

M — момент силы. Единица измерения — Ньютон на метр (Н∙м). Направление вектора момента силы всегда совпадает с направлением вектора силы. d — плечо силы. Единица измерения — метр (м).

Плечо силы — кратчайшее расстояние между осью вращения и линией действия силы.

Пример №1. Стальной шар массой 2 кг колеблется на нити длиной 1 м. Чему равен момент силы тяжести относительно оси, проходящей через точку О перпендикулярно плоскости чертежа, в состоянии, представленном на рисунке?

Плечом силы тяжести, или кратчайшим путем от прямой, проходящей через точку О перпендикулярно плоскости чертежа, до линии действия силы тяжести, будет отрезок, равный максимальному отклонению шара от положения равновесия. Следовательно:

Момент силы может быть положительным и отрицательным.

Если сила вызывает вращение тела по часовой стрелке, то такой момент считают положительным:

Если сила вызывает вращение тела против часовой стрелки, то такой момент считают отрицательным:

Правило моментов

Тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

Иначе правило моментов можно сформулировать так:

Сумма моментов сил, вызывающих вращение тела по часовой стрелке, равна сумме моментов сил, вызывающих вращение тела против часовой стрелки.

∑ M п о ч а с . с т р . = ∑ M п р . ч а с . с т р .

Условия равновесия тел

∑ → F i = 0 ; → v o = 0

∑ → F i = 0 ; → v o = 0 и ∑ → F i = 0 ; → v o = 0

Простые механизмы

Простые механизмы — приспособления, служащие для преобразования силы. К ним относится рычаг, наклонная плоскость, блоки, клин и ворот.

Наклонная плоскость

Тело не участвует в поступательном движении:
Тело не участвует во вращательном движении:
Тело находится в состоянии равновесия (не участвует ни в поступательном, ни во вращательном движении)

Дает выигрыш в силе. Чтобы поднять груз на высоту h, нужно приложить силу, равную силе тяжести этого груза. Но, используя наклонную плоскость, можно приложить силу, равную произведению силы тяжести на синус угла уклона плоскости:

Рычаг

Дает выигрыш в силе, равный отношению плеча второй силы к плечу первой:

F 1 F 2 . . = d 2 d 1 . .

Неподвижный блок

Изменяет направление действия силы. Модули и плечи сил при этом равны:

Подвижный блок

Дает выигрыш в силе в 2 раза:

Делит силу на две равные части, направление которых зависит от формы клина:

Золотое правило механики

При использовании простых механизмов мы выигрываем в силе, но проигрываем в расстоянии. Поэтому выигрыша в работе простые механизмы не дают.

Алгоритм решения

Решение

Известна лишь масса батона: m1 = 0,8 кг. Но мы также можем выразить плечи для силы тяжести батона и хлеба. Для этого длину линейки примем за один. Так как линейка поделена на 10 секций, можем считать, что длина каждой равна 0,1. Тогда плечи сил тяжести батона и рыба соответственно равны:

Запишем правило моментов:

Сила тяжести равна произведению массы на ускорение свободного падения. Поэтому:

Отсюда масса рыбы равна:

m 2 = m 1 d 1 d 2 . . = 0 , 8 · 0 , 3 0 , 4 . . = 0 , 6 ( к г )

pазбирался: Алиса Никитина | обсудить разбор | оценить

Однородный куб опирается одним ребром на пол, другим на вертикальную стену (см. рисунок). Плечо силы трения F → тр «> F тр относительно оси, проходящей через точку О3 перпендикулярно плоскости чертежа, равно.

Алгоритм решения

  1. Сформулировать определение плеча силы.
  2. Найти плечо силы трения и аргументировать ответ.

Решение

Плечом силы трения называют кратчайшее расстояние от оси вращения до линии, вдоль которой действует сила. Чтобы найти такое расстояние, нужно провести из точки равновесия перпендикуляр к линии действия силы трения. Отрезок, заключенный между этой точкой и линией, будет являться плечом силы трения. На рисунке этому отрезку соответствует отрезок О3В.

pазбирался: Алиса Никитина | обсудить разбор | оценить

источники:

http://ssopromat.ru/statika/kak-opredelit-reaktsii-v-oporah-dlya-balki/

Момент силы и правило моментов

Момент силы

«Кто овладел творениями Архимеда,

будет меньше удивляться открытиям

 самых великих людей нашего времени»

Г.В. Лейбниц

В данной теме разговор пойдёт о моменте силы.

В прошлой теме говорилось о простых механизмах, которые служат для преобразования механического действия на тело, позволяя изменить точку приложения силы, ее модуль и направление. Выяснили, что рычагом является любое твердое тело, которое может поворачиваться относительно неподвижной опоры или оси.

Разделили рычаги на два вида — рычаг первого и рычаг второго родаРычагом первого рода называется рычаг, ось вращения которого расположена между точками приложения сил, а сами силы направлены в одну сторону. Рычагом второго рода называется рычаг, ось вращения которого расположена по одну сторону от точек приложения сил, а сами силы направлены противоположно друг другу. Расстояние от точки опоры до прямой, вдоль которой действует сила, называется плечом силы.

Вывели условие равновесия рычага, согласно которому, рычаг находится в равновесии при условии, что приложенные к нему силы обратно пропорциональны длинам их плеч.

Применим основное свойство пропорции для условия равновесия рычага. Тогда условие равновесия рычага примет вид:

Произведение модуля силы на ее плечо — это новая физическая величина, которая называется моментом силы (обозначается буквой М).

Измеряется момент силы в Ньютон-метрах (Н·м).

[M] = [Н·м]

Момент силы характеризует действие силы и показывает, что это действие зависит как от модуля силы, так и от ее плеча.

Сформулируем условие равновесия рычага через правило моментоврычаг под действием двух создающих моменты сил находится в равновесии в том случае, если момент силы, вращающей рычаг по часовой стрелке, равен моменту силы, вращающей рычаг против часовой стрелки.

В рассмотренном в прошлой теме опыте силы, действующие на рычаг, были равны, соответственно, 8 Н и 4 Н, а их плечи составляли 2,5 и 5 делений рычага соответственно. Т.е. моменты этих сил равны при равновесии рычага.

А возможно ли равновесие рычага, когда на него действует более двух сил? Да, возможно. Рассмотрим рисунок.

На нем изображен рычаг и несколько сил, действующих на него. Чтобы такой рычаг находился в равновесии нам необходимо:

1. Найти сумму моментов всех сил, вращающих рычаг по часовой стрелке.

Необходимо отметить, плечо силы F5 — это не расстояние OC, а расстояние OB — кратчайшее по перпендикуляру к прямой CB.

2. Найти сумму моментов сил, вращающих рычаг против часовой стрелки.

3. Сравнить сумму моментов всех сил, вращающих рычаг по часовой стрелки и сумму моментов сил, вращающих рычаг против часовой стрелки.

И если эти суммы равны между собой, то рычаг будет находиться в равновесии.

Возникает вопрос: Почему не учли силу F3? Если посмотреть на рисунок, то можно заметить, что плечо этой силы равно нулю. Значит и момент ее равен нулю, и она не влияет на равновесие рычага.

Правило моментов (или условие равновесия рычага) лежит в основе действия различного вида инструментов и устройств, применяемых как в технике, так и в быту там, где требуется получить выигрыш в силе.

Давайте рассмотрим некоторые из них.

Ножницы — рычаг первого рода, ось вращения которого проходит через винт, соединяющий их две половинки. В зависимости от назначения, устройство ножниц бывает различным.

Например, для резки бумаги применяются ножницы, длина лезвий которых сопоставима с длиной ручек, так как при резке бумаги нет необходимости прикладывать большую силу. Ножницы, предназначенные для резки металла, имеют более длинные, по сравнению с размерами лезвия, ручки, так как сила сопротивления металла достаточно большая. И для того чтобы ее уравновесить, необходимо увеличивать плечо действующей силы. А в кусачках — инструменте, предназначенном для «перекусывания» проволоки — разница между длиной режущей части и ручками еще больше.

Рычаги можно обнаружить и в педалях автомобиля, и в клавишах пианино, рукоятки тисков и рычаге сверлильного станка. Также на принципе рычага основано действие рычажных весов. Например, учебные весы или весы, стоящие в магазинах, действуют как равноплечий рычаг.

Множество рычагов можно найти в теле человека, животных, насекомых и птиц. Две кости, соединенные суставом и мышца, прикрепленная к этим костям, и представляют собой самый обычный рычаг.

Рычаги присутствуют даже в растениях. Для примера рассмотрим шалфей обыкновенный. Хоть он и называется «обыкновенным», но он не такой простой цветок.

По своей форме его цветки немного напоминают раскрытую пасть змеи. Из-под верхней «губы» даже высовывается «жало» — это две далеко вытянутые тычинки цветка. Внутри цветка на дне крохотной воронки светится капелька сладкого нектара. Этим нектаром шалфей приманивает шмеля, который и опыляет его. Как только насекомое залезает внутрь цветка за нектаром, из-под верхнего лепестка появляются две тычинки на длинных ножках и касаются спинки шмеля, обсыпая ее пыльцой. Потом шмель перелетает на другой цветок шалфея, залезает внутрь, и пыльца с его спинки попадает прямо на рыльце пестика, а цветку только это и нужно.

Где же у цветков шалфея рычаг? Оказывается, это тычинки с пыльцой. От оси у тычинок цветка отходят два плеча— длинное и короткое. На конце длинного, похожего на коромысло, плеча висит пыльцевой мешочек. А короткое плечо сплющено и закрывает вход в глубину цветка. Подтянется шмель своим хоботком к нектару и обязательно толкнет короткое плечо. А оно тотчас приведет в движение длинное плечо-коромысло. То в свою очередь ударяет по спине шмеля своими пыльниками — вот и сработал рычаг. А шмель летит дальше, касается рыльца пестика нового цветка и опыляет его.

Упражнения.

Задача 1. Определите, с какой силой натянута мышца бицепса при подъеме ядра массой 10 кг, если расстояние от центра ядра до локтя составляет 32 см, а от локтя до места крепления мышцы — 4 см?

Задача 2. На рисунке изображен рычаг, на котором имеются крючки, прикрепленные через одинаковые расстояния. Крючки пронумерованы от минус 3 до 3, причем ноль приходится на середину рычага. К некоторым крючкам прикреплено по нескольку грузов одинаковой массы. Имеется еще один такой же не подвешенный груз. К крючку с каким номером его нужно подвесить, чтобы рычаг находился в равновесии?

Основные выводы:

– Момент силы — это физическая величина, равная произведению модуля силы, вращающей тело, на ее плечо.

– Единицей измерения момента силы является Ньютон-метр.

[M] = [Н·м]

– Правило моментов: рычаг под действием двух создающих моменты сил находится в равновесии в том случае, если момент силы, вращающей рычаг по часовой стрелке, равен моменту силы, вращающей рычаг против часовой стрелки.

Стр. 175 — 176 читать

Момент силы — онлайн калькулятор. Как найти и в чем измеряется момент силы, формулы

момент силы - онлайн калькулятор

Момент силы — это векторная физическая величина, характеризующая действие силы на механический объект, которое может вызвать его вращательное движение. По другому можно сказать, что момент силы – это произведение силы на плечо этой силы.

В данном обзоре приведен онлайн калькулятор момента силы, теоретические основы и формулы расчета момента силы.

Калькулятор момента силы

Для расчета момента силы (M) необходимо ввести в калькуляторе значения силы (F) и радиус-вектор (r). Также имеется возможность определять силу по известному моменту силы и радиус-вектору, и соответственно радиус-вектор по известной силе и моменту силы. Определившись с неизвестной величиной, введя известные значения и нажав кнопку «Вычислить», вы получите нужный результат.

Момент силы — определения и формулы

При вращательном движении линейные кинематические характеристики (пройденный путь s, линейная скорость υ, тангенциальное ускорение aτ) пропорциональны соответствующим угловым характеристикам. При этом коэффициентом пропорциональности является радиус вращения r. В качестве силовой характеристики вращательного движения вводится понятие момента силы. Следует отличать моменты силы относительно оси и относительно точки.

Момент силы относительно точки O

Моментом силы относительно точки O называется векторное произведение M = [r, F], где r — радиус-вектор, проведенный из этой точки к точке приложения силы. Вектор M перпендикулярен плоскости, в которой лежат векторы r и F, и численно равен площади параллелограмма, сторонами которого являются данные векторы M = rFsinφ.

момент силы - онлайн калькулятор
Направление вектора M определяется по правилу векторного произведения: если совместить точки приложения векторов r и F, то кратчайший поворот от радиус-вектора r к силе F будет происходить против часовой стрелки, если
смотреть с вершины вектора M.
Иногда удобнее смотреть вслед вектору M, тогда кратчайший поворот от радиус-вектора r к силе F будет происходить по часовой стрелке. На практике удобно определять направление вектора M по правилу правого винта: если вращать головку винта в направлении действия силы, то его поступательное движение покажет направление момента силы M.

Момент силы равен нулю, если равна нулю сила или линия действия силы проходит через точку O.

момент силы - онлайн калькулятор
Момент силы M не изменяется, если вектор F (точку приложения силы) переносить вдоль линии действия. Наглядно видно, что площади параллелограммов OABC и OA′B′C равны, поскольку они имеют общее основание OC и высоту d. Геометрическая сумма моментов нескольких сил, действующих на материальную точку A относительно некоторой точки O, равна моменту суммы этих сил относительно той же точки M = [r, F] = [r,(F→1+F→2 +…)] = [r,F→1]+[r,F→2]+…

Момент силы относительно некоторой оси

Моментом силы относительно некоторой оси называют проекцию Mz на данную ось вектора момента этой силы M относительно любой точки, лежащей на оси.

Величина Mz не зависит от выбора точки O‘ на оси, поскольку момент силы M при переносе точки приложения силы вдоль линии ее действия не изменяется. Момент силы относительно точки O численно равен моменту этой силы относительно оси OZ, перпендикулярной плоскости, в которой лежат векторы r и F (а значит и точка O).

Плечо силы — это кратчайшее расстояние между осью и линией действия силы d = r sinφ. В таком случае момент силы относительно этой оси может быть определен как произведение силы и плеча M = Fd. Такое определение момента силы дается в элементарной физике. При этом положительными считаются те моменты сил, которые вызывают вращение по часовой стрелке, а отрицательными — вызывающие вращение против часовой стрелки.

Рассмотрим действие сил на тело, способное вращаться вокруг неподвижной оси OO′:
момент силы - онлайн калькулятор
Сила Fa, параллельная оси, может только деформировать эту ось. Не вызовет вращения и сила Fb, лежащая в плоскости, перпендикулярной оси вращения, если линия, вдоль которой она действует, проходит через эту ось, то есть совпадает по направлению с радиус-вектором rb, проведенным в точку ее приложения B.

Вызвать вращение тела вокруг неподвижной оси может только сила или ее составляющая, которая лежит в плоскости, перпендикулярной данной оси, и не совпадает по направлению с радиус-вектором, проведенным в этой плоскости к точке ее приложения. Силу, образующую произвольный угол с осью вращения, можно спроецировать на перпендикулярную плоскость, а затем разложить на тангенциальную Fτ и радиальную Fr составляющие. Именно тангенциальная составляющая силы создает момент относительно оси M = Fτr и является причиной тангенциального ускорения точки тела, к которой она приложена, то есть вызывает изменение модуля линейной скорости этой точки при вращательном движении.

Момент (M) силы (vec{F}) относительно данной оси — это физическая величина, равная произведению модуля силы (F) на её плечо (l):
(M=F cdot l).
([M]=1~Н cdot м).

Линией действия силы называют линию, вдоль которой действует сила.

Плечом силы называют кратчайшее расстояние от оси вращения до линии действия силы.

1. Если сила стремится раскручивать тело против часовой стрелки, то значение момента сил считают положительным: (M>0).
2. Если сила стремится раскручивать тело по часовой стрелке, то значение момента сил считают отрицательным: (M<0).

Условия равновесия твёрдого тела

Твёрдое тело находится в равновесии при выполнении двух условий.

1. Сумма всех действующих на тело сил равна нулю: (vec{F}_1+vec{F}_2+…+vec{F}_N=0).

2. Алгебраическая сумма моментов всех действующих на тело сил относительно любой оси равна нулю: (M_1+M_2+…+M_N=0).

Из определения момента силы следует, что эта физическая величина зависит:

1. от модуля силы, приложенной к телу;

2. от точки приложения данной силы и её направления.

Например, нам никогда не придёт в голову прикрутить дверную ручку в центре двери. Почему дверная ручка располагается в противоположной стороне от дверных петель? Потому что так легче открывать и закрывать дверь. Это доказывает, что действие на дверь зависит от того, где приложена сила.

Для облегчения работы с винтами и гайками используются инструменты с длинной ручкой, например длинный гаечный ключ.

Для подъёма воды из колодца используется колодезный журавль.

Понравилась статья? Поделить с друзьями:
  • Как найти в компе своем изображения
  • Как найти заключенного в казахстане
  • Ошибка при начислении ндфл как исправить
  • Как найти вентилятор на ноутбуке
  • Как составить предложение с определением с прилагательным