Как найти сумму углов многоугольника 8 класс


Загрузить PDF


Загрузить PDF

Многоугольник – это любая замкнутая фигура с тремя и более сторонами, которые представляют собой прямые отрезки. Каждая вершина многоугольника содержит как внутренний, так и внешний угол (изнутри и снаружи фигуры, соответственно). Для решения разных геометрических задач полезно знать, как соотносятся эти углы. В частности, необходимо уметь вычислять сумму внутренних углов многоугольника. Это можно сделать по формуле или через разбиение многоугольника на треугольники.

  1. Изображение с названием Calculate the Sum of Interior Angles Step 1

    1

  2. Изображение с названием Calculate the Sum of Interior Angles Step 2

    2

    Найдите число сторон многоугольника. Помните, что у многоугольника должно быть не менее трех сторон.

    • Например, если дан шестиугольник, то число сторон равно 6.
  3. Изображение с названием Calculate the Sum of Interior Angles Step 3

    3

    Подставьте число сторон в формулу. Найденное значение подставьте в формулу вместо n. Помните, что n – это число сторон многоугольника.

  4. Изображение с названием Calculate the Sum of Interior Angles Step 4

    4

    Вычислите сумму углов. Для этого из числа сторон вычтите 2, а затем результат умножьте на 180. Вы получите суммe внутренних углов многоугольника (в градусах).

    Реклама

  1. Изображение с названием Calculate the Sum of Interior Angles Step 5

    1

    Нарисуйте многоугольник, сумму углов которого нужно вычислить. У многоугольника может быть сколько угодно сторон (но не менее трех), и он может быть правильной или неправильной формы.

    • Например, нужно вычислить сумму внутренних углов шестиугольника. Нарисуйте шестиугольник.
  2. Изображение с названием Calculate the Sum of Interior Angles Step 6

    2

    Выберите любую вершину. Обозначьте ее как A.

    • Вершина – это точка, в которой сходятся две стороны многоугольника.
  3. Изображение с названием Calculate the Sum of Interior Angles Step 7

    3

    Соедините точку А с определенными вершинами многоугольника. Линии, соединяющие вершины, не должны пересекаться. Так вы разобьете многоугольник на треугольники.

    • Выбранную вершину не нужно соединять со смежными ей вершинами, так как они соединены сторонами многоугольника.
    • Например, в случае шестиугольника выбранную вершину нужно соединить с тремя другими вершинами, чтобы получить 4 треугольника.
  4. Изображение с названием Calculate the Sum of Interior Angles Step 8

    4

    Умножьте число треугольников на 180. Так как сумма углов треугольника равна 180, умножив количество треугольников на 180, вы найдете сумму внутренних углов многоугольника.

    • В нашем примере шестигранник разбивается на 4 треугольника. Таким образом, 4times 180=720, то есть сумма внутренних углов шестиугольника равна 720 градусов.

    Реклама

Советы

  • Проверьте ответ при помощи транспортира, измерив каждый угол вручную. Для этого аккуратно нарисуйте прямые стороны многоугольника.

Реклама

Что вам понадобится

  • Карандаш
  • Бумага
  • Транспортир (по желанию)
  • Ручка
  • Ластик
  • Линейка

Похожие статьи

Об этой статье

Эту страницу просматривали 38 537 раз.

Была ли эта статья полезной?

Углы многоугольника

  • Сумма внутренних углов
  • Сумма внешних углов

Внутренний угол многоугольника — это угол, образованный двумя смежными сторонами многоугольника. Например,  ∠ABC  является внутренним углом.

Внутренний угол выпуклого многоугольника

Внешний угол многоугольника — это угол, образованный одной стороной многоугольника и продолжением другой стороны. Например,  ∠LBC  является внешним углом.

внешний угол многоугольника

Количество углов многоугольника всегда равно количеству его сторон. Это относится и к внутренним углам и к внешним. Несмотря на то, что для каждой вершины многоугольника можно построить два равных внешних угла, из них всегда принимается во внимание только один. Следовательно, чтобы найти количество углов любого многоугольника, надо посчитать количество его сторон.

Сумма внутренних углов

Сумма внутренних углов выпуклого многоугольника равна произведению  180°  и количеству сторон без двух.

s = 2d(n — 2),

где  s  — это сумма углов,  2d  — два прямых угла (то есть  2 · 90 = 180°),  а  n  — количество сторон.

Если мы проведём из вершины  A  многоугольника  ABCDEF  все возможные диагонали, то разделим его на треугольники, количество которых будет на два меньше, чем сторон многоугольника:

сумма внутренних углов многоугольника

Следовательно, сумма углов многоугольника будет равна сумме углов всех получившихся треугольников. Так как сумма углов каждого треугольника равна  180°  (2d),  то сумма углов всех треугольников будет равна произведению  2d  на их количество:

s = 2d(n — 2) = 180 · 4 = 720°.

Из этой формулы следует, что сумма внутренних углов является постоянной величиной и зависит от количества сторон многоугольника.

Сумма внешних углов

Сумма внешних углов выпуклого многоугольника равна  360°  (или  4d).

s = 4d,

где  s  — это сумма внешних углов,  4d  — четыре прямых угла (то есть 4 · 90 = 360°).

Сумма внешнего и внутреннего угла при каждой вершине многоугольника равна  180°  (2d),  так как они являются смежными углами. Например,  ∠1  и  ∠2:

Сумма внешних углов многоугольника

Следовательно, если многоугольник имеет  n  сторон (и  n  вершин), то сумма внешних и внутренних углов при всех  n  вершинах будет равна  2dn.  Чтобы из этой суммы  2dn  получить только сумму внешних углов, надо из неё вычесть сумму внутренних углов, то есть  2d(n — 2):

s = 2dn — 2d(n — 2) = 2dn — 2dn + 4d = 4d.

Предварительная подготовка к уроку: учащиеся должны знать следующие темы: «Многоугольник», «Выпуклый многоугольник».

Цели урока: 1) образовательная: формирование новых знаний по данной теме, умение применять при решении задач; 2) воспитательная: формирование культуры личности, отношение к математике как части общечеловеческой культуры; 3) развивающая: развитие логического мышления, пространственного воображения.

Тип урока: урок изучения нового материала.

Вид урока: урок-лекция.

Ход урока


1. Объяснение нового материала.

Известно, что сумма углов выпуклого n-угольника равна 180°(n – 2). Оказывается, что это утверждение справедливо и для невыпуклых многоугольников.

Рассмотрим самопересекающиеся ломаные. Будем называть их звездчатыми многогранниками.

рис.1

Зафиксируем направление подсчета углов против часовой стрелки. Заметим, что углы, образованные замкнутой ломаной, зависят от направления ее обхода. Если направление обхода ломаной меняется на противоположное, то углами многоугольника будут углы, дополняющие углы исходного многоугольника до 360°.

Если М – многоугольник, образованный простой замкнутой линией, которая проходит в направлении по часовой стрелке, то сумма углов этого многоугольника будет равна 180°(n  –  2). Если же ломаная проходит в направлении против часовой стрелки, то сумма углов будет равна 180°(n + 2).

рис.2

Таким образом, общая формула суммы углов многоугольника, образованного простой замкнутой ломаной, имеет вид ∑ = 180°(n ± 2), ∑ – сумма углов, n – число углов многоугольника, плюс или минус берется в зависимости от направления обхода ломаной.

Наша задача состоит в том, чтобы вывести формулу суммы углов произвольного многоугольного, образованного замкнутой (возможно самопересекающейся) ломаной. Для этого введем понятие степени многоугольника.

Степенью многоугольника называется число оборотов, совершаемое точкой при полном последовательном обходе его сторон. Причем обороты, совершаемые в направлении против часовый, считаются со знаком « + », а обороты по часовой стрелке – со знаком « – ».

У многоугольника, образованного простой замкнутой ломаной, степень +1 или -1 в зависимости от направления обхода. Степень звездчатых семиугольников, изображенных выше, равна соответственно двум и трем.

Теорема. Для произвольного многоугольника имеет место формула ∑ = 180°(n + 2m), где ∑ – сумма углов, n – число углов, m – степень многоугольника.

Доказательство. Пусть многоугольник М имеет степень m. М1, М2, …, Мk  – простые замкнутые ломаные, проходя по которым точка совершает полные обороты. А1, А2, …, Аk  – соответствующие точки самопересечения ломаной, не являющиеся ее вершинами.

рис.3

Обозначим число вершин многоугольника М, входящих в многоугольники М1, М2, …, Мk, через n1, n2, …, nk соответственно. Поскольку, помимо вершин многоугольника М, к этим многоугольникам добавляются еще вершины А1, А2, …, Аk, то число вершин многоугольников М1, М2, …, Мk будет равно соответственно n1 + 1, n2 + 1, …, nk+ 1. Тогда суммы этих углов будут равны 180°(n1 + 1 ± 2), 1800(n2 + 1 ± 2), …, 180°(nk + 1 ± 2). Плюс или минус берется в зависимости от направления обхода ломаных.

В качестве примера рассмотрим вычисление суммы углов пятиконечной звездочки. Степень соответствующей замкнутой ломаной равна -2. Поэтому искомая сумма углов равна 180°.

Сумма углов выпуклого многоугольника М0, оставшегося от многоугольника М после удаления многоугольников М1, М2, …, Мk равна 180°(n – n1 – n2  – … – nk + k ± 2).

Суммы углов многоугольников М0, М1, М2, …, Мk дают сумму углов многоугольника М, и в каждой вершине А1, А2, …, Аk дополнительно получим 360°.

Следовательно, имеем равенство 180°(n1 + 1 ± 2) + … + 180°(nk + 1 ± 2) + 180°(n – n1 – n2 – … – nk + k ± 2) = ∑ + 360°k. Приводя подобные члены, получим ∑ = 180°(n ± 2 ± … ±2) = 180°(n + 2m), где m – степень многоугольника  М.

2. Решение задач.

1) Сумма углов выпуклого многоугольника равна 900°. Сколько у него сторон?

2) Найти сумму углов семиконечной звездочки, изображенной выше.


3. Итог урока.

Обратить внимание учащихся на введение новых понятий (звездчатый многоугольник, степень многоугольника), формулу для нахождения суммы углов произвольного многоугольника.


4. Домашнее задание.

1) Теория (конспект урока).

2) Составить две задачи по заданной теме.

В геометрии многоугольниками называют плоские замкнутые фигуры, состоящие из нескольких прямых отрезков. Суммарная длина всех сторон называется периметром.

Поговорим подробнее о видах многоугольников и их характеристиках.

Определение

Многоугольник — это замкнутая ломаная линия.

Многоугольник — это простое понятие: Если в замкнутой ломаной линии соседние стороны имеют общую точку и любые две стороны не являются продолжением друг друга, то фигура называется многоугольником.

Пример многоугольников

При изучении темы, что такое многоугольники, применяются следующие термины:

  • Вершины многоугольника.
  • Стороны замкнутой ломаной.
  • Углы, образованные между смежными сторонами.
  • Отрезки между несмежными вершинами называются диагоналями.
  • Сумма длин всех сторон фигуры является периметром.
  • Внутренние углы между соседними сторонами. Число углов равно числу сторон и вершин.

Наименования данных фигур зависят от количества сторон:

  • Треугольник – это 3 стороны.
  • Четырехугольник имеет 4 стороны.
  • Пятиугольник – это 5 сторон и пр.

Все фигуры имеют буквенные обозначения, необходимо правильно проставлять их при вершинах.

Например, обозначение пятиугольника ABCDE будет выглядеть так:

Пример пятиугольника

В этом пятиугольнике вершинами являются точки: A, B, C, D и E.

Отрезки: AB, BC, CD, DE и EA являются сторонами пятиугольника.

Виды многоугольников

Различают несколько видов этих фигур: выпуклые, вогнутые, правильные и неправильные.

Какие многоугольники называются выпуклыми и невыпуклыми (вогнутыми)? Чтобы определить, какой многоугольник называется выпуклым, достаточно знать его определение.

Если стороны, при продолжении до прямой линии, не пересекают плоскость, то это выпуклый многоугольник.

Выпуклый и вогнутый многоугольники

Определение невыпуклого многоугольника: если при продолжении сторон прямые линии пересекают плоскость фигуры, то она является вогнутой.

Что такое правильные многоугольники

Выпуклые многоугольники, у которых все стороны и все углы равны, называются правильными.

На рисунке показан правильный многоугольник.

пример правильного многоугольника

Как найти периметр многоугольника и определить диагонали

Периметром многоугольника называется сумма длин его сторон.

Пример нахождения периметра многоугольника

Для четырехугольника ABCD периметр будет равен сумме его сторон: AB + BC + CD + DA.

Пример

Задание: Длина одной стороны четырехугольника ABCD равна 3 см. Требуется найти
периметр четырехугольника.

Решение: AB + BC + CD + DA = 3 + 3 + 3 + 3 = 12 см

Ответ: периметр четырехугольника ABCD равен 12 см.

Диагональю многоугольника является отрезок, который соединяет вершины противоположных углов.

Например, отрезок AD будет являться диагональю фигуры ABCDEF:

Пример диагонали

Свойство треугольников: если треугольник не имеет углов с общими сторонами, диагональ он иметь не может.

Если из вершин провести несколько диагоналей, то они разделят фигуру на несколько треугольников:

Пример треугольника внутри многоугольника

Количество треугольников будет на 2 меньше, чем число сторон:

Если t — количество треугольников, а n — количество сторон, то формула будет выглядеть так: t = n – 2.

Разделение многоугольника диагоналями на несколько треугольников помогает быстро найти площадь.

Чтобы найти площадь многоугольника, нужно разделить его на треугольники, затем найти их площадь и сложить полученные результаты.

Сумма углов выпуклого многоугольника

Научимся находить сумму углов выпуклого четырёхугольника, не только внешних, но и внутренних. Но сначала определим, какие углы называются внутренними углами выпуклого многоугольника.

Внутренним называется угол между смежными сторонами.

Например, ∠ABC является внутренним для ABCDEF.

Пример внутреннего угла

Внешним называют угол между стороной фигуры и линейным продолжением близлежащего отрезка.

Например, ∠LBC является внешним углом для ABCDEF.

Пример внешнего угла

Правило: сумма углов выпуклого многоугольника всегда равно числу его сторон. Это определение относится ко всем углам.

Это значит, чтобы найти количество углов, достаточно посчитать количество всех его сторон. Значит сумма углов четырехугольника будет равна четырем.

Сумма внутренних углов

Правило для нахождения суммы углов гласит: чтобы найти сумму всех внутренних углов выпуклого многоугольника, нужно умножить уменьшенное на 2 количество его сторон на 180°.

Обозначения выглядят следующим образом:

  • сумма углов – s;
  • число сторон – n;
  •  два прямых угла (2 · 90 = 180°) – 2d.

Формула многоугольника для нахождения суммы углов: s = 2d · (n – 2).

Найти сумму углов также можно с помощью деления фигуры на треугольники. Она будет равна сумме углов всех треугольников (180° · n).

Пример:

Сумма внутренних углов

Если у фигуры 4 треугольника, то сумму всех углов находим по следующей формуле: s = 2d (n — 2) = 180 · 4 = 720°.

Это означает, что сумма внутренних углов – это постоянная величина, которая зависит от количества его сторон.

Нет времени решать самому?

Наши эксперты помогут!

Сумма внешних углов

Определение: Сумму всех внешних углов многоугольника находим по формуле: s = 4d.

Где:

  • s — сумма внешних углов;
  • 4d — четыре прямых угла (4 · 90 = 360°).

Сумма смежных (внутреннего и внешнего) углов, лежащих при вершине, равна 180° · (2d).

Например, ∠1 и ∠2:

Сумма внешних углов

Если имеется n вершин, то сумма внутренних и внешних и углов будет равна 2dn.

Пример

Задание: Найдите сумму углов выпуклого двенадцатиугольника.

Решение: Для выпуклого n-угольника сумма углов равна 180° (n -2).

Если имеется 12 вершин, то сумма всех углов будет рассчитываться следующим образом: 2 · 90 · (12 – 2) = 1800°.

Зная основные формулы и определения для многоугольников, можно легко справиться с любой задачей.

Теорема

(о сумме углов выпуклого многоугольника)

Сумма внутренних углов выпуклого многоугольника равна 180º(n-2).

(n — количество сторон многоугольника).

Другой вариант формулировки этой теоремы:

Сумма внутренних углов выпуклого n — угольника равна 180º(n-2).

summa-uglov-mnogougolnika

Дано:

    [{A_1}{A_2}{A_3}...{A_{n - 1}}{A_n}]

—  выпуклый n -угольник.

Доказать:

    [angle {A_1} + angle {A_2} + angle {A_3} + ... + angle {A_{n - 1}} + angle {A_n} = ]

    [ = {180^o}(n - 2)]

Доказательство:

summa-uglov-n-ugolnika1-й способ

Обозначим внутри многоугольника произвольную точку O.

Соединим точку O с вершинами многоугольника.

Получили n треугольников.

    [angle {A_1} + angle {A_2} + angle {A_3} + ... + angle {A_{n - 1}} + angle {A_n} = ]

    [ = angle O{A_1}{A_2} + angle O{A_2}{A_1} + ... + ]

    [ + angle O{A_{n - 1}}{A_n} + angle O{A_n}{A_{n - 1}}.]

Сумма внутренних углов многоугольника равна сумме углов всех треугольников без углов при вершине O.

Так как сумма углов при вершине O составляет 360º

    [angle {A_1}O{A_2} + angle {A_2}O{A_3} + ... + angle {A_{n - 1}}O{A_n} = {360^o},]

то сумма углов многоугольника равна сумме углов n треугольников минус 360º.

Сумма углов каждого треугольника равна 180º.

Таким образом, искомая сумма углов n угольника равна

    [angle {A_1} + angle {A_2} + angle {A_3} + ... + angle {A_{n - 1}} + angle {A_n} = ]

    [ = {180^o} cdot n - {360^o} = {180^o}(n - 2).]

Что и требовалось доказать.

teorema-o-summe-uglov-mnogougolnika2-й способ

Соединим вершину A1 со всеми остальными вершинами многоугольника. Получили n-2 треугольника.

Сумма всех углов этих треугольников равна сумме углов многоугольника.

Сумма углов углов каждого из треугольников равна 180º.

Следовательно, сумма углов многоугольника

    [angle {A_1} + angle {A_2} + angle {A_3} + ... + angle {A_{n - 1}} + angle {A_n} = ]

    [ = {180^o}(n - 2).]

Что и требовалось доказать.

Понравилась статья? Поделить с друзьями:
  • Как найти касательный вектор к кривой
  • Доступ к этому видео ограничен ограничение наложено администратором google workspace как исправить
  • Соленая почва как исправить
  • Как найти забытые наушники в айфоне
  • Как в текстовом редакторе найти поиск