Как найти сумму векторов 9 класса

Начнём
с примера.

Под
действием воздушных масс воздушный шар сначала двигался из точки А в точку B,
а затем из точки B переместился в точку C.

Каждое
из этих двух перемещений можно представить в виде вектора  и .

Но
можно ведь сказать, что в результате воздушный шар из точки А попал в точку C.
И это перемещение задает вектор .

Так
как перемещение из точки А в C
складывается из перемещений из точки А в B
и из B в C,
то можно записать, что вектор .

Этот
пример подводит нас к понятию суммы двух векторов.

Рассмотрим
два ненулевых вектора:  и
.

Отметим
произвольную точку А и отложим от неё вектор . Далее от точки B
отложим вектор .

Можем
изобразить вектор ,
который называется суммой векторов  и . Сумму векторов
обозначают так .

Данное
правило сложения векторов будем называть правилом треугольника.

Вы
могли усомниться, что точку А, действительно, можно выбирать произвольно.

Докажем
это.

Найдём
сумму векторов  и
, но начнём откладывать
их от некоторой точки А1.

Нам необходимо доказать,
что полученный вектор .

Из построений очевидно,
что векторы

,  параллелограмм 

Аналогично, из равенства
векторов

,  параллелограмм  

Из полученных равенств
получаем, что равны ,

 параллелограмм  
.

Что
и требовалось доказать.

Изобразить
вектор суммы двух векторов:

Решение.

,      

А также, опираясь на
пункты 1 и 2, правило треугольника можно сформулировать так. Сумма векторов . Где А, B
и C — произвольные точки.

Для
троек произвольных точек продолжим равенства.

Для
точек К, L и М сумма векторов .

Для
точек X, Y
и Z сумма векторов .

Для
последней тройки точек R,
S и Т сумма векторов .

Выполним
несколько заданий.

Задача.
Начертить
попарно неколлинеарные векторы ,  и .

Построить:
, , .

Решение.

Задача.
Для
каждого равенства, задающего сумму векторов,

указать
соответствующий рисунок.

, ,

Решение.

Посмотрим
на первый рисунок. Найдём вектор, начало которого совпадает с началом некоторого
вектора, а конец — с концом некоторого вектора.

Таким
вектором является вектор .
Значит, он будет являться суммой, а векторы  и  — соответственно
первым и вторым слагаемыми.

Посмотрим
на следующий рисунок. Рассуждая так же как в предыдущем пункте, делаем вывод,
что вектор является
суммой, а векторы  и
 — соответственно
первым и вторым слагаемыми.

На
последнем рисунке вектора  является
суммой, а векторы  и
  —
соответственно первым и вторым слагаемыми.

Задача.
Стороны ,
 и  треугольника
соответственно равны ,
 и .Найти длины векторов: , , .

Решение.

 

 

 

Ответ:
, , .

Подведём
итоги нашего урока.

Сегодня
мы познакомились с правилом треугольника сложения векторов.

Для
того, чтобы изобразить вектор суммы двух векторов  и , от некоторой точки А
откладывают вектор ,
равный вектору .
Далее от точки  B откладывают
вектор ,
равный вектору .
Тогда вектор  является
вектором суммы двух векторов  и
.

Исходя
из данных построений, правило треугольника можно записать в виде такой
формулы  ,
где А, B и C
— произвольные точки.

Складывая
по правилу треугольника произвольный вектор  с нулевым вектором,
получаем, что их сумма равна вектору .

Сложение
и вычитание векторов.

Сумма
двух векторов. Законы сложения векторов. Правило параллелограмма.

     Представим себе такую ситуацию.
Направляясь из школы домой, вам захотелось пить и вы решили зайти сначала в
магазин, а затем уже домой. Цель достигнута: вы из школы добрались домой.
Сейчас мы описали принцип первого правила сложения векторов.

Правило треугольника.

     Чтобы найти вектор суммы двух векторов  и , нужно:

1)   совместить параллельным переносом начало вектора  с концом
вектора
;

2)   провести вектор из начала вектора  в конец
вектора
;

3)   получившийся вектор и есть вектор суммы: .

                                              

     Если к вектору  прибавить
нулевой вектор
 по правилу
треугольника, то получим вектор
, т.е.
справедливо равенство: 
.

Утверждение. Если  и  –
произвольные точки, то
.

Например, .

Сложение векторов подчиняется алгебраическим законам.

ТЕОРЕМА.
Для любых векторов  и  справедливы
равенства:

                      (переместительный
закон)

                      (сочетательный
закон).

                                          
Дано: 

                                 
Доказать: 1)  

                                                     2)  

Доказательство.

Доказательство теоремы в случае, когда
векторы коллинеарны достаточно простое. Его вы можете провести самостоятельно.
Мы рассмотрим случай, когда данные векторы неколлинеарны.

1). Отметим произвольную точку  и отложим от этой точки
вектор
. Воспользуемся правилом
треугольника и прибавим к нему вектор
. Вектором суммы этих двух
векторов является вектор
. (Рисунок слева).

Теперь от точки  и отложим вектор . По правилу треугольника
прибавим к нему вектор
. Вектором суммы этих двух
векторов является вектор
. (Рисунок справа).

 – параллелограмм и точка  совпадает с точкой . Значит, , т.е.

2). От точки  отложим вектор , от точки  отложим вектор , а от точки  – вектор . Найдём суммы векторов по
правилу треугольника.

Теорема доказана.

     При доказательстве первой формулы получился параллелограмм,
причём, из точки
 выходят два вектора  и , а вектор их суммы является
диагональю параллелограмма. На основе этого возникает второе правило
геометрического сложения векторов.

Правило параллелограмма.

     Чтобы найти вектор суммы двух векторов  и , нужно:

1)   совместить параллельным переносом начала векторов  и  ;

2)      на этих векторах достроить параллелограмм;

3)   вектором суммы   является
вектор, который лежит на диагонали параллелограмма, имеющий своё начало в
начале исходных векторов.

Сумма
нескольких векторов.

     Сложение нескольких векторов происходит по принципу правила
треугольника. Складываются два вектора, к вектору суммы прибавляется следующий
вектор и т.д. Приведём пример.

Сложить векторы .

Отметим точку  и отложим от неё вектор . Прибавим к нему вектор  по правилу треугольника. . Теперь к вектору  прибавим вектор . . К вектору  прибавляем вектор . . Осталось к вектору  прибавить вектор . .

Итак, . Значит, суммой векторов  является вектор, с началом
в начале первого вектора и концом – в конце последнего. Такое сложение векторов
называется правилом многоугольника.

Правило многоугольника.

     Чтобы найти вектор суммы нескольких  векторов, нужно:

1)      последовательно совместить параллельным переносом начало
последующего вектора с концом предыдущего
;

2)      вектором суммы всех векторов является вектор, с началом в
начале первого вектора и концом – в конце последнего.

Вычитание
векторов.

 Определение. Разностью
двух векторов
 и  называется такой вектор , что при
сложении его с вектором 
 получается
вектор
.

Вычитание
векторов можно производить, руководствуясь двумя понятиями: следствием из
правила треугольника сложения векторов; определением разности двух чисел. Разберём
каждое из них.

    
Сложим векторы
 и  по правилу треугольника. По
рисунку видно, что
. Отсюда,  и . Значит, разность двух
векторов можно составить, совмещая их начала, либо совмещая их концы. Отсюда
два правила:

I правило
вычитания векторов.

Чтобы найти вектор разности двух векторов, нужно:

1)      совместить параллельным переносом начала этих векторов;

2)      вектором разности  является вектор с началом в конце второго вектора
и концом в конце первого вектора.

II правило
вычитания векторов.

Чтобы найти вектор разности двух векторов, нужно:

1)      совместить параллельным переносом концы этих векторов;

2)      вектором разности  является вектор с началом в начале первого
вектора и концом в начале второго вектора.

Далее, из алгебры мы знаем, что для того, чтобы
из числа
 вычесть
число
, нужно к числу  прибавить
число, противоположное числу
, т.е. . Такое же
правило справедливо и для векторов.

ТЕОРЕМА.
Для любых векторов  справедливо
равенство:

                                                  

  

                                    Дано: 

                           Доказать:

Доказательство.

1. Найдём разность векторов  по
I правилу. Вектором разности является
вектор
 (рисунок слева). А теперь
найдём сумму векторов
 по правилу
треугольника, где
 – вектор,
противоположный вектору
. Вектором
суммы является вектор
 (рисунок
справа). Не трудно заметить, что
. Они сонаправлены и имеют
одинаковые модули.

2. А теперь докажем то же самое аналитически. По определению
разности
векторов,

Что и требовалось доказать.

Из этой теоремы следует третье правило
вычитания векторов.

III правило
вычитания векторов.

Чтобы найти вектор разности двух векторов, нужно к первому вектору прибавить вектор, противоположный
второму.

Используя это правило вычитания векторов,
способ сложения векторов выбирается произвольно.

1. Вектор  является суммой векторов  и . Определите, какой из четырёх рисунков верный.

2. Проведите векторы . Какая геометрическая фигура у вас
получилась?

3. Вектор  является разностью векторов  и . Определите, какой из четырёх рисунков
верный.

4. Вектор  является суммой векторов  и . Определите, какой из четырёх рисунков
верный.

5. Выразите
вектор
 через векторы , используя рисунок.

6. Выразите
вектор
 через векторы , используя рисунок.

7. Упростите выражения:

8. Длина вектора  равна , а длина вектора  равна . Сколько различных целых значений может
принимать длина вектора
?

9. Длина вектора  равна , а длина вектора  равна . Сколько различных целых значений может
принимать длина вектора
?

10. Длина вектора  равна , а длина вектора  равна . Сколько различных целых значений может
принимать длина вектора
?

11. Длина вектора  равна , а длина вектора  равна . Сколько различных целых значений может
принимать длина вектора
?

12. Длина вектора  равна , а длина вектора  равна . Сколько различных целых значений может
принимать длина вектора
?

13. В квадрате   проведены диагонали  и  . Укажите номера верных утверждений.

1)  

2)  

3)  

4)  

5)  

6)  

7)  

8)   

14.  – параллелограмм. Найдите сумму векторов .

15.  – прямоугольник. Диагонали  и  пересекаются в точке . Укажите номера верных утверждений.

1)  

2)  

3)  

4)  

5)  

6)  

7)  

8)   

9)  

10)

16.  – параллелограмм. Выразите векторы  и  через векторы  и .

17.  – параллелограмм. Выразите векторы  и  через векторы  и .

18.  – прямоугольник. Выразите векторы  и  через векторы  и .

19.  – параллелограмм. Выразите векторы  и  через векторы  и .

20. Найдите длины
векторов
, изображённых на клетчатой бумаге с
размерами клетки 1 х 1.

21. Две стороны
прямоугольника
 равны 20 и 21. Найдите длину суммы
векторов
 и .

22. Две стороны
прямоугольника
 равны 7 и 24. Найдите длину разности
векторов
 и .

23. На каждом рисунке
найдите длину вектора
 (размеры клетки 1 х 1).

24. На каждом рисунке
найдите длину суммы векторов
 и  (размеры клетки 1 х 1).

25. На каждом рисунке
найдите длину разности векторов
 и , изображённых на клетчатой бумаге с
размерами клетки 1 х 1.

Тема 24.

Сумма векторов. Разность векторов.

Рассмотрим пример. Пусть материальная точка переместилась из точки A в точку B, а затем из точки B в точку C. В результате этих перемещений, которые можно представить векторами AB⃗ и BC⃗, материальная точка переместилась из точки A в точку C. Поэтому результирующее перемещение можно представить вектором AC⃗. Поскольку перемещение из точки A в точку C складывается из перемещения из A в B и перемещения из B в C, то вектор AC⃗ естественно назвать суммой векторов AB⃗ и BC⃗:AC⃗=AB⃗+BC⃗.

Рассмотренный пример приводит нас к понятию суммы двух векторов.

Пусть a⃗ и b⃗ – два вектора. Отметим произвольную точку A и отложим от этой точки вектор AB⃗ равный a⃗. Затем от точки B отложим вектор BC⃗, равный b⃗. Вектор AC⃗ называется суммой векторов a⃗ и b⃗. Это правило сложения векторов называется правилом треугольника. Рисунок это поясняет.

Сумма векторовa⃗ и b⃗ обозначается так: a⃗+b⃗.

Складывая по правилу треугольника произвольный вектор a⃗ с нулевым вектором, получаем, что для любого вектора a⃗ справедливо равенство

a⃗+0⃗=a⃗

Правило треугольника можно сформулировать также следующим образом: если A, B и C – произвольные точки, то AB⃗+BC⃗=AC⃗.

Это равенство справедливо для произвольных точек A, B и C, в частности, в том случае, когда две из них или даже все три совпадают.

Теорема

Для любых векторов a⃗,b⃗ и c⃗ справедливы равенства:

1. a⃗+b⃗=b⃗+a⃗ (переместительный закон).

2. a⃗+b⃗+c⃗=a⃗+b⃗+c⃗ (сочетательный закон).

Докажем первое равенство. Рассмотрим случай, когда векторы a⃗ и b⃗ не коллинеарны. От произвольной точки A отложим векторы ABAD и на этих векторах построим параллелограмм ABCD. По правилу треугольника AC⃗=AB⃗+BC⃗=a⃗+b⃗. Аналогично AC⃗=AD⃗+DC⃗=b⃗+a⃗. Отсюда следует, что a⃗+b⃗=b⃗+a⃗.

При доказательстве первого свойства мы обосновали так называемое правило параллелограмма сложения неколлинеарных векторов: чтобы сложить неколлинеарные векторы a⃗ и b⃗, нужно отложить от какой-нибудь точки A векторы AB⃗=a⃗ и AD⃗=b⃗ и построить параллелограмм ABCD. Тогда вектор AC⃗ равен a⃗+b⃗. Правило параллелограмма часто используется в физике, например при сложении двух сил.

Сложение нескольких векторов производится следующим образом: первый вектор складывается со вторым, затем их сумма складывается с третьим вектором и т.д. Из законов сложения векторов следует, что сумма нескольких векторов не зависит от того, в каком порядке они складываются. Например, от произвольной точки A отложен вектор AB⃗=a⃗, затем от точки B отложен вектор BC⃗=b⃗ и, наконец, от точки С отложен вектор CD⃗=c⃗. В результате получается вектор AD⃗=a⃗+b⃗+c⃗.

Аналогично можно построить сумму четырех, пяти и вообще любого числа векторов. Это правило построения суммы нескольких векторов называется правилом многоугольника.

Разностью векторов a⃗ и b⃗ называется такой вектор, сумма которого с вектором b⃗ равна вектору a⃗.

Разность векторов a⃗ и b⃗ обозначается так:a⃗-b⃗.

Рассмотрим задачу о построении двух векторов.

Даны векторы a⃗ и b⃗. Построить вектор a⃗-b⃗.

Отметим на плоскости произвольную точку O и отложим от этой точки векторы OA⃗=a⃗ и OB⃗=b⃗.

По правилу треугольника OB⃗+BA⃗=OA⃗ или b⃗+BA⃗=a⃗. Таким образом, сумма векторов BA⃗ и b⃗ равна a⃗. По определению разности векторов это означает, что BA⃗=a⃗-b⃗, то есть вектор BA⃗ искомый.

Пусть a⃗ – произвольный ненулевой вектор. Вектор a1⃗ называется противоположным вектору a⃗, если векторы a⃗ и a1⃗ имеют равные длины и противоположно направлены.

Вектор, противоположный вектору a⃗, обозначается так: -a⃗. Очевидно, что a⃗+-a⃗=0⃗.

Теорема

Для любых векторов a⃗ и b⃗ справедливо равенство a⃗-b⃗=a⃗+-b⃗.

Сегодня мы научились складывать и вычитать векторы. Узнали правило треугольника, правило параллелограмма и правило многоугольника.

Сложение векторов по правилу параллелограмма

Даны векторы

a→

 и

b→

. Если векторы

a→

 и

b→

 исходят из одной точки, то вектор суммы

c→

 исходит из общей начальной точки векторов и является диагональю параллелограмма, сторонами которого являются векторы

a→

 и

b→

.

Запись:

a→+b→=c→

 или

AB→+AD→=AC→

.

Такой приём сложения векторов называется правилом параллелограмма.

Так как

DC→=AB→=b→

, то

a→+b→=AD→+DC→=AC→=c→

; выполняя сложение по правилу треугольника, убедимся, что суммой остаётся тот же вектор

c→

. Поэтому оба способа сложения равноценны.

1. Для любых двух векторов

a→

 и

b→

 в силе равенство

a→+b→=b→+a→

 (коммутативный, или переместительный, закон сложения).

2. Для любых трёх векторов

a→

,

b→

,

c→

 в силе равенство

a→+b→+c→=a→+b→+c→

 (ассоциативный, или сочетательный, закон сложения).

В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.

  • Сумма векторов

    • Формула сложения векторов

    • Свойства сложения векторов

  • Разность векторов

    • Формула вычитания векторов

  • Примеры задач

Сумма векторов

Сложение векторов выполняется по правилу треугольника.

Правило треугольника для сложения векторов

Геометрическая интерпретация:

Суммой a и b является вектор c, начало которого совпадает с началом a, а конец – с концом b. При этом конец вектора a должен совпадать с началом вектора b.

Для сложения векторов также используется правило параллелограмма.

Правило параллелограмма для сложения векторов

Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c, совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.

Формула сложения векторов

ci = ai + bi

Элементы вектора c равняются попарной сумме соответствующих элементов a и b.

Для плоских задач a + b = {ax + bx; ay + by}
Для трехмерных задач a + b = {ax + bx; ay + by; az + bz}
Для n-мерных векторов a + b = {a1 + b1; a2 + b2; … an + bn}

Свойства сложения векторов

1. Коммутативность: a + b = b + a

2. Ассоциативность: (a + b) + c = a + (b + c)

3. Прибавление к нулю: a + 0 = a

4. Сумма противоположных векторов: a + (-a) = 0

Примечание: Вектор a коллинеарен и равен по длине a, но имеет противоположное направление, из-за чего называется противоположным.

Разность векторов

Для вычитания векторов также применяется правило треугольника.

Правило треугольника для вычитания векторов

Если из вектора a вычесть b, то получится c, причем должно соблюдаться условие: b + c = a

Формула вычитания векторов

ci = ai – bi

Элементы вектора c равны попарной разности соответствующих элементов a и b.

Для плоских задач ab = {ax — bx; ay — by}
Для трехмерных задач ab = {ax — bx; ay — by; az — bz}
Для n-мерных векторов ab = {a1 — b1; a2 — b2; … an — bn}

Примеры задач

Задание 1
Вычислим сумму векторов a = {3; 5} и b = {2; 7}.

Решение:
a + b = {3 + 2; 5 + 7} = {5; 12}.

Задание 2
Найдем разность векторов a = {4; 8; -2} и b = {-1; 9; 5}.

Решение:
ab = {4 – (-1); 8 – 9; -2 – 5} = {5; -1; -7}.

Понравилась статья? Поделить с друзьями:
  • Мтс банк как найти договор по кредиту
  • Утерян телефон как найти полиция
  • Брандмауэр как найти правило
  • Как найти свой уникальный номер
  • Как найти удаленный контакт в телефоне самсунг