Найти сумму целых решений неравенства:|x+2|*(x²+3x-4)<0
Решение:
Рассмотрим первый множитель произведения левой части неравенства
|x+2|≥0 для всех значений х∈R
х+2=0 при х=-2
Следовательно при х=-2 неравенство не имеет смысла.
Поэтому можно записать, что
x² + 3x — 4 < 0
Решим неравенство по методу интервалов. Разложим квадратный трехчлен на множителя решив квадратное уравнение
x² + 3x — 4 = 0
D =3²-4*(-4) = 9 + 16 = 25
х₁=(-3-5)/2=-4
х₂=(-3+5)/2=1
Поэтому x² + 3x — 4 =(х+4)(x-1)
Заново запишем неравенство
(х + 4)(x — 1) < 0
На числовой прямой отобразим точки где левая часть неравенства меняет свои знаки. По методу подстановки определим знаки левой части неравенства и отобразим их на числовой прямой. Например при х=0 (х + 4)(x — 1)=4*(-1)=-4<0
+ 0 — 0 +
———————!————————!—————
-4 1
Следовательно x² + 3x — 4 < 0 при х∈(-4;1)
Учитывая что х≠-2 можно записать что исходное неравенство
|x+2|*(x²+3x-4)<0 истинно для всех значений х∈(-4;-2)U(-2;1).
Целых решений неравенства три: -3; -1; 0.
Сумма целых решений неравенства равна 0 — 1 — 3 = -4
Ответ:-4
Что значит найдите сумму целых решений неравенства
Обновлено 5 марта, 2022
Сумма целых решений неравенства
Нужно найти сумму целых решений неравенства , удовлетворяющих условию x >= -1
Не пойму с чего начать. И не пойму как выразить x 🙁
Допустим знак корня распространяется на оба множителя
Замена 7–3x=u
√((u+2)(u–2)) ≥ 0
(u+2)(u–2) ≥ 0
u ≤ –2 ∨ u ≥ 2
7–3x ≤ –2 ∨ 7–3x ≥ 2
–3x ≤ –9 ∨ –3x ≥ –5
x ≥ 3 ∨ x ≤ 5/3
Если добавить условие x ≥ -1, то решение будет составлять множество [-1;5/3]∪[3;+∞), в котором бесконечно много целых решений.
При таком условии вопрос некорректен.
Значит имелось в виду, что знак корня распространяется только на первый множитель
√(u+2) (u-2) ≥ 0
число под корнем должно быть неотрицательным
второй множитель может быть отрицательным, только если первый равен нулю
u+2 ≥ 0 ∧ ((u–2) ≥ 0 ∨ u+2 = 0)
u ≥ –2 ∧ (u ≥ 2 ∨ u = –2)
(u ≥ –2 ∧ u = –2) ∨ (u ≥ –2 ∧ u ≥ 2)
u=–2 ∨ u ≥ 2
7–3x = –2 ∨ 7–3x ≥ 2
–3x=–9 ∨ –3x ≥ –5
x=3 ∨ x ≤ 5/3
с добавлением условия x≥–1 решение будет составлять множество [–1;5/3]∪ <3>
целые решения это числа –1,0,1,3
их сумма равна 2
!поправочка, их сумма равна 3, конечно
Выпишите ОДЗ: x ≤ 3; Затем методом интервалов найдите решения. Должно получиться так:
Сумма целых решений, удовлетворяющих условию: -1 + 0 + 1 + 3 = 3
Источник
Отметим множество решений неравенства на числовой прямой и запишем ответ в виде числового промежутка.
Алгебраические неравенства.
Квадратные неравенства. Рациональные неравенства высших степеней.
Дробно-рациональные неравенства.
Методы решения неравенств зависят в основном от того, к какому классу относятся функции, составляющие неравенство.
- I. Квадратные неравенства, то есть неравенства вида
ax2 + bx + c > 0 (< 0), a ≠ 0.
Будем считать, что a>0. Если это не так, то умножив обе части неравенства на -1 и изменив знак неравенства на противоположный, получим желаемое.
Чтобы решить неравенство можно:
- Квадратный трехчлен разложить на множители, то есть неравенство записать в виде
a (x — x1) (x — x2) > 0 (< 0).
- Корни многочлена нанести на числовую ось. Корни разбивают множество действительных чисел на промежутки, в каждом из которых соответствующая квадратичная функция будет знакопостоянной.
- Определить знак a (x — x1) (x — x2) в каждом промежутке и записать ответ.
Если квадратный трехчлен не имеет корней, то при D<0 и a>0 квадратный трехчлен при любом x положителен.
Примеры:
- Решить неравенство. x2 + x — 6 > 0.
Решение.
Разложим квадратный трехчлен на множители (x + 3) (x — 2) > 0
Ответ: x (-∞; -3) (2; +∞).
2) (x — 6)2 > 0
Решение:
Это неравенство верно при любом х, кроме х = 6.
Ответ: (-∞; 6) (6; +∞).
3) x² + 4x + 15 < 0.
Решение:
Здесь D < 0, a = 1 > 0. Квадратный трехчлен положителен при всех х.
Ответ: x Î Ø.
Решить неравенства:
- 1 + х — 2х² < 0. Ответ:
- 3х² — 12х + 12 ≤ 0. Ответ:
- 3х² — 7х + 5 ≤ 0. Ответ:
- 2х² — 12х + 18 > 0. Ответ:
- При каких значениях a неравенство
x² — ax > выполняется для любых х? Ответ:
- II. Рациональные неравенства высших степеней, то есть неравенства вида
anxn + an-1xn-1 + … + a1x + a0 > 0 (<0), n>2.
Многочлен высшей степени следует разложить на множители, то есть неравенство записать в виде
an (x — x1) (x — x2) ·…· (x — xn) > 0 (<0).
Отметить на числовой оси точки, в которых многочлен обращается в нуль.
Определить знаки многочлена на каждом промежутке.
Примеры:
1) Решить неравенство x4 — 6x3 + 11x2 — 6x < 0.
Решение:
x4 — 6x3 + 11x2 — 6x = x (x3 — 6x2 + 11x -6) = x (x3 — x2 — 5x2 + 5x +6x — 6) =x (x — 1)( x2 -5x + 6) =
x (x — 1) (x — 2) (x — 3). Итак, x (x — 1) (x — 2) (x — 3)<0
Ответ: (0; 1) (2; 3).
2) Решить неравенство (x -1)5 (x + 2) (x — ½)7 (2x + 1)4 <0.
Решение:
Отметим на числовой оси точки, в которых многочлен обращается в нуль. Это х = 1, х = -2, х = ½, х = — ½.
В точке х = — ½ смены знака не происходит, потому что двучлен (2х + 1) возводится в четную степень, то есть выражение (2x + 1)4 не меняет знак при переходе через точку х = — ½.
Ответ: (-∞; -2) (½; 1).
3) Решить неравенство: х2 (х + 2) (х — 3) ≥ 0.
Решение:
Данное неравенство равносильно следующей совокупности
Решением (1) является х (-∞; -2) (3; +∞). Решением (2) являются х = 0, х = -2, х = 3. Объединяя полученные решения, получаем х Î (-∞; -2] {0} [3; +∞).
Ответ: х (-∞; -2] {0} [3; +∞).
Решить неравенства:
- (5х — 1) (2 — 3х) (х + 3) > 0. Ответ:
- x3 + 5x2 +3x — 9 ≤ 0. Ответ:
- (x — 3) (x — 1)² (3x — 6 — x²) < 0. Ответ:
- (x² -x)² + 3 (x² — x) + 2 ≥ 0. Ответ:
III. Дробно-рациональные неравенства.
При решении таких неравенств можно придерживаться следующей схемы.
- Перенести все члены неравенства в левую часть.
- Все члены неравенства в левой части привести к общему знаменателю, то есть неравенство записать в виде
> 0 (<0).
- Найти значения х, при которых функция y=может менять свой знак. Это корни уравнений
- Нанести найденные точки на числовую ось. Эти точки разбивают множество действительных чисел на промежутки, в каждом их которых функция будет знакопостоянной.
- Определить знак в каждом промежутке, вычисляя, например, значение данного отношения в произвольной точке каждого промежутка.
- Записать ответ, обращая особое внимание на граничные точки промежутков. При решении строгого неравенства >0 (<0) граничные точки в ответ не включаются. При решении нестрогого неравенства ≥ 0 ( ≤ 0), если точка является корнем знаменателя, то она не включается в ответ (даже если она одновременно является корнем числителя). Если же точка является корнем одного числителя, то она включается в ответ.
Примеры.
1). Решить неравенство .
Решение: > 0, > 0, > 0
Найдем нули числителя и знаменателя. Это х = 3, х = 5, х=1. Наносим найденные точки на числовую ось и определяем знаки в каждом промежутке
Выбираем любой х(5; +), например х = 10. Тогда < 0.
Выбираем х = 4 (3; 5).
Получаем > 0. При х = 2 (1; 3). Получаем > 0.
Наконец, при х = 0 (-; 1). Вычисляем < 0.
Ответ: х (1; 3) (3; 5).
2). Найти сумму целых решений неравенства.
Решение. Найдем нули числителя и знаменателя дроби. Это х = -1, х=8, х = 3, х= 5.
Нанесем найденные точки на числовую ось и определим знак дроби в каждом промежутке, вычисляя значение этой дроби в произвольной точке каждого промежутка.
Решением исходного неравенства является
х [-1, 3) (3; 5) {8}. Найдем сумму целых решений: -1 +1+0+ 2 + 4 + 8 = =14.
Ответ: 14.
При решении неравенств вы должны свободно владеть понятием числового неравенства, знать, что такое решение неравенства, что значит решить неравенство, помнить свойства неравенств. То же относится и к системам числовых неравенств. Все эти сведения вы можете найти в любом пособии для поступающих в вузы.
Напомним свойства числовых неравенств.
1. Если а > b , то b < а; наоборот, если а < b, то b > а.
2. Если а > b и b > c, то а > c. Точно так же, если а < b и b < c, то а < c.
3. Если а > b, то а + c > b+ c (и а – c > b – c). Если же а < b, то а + c < b+ c (и а – c < b – c). Т. е. к обеим частям неравенства можно прибавлять (или из них вычесть) одну и ту же величину.
4. Если а > b и c > d, то а + c > b + d; точно так же, если а < b и c < d, то а + c < b + d, т. е. два неравенства одинакового смысла можно почленно складывать.
Замечание.
Два неравенства одинакового смысла нельзя почленно вычитать друг из друга, так как результат может быть верным, но может быть и неверным. Например, если из неравенства 11 > 9 почленно вычесть неравенство 3 > 2, то получим верное неравенство 8 > 7. Если из неравенства 11 > 9 почленно вычесть неравенство 7 > 2, то полученное неравенство будет неверным.
5. Если а > b и c < d, то а – c > b – d; если а < b и c > d, то а – c < b – d, т.е. из одного неравенства можно почленно вычесть другое неравенство противоположного смысла, оставляя знак того неравенства, из которого вычиталось другое.
6. Если а > b и m – положительное число, то m а > m b и , т.е. обе части неравенства можно умножить или разделить на одно и то же положительное число ( знак неравенства остаётся тем же ).
Если же а > b и n – отрицательное число, то n а < n b и , т.е. обе части неравенства можно умножить или разделить на одно и то же отрицательное число, но при этом знак неравенства нужно переменить на противоположный.
7. Если а > b и c > d , где а, b, c, d > 0, то а c > b d и если а < b и c < d, где а, b, c, d > 0, то аc < bd, т.е. неравенства одного смысла на множестве положительных чисел можно почленно перемножать.
Следствие. Если а > b, где а, b > 0, то а2 > b2, и если а < b, то а2 < b2, т.е. на множестве положительных чисел обе части неравенства можно возводить в квадрат.
8. Если а > b, где а, b > 0, то и если а < b , то .
Виды неравенств и способы их решения
1. Линейные неравенства и системы неравенств
Пример 1. Решить неравенство .
Решение:
.
Ответ: х < – 2.
Пример 2. Решить систему неравенств
Решение:
.
Ответ: (– 2; 0].
Пример 3. Найти наименьшее целое решение системы неравенств
Решение:
Ответ:
2. Квадратные неравенства
Пример 4. Решить неравенство х2 > 4.
Решение:
х2 > 4 (х – 2)∙(х + 2) > 0.
Решаем методом интервалов.
Ответ:
3. Неравенства высших степеней
Пример 5. Решить неравенство (х + 3)∙(х2 – 2х + 1) > 0.
Решение:
Ответ: .
Пример 6. Найти середину отрезка, который является решением неравенства 4х2 – 24х + 24 < 4у2, где .
Решение:
Область определения неравенства: .
С учётом области определения 4х2 – 24х + 24 < 4у2 будет равносильно неравенству
Решаем методом интервалов.
Решение неравенства: .
Середина отрезка: .
Ответ: .
4. Рациональные неравенства
Пример 7. Найти все целые решения, удовлетворяющие неравенству .
Решение:
Методом интервалов:
Решение неравенства: .
Целые числа, принадлежащие полученным полуинтервалам: – 6; – 5; – 4; 1.
Ответ: – 6; – 5; – 4; 1.
5. Иррациональные неравенства
Помните! Начинать решение иррациональных неравенств нужно с нахождения области определения.
Пример 8. Решить неравенство .
Решение:
Область определения: .
Так как арифметический корень не может быть отрицательным числом, то .
Ответ: .
Пример 9. Найти все целые решения неравенства .
Решение:
Область определения .
– быть отрицательным не может, следовательно, чтобы произведение было неотрицательным достаточно потребовать выполнения неравенства , при этом учитывая область определения. Т.е. исходное неравенство равносильно системе .
Целыми числами из этого отрезка будут 2; 3; 4.
Ответ: 2; 3; 4.
Пример 10. Решить неравенство .
Решение:
Область определения:
Преобразуем неравенство: . С учётом области определения видим, что обе части неравенства — положительные числа. Возведём обе части в квадрат и получим неравенство, равносильное исходному.
т.е. , и этот числовой отрезок включён в область определения.
Ответ: .
Пример 11. Решить неравенство .
Решение:
Раскрываем знак модуля.
Объединим решения систем 1) и 2): .
Ответ: .
6. Показательные, логарифмические неравенства и системы неравенств
Пример 12. Решите неравенство .
Решение:
.
Ответ: .
Пример 13. Решите неравенство .
Решение:
.
Ответ: .
Пример 14. Решите неравенство .
Решение:
Ответ: .
Пример 15. Решите неравенство .
Решение:
Ответ: .
Задания для самостоятельного решения
Базовый уровень
Целые неравенства и системы неравенств
1) Решите неравенство 2х – 5 ≤ 3 + х.
2) Решите неравенство – 5х > 0,25.
3) Решите неравенство .
4) Решите неравенство 2 – 5х ≥ – 3х.
5) Решите неравенство х + 2 < 5x – 2(x – 3).
6) Решите неравенство
.
7) Решите неравенство (х – 3) (х + 2) > 0.
Решить систему неравенств
9) Найдите целочисленные решения системы неравенств .
10) Решить систему неравенств .
11) Решить систему неравенств
12) Найти наименьшее целое решение неравенства
13) Решите неравенство .
14) Решите неравенство .
15) Решите неравенство .
16) Решите неравенство .
17) Найдите решение неравенства , принадлежащие промежутку .
18) Решить систему неравенств
19) Найти все целые решения системы
Рациональные неравенства и системы неравенств
20) Решите неравенство .
21) Решите неравенство .
22) Определите число целых решений неравенства .
23) Определите число целых решений неравенства .
24) Решите неравенство .
25) Решите неравенство 2x<16 .
26) Решите неравенство .
27) Решите неравенство .
28) Решите неравенство .
29) Найдите сумму целых решений неравенства на отрезке [– 7, 7].
30) Решите неравенство .
31) Решите неравенство .
Иррациональные неравенства
32) Решите неравенство .
33) Решите неравенство
34) Решите неравенство .
Показательные, логарифмические неравенства и системы неравенств
35) Решите неравенство .
36) Решите неравенство .
37) Решите неравенство .
38) Решите неравенство .
39) Решите неравенство .
40) Решите неравенство 49∙7х < 73х + 3.
41) Найдите все целые решения неравенства .
42) Решите неравенство .
43) Решите неравенство .
44) Решите неравенство 7x+1-7x<42 .
45) Решите неравенство log3(2x2+x-1)>log32 .
46) Решите неравенство log0,5(2x+3)>0 .
47) Решите неравенство .
48) Решите неравенство .
49) Решите неравенство .
50) Решите неравенство logx+112>logx+12 .
51) Решите неравенство logx9<2.
52) Решите неравенство .
Повышенный уровень
53) Решите неравенство |x-3|>2x.
54) Решите неравенство 2│х + 1| > х + 4.
55) Найдите наибольшее целое решение неравенства .
56) Решить систему неравенств
57) Решить систему неравенств .
58) Решите неравенство .
59) Решите неравенство 25•2x-10x+5x>25 .
60) Решите неравенство .
Ответы
1) х ≤ 8; 2) х < – 0,05; 3) х ≥ 5; 4) х ≤ 1; 5) х > –2; 6) х < 11; 7) ; (-2;0]; 9) – 1; 10) х ≥ 7,5; 11); 12) 1; 13); 14) х ≤ – 0,9; 15) х < – 1; 16) х < 24; 17); 18) ; 19) 3, 4, 5;
20) (0; 2); 21) (0; 1,5); 22) 3; 23) 6; 24) (–1; 1,5); 25) х < 4; 26); 27) (– 3; 17); 28)
; 29) – 10; 30) (0; + ∞); 31); 32) [1;17); 33) x > 17; 34) х ≥ 2; 35); 36) х < 2; 37) х > 0; 38) х ≤ 3; 39) х > – 3,5; 40) х > – 0,5; 41) 0, 1, 2, 3, 4, 5; 42) х < 3; 43) ; 44) х < 1; 45) ; 46) (– 1,5; – 1); 47) х < 0; 48); 49) ; 50) х > 0; 51) ; 52) ; 53) х < 1; 54); 55) – 1; 56) ; 57) [3,5; 10]; 58) (0, 1); 59) (0; 2); 60)
.
Задание. Найдите сумму всех
целых решений неравенства |x2-3x-13|>x2-3x-13
Варианты ответов:
1)
-9;
2)
9;
3)
0;
4)
-12;
5)
12.
Анализ
Обратим внимание, что
выражение под модулем и выражение в правой части – равные многочлены, поэтому
проанализируем, при каких a верно
неравенство |a|>a. Понятно, что нам
нужно рассмотреть случаи, когда a –
отрицательное, положительное и равное нулю. Подставляем любые значения a и
смотрим, верно ли неравенство:
При a=-1: |-1|>-1 – верно;
При a=0: |0|>0 – неверно.
При a=1: |1|>1 – неверно.
Решение
То есть, неравенство
верно, когда под модулем стоит отрицательное выражение, поэтому исходное
неравенство равносильно неравенству
x2-3x-13<0
– квадратное неравенство.
Рассмотрим функцию y= x2-3x-13.
График – парабола, ветви направлены вверх, нули: D=9+4∙13=61. Корни находим приблизительно:
x1=(3-7,8)/2=-2,2;
x2=(3+7,8)/2=5,4.
Строим схематично график:
Решение неравенства xϵ(-2,2; 5,4). Целые значения переменной
-2; -1; 0; 1; 2; 3; 4; 5. Сумма 3+4+5=12.
Ответ. 5