Как найти светимость звезды формулы

Наконец пришло время рассказать о космических телах — звездах, количество которых во Вселенной исчисляется миллиардами…

Мы познакомимся с понятием «звезда» в астрономии и разберем основные физические характеристики звезд:

  • расстояния до звезд (годичный параллакс и парсек);
  • видимая звездная величина;
  • абсолютная звездная величина;
  • светимость звезды;
  • размеры звезды;
  • масса звезды.

Определение звезды в астрономии

Звезда — гигантский раскаленный газовый шар, вещество которого является плазмой.

Плазма — частично или полностью ионизированный газ (четвертое состояние вещества).

Расстояния до звезд (годичный параллакс и парсек)

В астрономии нет жестких требований к единицам измерений, к которым мы привыкли и с которыми имеем дело в физике. Но в то же время существуют различия в размерностях, которые используются для измерениях расстояний к объектам ближнего космоса (Солнечная система: планеты, спутники планет, малые тела) и дальнего космоса (Млечный путь, Вселенная: звезды, галактики, туманности, скопления и т.д.).

В связи с этим надо различать и помнить о том, что расстояния до планет принято измерять в астрономических единицах (а.е.), которые при необходимости можно перевести в километры и метры; а расстояния до объектов дальнего космоса (в частности до звезд) удобнее записывать в парсеках и световых годах, которые также при необходимости можно перевести в километры и метры.

Для расчета расстояний до звезд используется годичный параллакс р.

Годичный параллакс р — угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а.е.), перпендикулярную направлению на звезду.

Годичный параллакс

Расстояние до звезд в км, при условии что «р», а — в астрономических единицах (а.е.)

Расстояние до звезд в а.е., при условии что р выражен в секундах дуги.

Расстояние до звезд в парсеках (пк), при условии что «р» выражен в секундах дуги.

Связь между астрономическими единицами измерений:

1 парсек = 3,26 светового года = 206265 а. е.= 3 *10^12 км.

Видимая звездная величина, m — определяет количество света, попадающего от звезды в глаза человека.

2 век до н.э. – греческий астроном Гиппарх разделил все видимые звезды по яркости на 6 классов.

19 век английский астроном Н. Погсон дополнил определение звездной величины одним условием: звезда первой звездной величины должны быть в 100 раз ярче звезды шестой звездной величины.

Формула Погсона

Абсолютная звездная величина, М — видимая звездная величина, которую имела бы звезда, если бы находилась на стандартном расстоянии D0 = 10 пк, называется абсолютной звездной величиной M.

формула для расчета абсолютной звездной величины

— стандартное расстояние до звезды

Светимость звезды, L — полная энергия, излучаемая звездой за единицу времени(1 секунда), 1 Вт = 1 Дж/с.

формула светимости звезды

формула связи светимости и абсолютной звездной величины звезды

светимость Солнца

Размеры звезд, R рассчитываются в сравнении с размерами Солнца:

 — связь между светимостью, размером и температурой звезды

— формула для расчета размера (радиуса) звезды

условия, которые необходимо учитывать при расчетах

Масса звезды, М определяется обобщенным третьим законом Кеплера:

Объем звезды, V как правило определяется по формуле объема шара, так как звезды имеют шарообразную форму :

, здесь R — радиус звезды

Химический состав звезд

В зависимости от этапа эволюции химический состав звезды может отличаться. Например, основные химические элементы, входящие в состав Солнца: водород 70% Н и 28% гелий He, 2% — другие элементы. Химический состав звезды другого спектрального класса и эволюционного развития может отличаться содержанием данных химических элементов в процентном отношении.

В следующей статье разберем решение второго типа заданий 2Звезды и их физические характеристики».

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Contents

  • 1 Что такое светимость звёзд
  • 2 От чего зависит светимость звезд
  • 3 Как определяется светимость звезд
  • 4 Светимость и температура звезд
  • 5 Светимость и масса звезды
  • 6 Диаграмма светимости звезд
  • 7 Классы светимости звезд
  • 8 Спектр светимости звезд
  • 9 Звезды малой светимости
  • 10 Звезды большой светимости
  • 11 Светимость Солнца
  • 12 Использование светимости в астрономии

Что такое светимость звёзд

Звезды, как и все космические объекты, в астрономии имеют свои характеристики. Светимость является одним из главных показателей для изучения и анализа звезд. Этот параметр связывает физические и химические свойства и позволяет определить тип и класс астрономического тела.

Внутри звезд, в плотном ядре, возникают ядерные реакции, за счет них и появляется свечение.  Источником выброса энергии являются атомы водорода, которые под воздействием давления и высоких температур превращаются в гелий. Высокая температура на поверхности звезд позволяет и более тяжелым частицам участвовать в термоядерных процессах. Такой синтез наблюдается на звездах-гигантах, где выбросы энергии значительно сильнее.

Светимость определяет энергетическую мощность звезд, и показывает количество произведенной энергии за единицу времени. Измеряется светимость в системе СИ в Дж/с или Вт, в системе СГС – эрг/с; астрономы выражают эту величину в единицах светимости Солнца.

Важно не путать два похожих понятия — яркость и светимость звезд. Яркость является видимой характеристикой и зависит от расстояния между объектом и точкой наблюдения, а также от поглощения света на этом отрезке. Светимость показывает энергию звезды и связана с площадью её поверхности, является объективной величиной не зависит от удаленности объекта.

От чего зависит светимость звезд

Светимость звезд зависит от двух показателей – температуры и радиуса звезды. Чем выше температура, горячее звезда, и чем больше площадь этого астрономического тела, тем мощнее выброс энергии.

Как определяется светимость звезд

Приближенная величина светимости рассчитывается по формуле –

,

где R – радиус звезды, T – температура её поверхности,  – постоянная Стефана-Больцмана.
Следовательно, из формулы, можно указать зависимость светимости звезд от двух параметров – это размер и температура. Зная эти величины звезды, возможно рассчитать светимость, или наоборот если известна величина светимости — один из параметров, температуру или размер.

Светимость и температура звезд

Звезду можно сравнить с горячим газовым шаром, который разогревается ядерными реакциями. Как известно, цвет любого тела зависит от температуры, до которой оно нагревается.

Температуру и плотность внутри звезд получают теоретически, исходя из массы и светимости. Зная спектральный класс можно определить температуру ее поверхности. Различные температуры на поверхности и в атмосфере звезд, также влияют на их спектр цветов. Самые горячие звезды голубого или белого цвета, менее горячие – желтого, более холодные – красного. Чем горячее звезда, тем больше показатель светимости этого объекта.

Зависимость светимости от температуры звезды можно увидеть на диаграмме Герцшпрунга-Рассела. На диаграмме объекты располагаются, исходя из их светимости и температуры.

Светимость и масса звезды

Такие параметры как светимость и масса имеют прямую связь между собой. На координатной плоскости Герцшпрунга-Рассела обнаруживается эта зависимость. Тела звезд большой массы в среднем имеют больший показатель светимости. Чем ярче светит звезда, тем больше заключено в ней вещества, тем выше температура, которая может быть достигнута в ее недрах. Атомные реакции внутри звезды интенсивнее, выделяется больше энергии, а светимость увеличивается.

Для одиночных звезд нет возможности определить массу. Для этого необходимо, чтобы у звезды была пара и известно расстояние до неё. Сначала рассчитывается сумма масс всех звезд, после, учитывая другие параметры, сумма делится взвешенно. Массивность звезд можно установить по их светимости.

Диаграмма светимости звезд

Каждая звезда уникальна и неповторима и имеет свой жизненный цикл. В космическом пространстве появляются новые звезды, а старые умирают. На плоскости Герцшпрунга-Рассела эволюция звезд упорядочена.

Существует несколько версий диаграммы, но схема представления одна. Звезды располагаются на системе координат, по вертикальной оси их положение зависит от силы свечения, а по горизонтальной оси от значений температуры.

Звезды, у которых светимость больше расположены в верхней части, с высокой температурой – в левой части. Основная часть звезд располагается на главной последовательности. В правом углу над главной линией – звезды с большой яркостью, но с низкой температурой (красные). Здесь собираются гиганты и сверхгиганты. Ниже главной линии звезды голубого и белого цветов, от них исходит мало света, здесь сосредоточены белые карлики.

Координатная плоскость Г-Р стала иллюстрацией закономерности между энергией и излучением звезды.

Основной мерой светимости является абсолютная звездная величина (Мv), которая зависит от расстояния до астрономического тела. Если отнести светило на условное расстояние 10 пс (примерно в 2 млн. раз больше расстояния от Солнца до Земли), то его величина будет называться абсолютной. Если известна величина М, то светимость вычисляется по формуле

где L — светимость звезды,  – ее абсолютная звездная величина,  – абсолютная звездная величина Солнца.

График Герцшпрунга-Рассела связывает абсолютную звездную величину, и такие параметры как — температура, спектр излучения и светимость.

Классы светимости звезд

Классификация Гарвардской обсерватории, созданная в начале XX века, стала основой современной спектральной классификации. Позднее, после обнаружения зависимости между спектром и температурой, эта классификация была пересмотрена.

Спектральные классы называются латинскими буквами – O, B, A, F, G, K, M. Классы состоят из подклассов, и определяются температурой звезд. Обозначаются 0 до 9, где 0 – это звезды с самой высокой температурой, 9 – с самой низкой.

В начале XX века появилась йеркская спектральная классификация, в соответствии с которой учитывается светимость звезды для определения её к гарвардскому спектральному классу.

Разделение базируется на интенсивности их излучения, абсолютной звездной величине, особенностях спектра, который также зависит от температуры, массы, плотности объекта. Спектральные классы помогают астрономам определить главные свойства и особенности звезд.

Символы от 0 до VII принадлежат классам светимости по йеркской спектральной классификации и делятся от гипергигантов (0 класс) до белых карликов (VII класс), абсолютная звездная величина изменяется от -10 до +15. Выделяют также сверхгигантов, ярких гигантов, гигантов, субгигантов, карликов, субкарликов, белых карликов.

Йеркская спектральная классификация позволяет по виду спектра звезды определить расстояние до нее, с помощью формулы спектрального параллакса и светимости.

Каждое светило является неповторимым объектом, поэтому дополнительные буквенные обозначения указывают на особенности космического тела. Например, к карликам добавляется d, свергигантам – с, гигантам – g, субгигантам – sg, белым карликам – wd.

На графике Герцшпрунга-Рассела звезды группируются по классу светимости и создают скопления – например, область красных гигантов, субкарликов, белых карликов.

Спектр светимости звезд

Космические светила различаются физическими и химическими свойствам своих атмосфер. Разница этих свойств определяет вид спектра излучения. Химические элементы излучают энергию на разных длинах волн.

По спектру звезд определяются — светимость, расстояние до нее, температура и другие физические характеристики. Группировка звезд по спектру излучения определяется по частоте энергии или по длине волны излучения. Распределение звезд по типам спектра проводится с помощью спектрального аппарата, он размещает свет звезды исходя из длин волн в области спектра.

Существует много способов изучения звезд, с помощью смещения спектра в какую-либо сторону, например, сопоставление со спектром черного объекта или раздвоения линий наложения.

Спектр звезд зависит от температуры — изменяется состояние атомов и молекул в их атмосферах. Излучение холодных звезд ближе к красному диапазону спектра, горячие звезды стремятся к голубому цвету.

Передача энергии звезд не является непрерывной, при анализе спектра появляются темные и яркие линии, узкие и широкие. Характер и особенности этих линий помогают определить какие типы атомов находятся в атмосферах звезд. Впервые линии поглощения были обнаружены при наблюдении за спектром Солнца. Яркие линии возникают из-за наличия газа на поверхности звезды.

Звезды малой светимости

Звезды, которые относятся карликам и субкарликам, обладают малой светимостью. Это остывающие звезды. К таким космическим объектам относится большая часть звезд. На координатной плоскости Г-Р они находятся на главной последовательности и под ней. Относятся к классу светимости V- VII. Известные звезды малой светимости — звезда Процион, является белым карликом; Альфа Центавра В — оранжевым карликом. Эти звезды малого размера, ядерные реакции на этих астрономических объектах очень слабые.

Самой маленькой звездой, находящейся всего в 40 световых лет от Земли, является 2МASSJ0523-1403, ее масса составляет всего 8% от массы Солнца, а радиус меньше 60 000 км. Эта звезда имеет предельную массу для возникновения термоядерных реакций. Светимость этого объекта в 8 000 раз меньше солнечной.

Звезды большой светимости

Гиганты и сверхгиганты имеют высокую светимость. На диаграмме Г-Р они располагаются выше главной последовательности. Эти звезды соответствуют классам светимости I-VI и имеют большие размеры и температуру. Выделение термоядерной энергии на поверхности таких звезд идет с большой скоростью, в реакцию вступают не только водород и гелий, но и тяжелые металлы. Пример звезда-гигант – Антарес, сверхгиганта —  Бетельгейзе.

Самая известная массивная звезда –гипергигант R136a1. Этот астрономический объект относится к редкому классу и является голубым гигантом. Радиус этого великана в 36 раз больше радиуса Солнца, а светимость выше в миллионы раз. Эта звезда находится на расстоянии 165000 световых лет, поэтому без специального телескопа ее невозможно увидеть с Земли.

Светимость Солнца

Солнце самая близкая к нашей планете звезда, которое дает нам свет и тепло. Изучение этого космического объекта помогло астрофизикам детальнее узнать о глобальных свойствах и процессах, которые происходят на других недосягаемых звездах.

Энергия, выделяемая солнцем, называется солнечной постоянной. В результате тщательных измерений ученым удалось установить, что солнечная постоянная равна 1400 Вт/м2, этот параметр с течением времени не изменяется. Зная эту величину можно вычислить светимость Солнца, она примерно равна 4×1026 Вт.

На диаграмме Г-Р Солнце располагается на главной последовательности и является желтым карликом. Наше светило имеет средние физические параметры и находится в состоянии равновесия, оно не меняет своих размеров в течение многих миллиардов лет. Если сравнивать нашу звезду с гигантами, то они в тысячи раз крупнее Солнца, а радиус звезд-карликов намного меньше. Преобладающим химическим элементом на Солнце является водород, примерно 25% занимает гелий. Светимость других звезд астрономы представляют в сопоставлении с единицами светимости Солнца.

Использование светимости в астрономии

Светимость звезд тесно связана с такими параметрами как масса, температура, площадь, а также косвенно с химическим составом. Чем меньше в атмосфере звезды элементов, которые тяжелее водорода и гелия, тем больше массы может она может набрать, и интенсивность ядерных реакций увеличится. Определив мощность излучения звезд, можно узнать на каком этапе эволюции находится звезда, оценить ее величину и примерное расстояние до объекта.

В силу своей универсальности светимость используется на многих схемах и графиках астрономов, по которым можно сравнить звезды, иметь представление об их этапе цикла существования.

Видимые звездные
величины ничего не говорят ни об общей
энергии, излучаемой звездой, ни о яркости
ее поверхности. Действительно, вследствие
различия в расстояниях маленькая,
сравнительно холодная звезда только
из-за своей относительно большой близости
к нам может иметь значительно меньшую
видимую звездную величину (т.е. казаться
ярче), чем далекий горячий гигант.

Если расстояния
до двух звезд известны, то на основании
их видимых звездных величин легко найти
отношение излучаемых ими действительных
световых потоков. Для этого достаточно
освещенности, создаваемые этими звездами,
отнести к общему для всех звезд
стандартному расстоянию. В качестве
такого расстояния принимается 10 пс.

Звездная величина,
которую имела бы звезда, если ее наблюдать
с расстояния в 10 пс,
называется абсолютной
звездной величиной
.
Как и видимые, абсолютные звездные
величины могут быть визуальными,
фотографическими и т.д.

Пусть видимая
звездная величина некоторой звезды
равна m, а расстояние
ее от наблюдателя составляет r
пс.
По определению, звездная
величина с расстояния 10 пс будет
равна абсолютной звездной величине М.
Применяя к m и М
формулу (5.5), получим:

,
где Е и Е10
соответственно освещенности от звезды
с расстояния r пс
и 10 пс. Поскольку освещенности
обратно пропорциональны квадратам
расстояний, то

.
Подставив это равенство в предыдущее
и выполнив преобразования, получим

M = m + 5

5 lg r.

(5.7)

Формула (5.7) позволяет
найти абсолютную звездную величину М,
если известна видимая звездная величина
объекта m
и расстояние до него r,
выраженное в парсеках. Если же абсолютная
звездная величина известна из каких-нибудь
других соображений, то, зная видимую
звездную величину, легко найти выраженное
в парсеках расстояние из условия

lg r
= 1 + 0,2 (m
— M).

(5.8)

Величина (m
— М
) называется
модулем
расстояния.

Если
в соотношение (5.7) подставить видимую
звездную величину Солнца, а также
расстояние до него в парсеках, то получим,
что абсолютная звездная величина Солнца
М=
4m,8.

Найдем связь между
абсолютной звездной величиной и
светимостью звезды. Для этого поместим
две звезды на расстояние 10 пс от
наблюдателя и применим для них формулу
Погсона (5.5):


.

(5.9)

Если взять в
качестве второй звезды Солнце и принять
светимость Солнца за единицу, то с учетом
соотношения (5.9) получим


.

(5.10)

Отсюда
светимость звезды L
(выраженная в светимостях Солнца)


,

(5.11)

где
M
— абсолютная
звездная величина звезды.

§ 5.4. Основы колориметрии

Наиболее полной
информацией об излучении звезды является
распределение энергии в ее спектре,
выраженное в абсолютных энергетических
единицах. Однако достаточно точные
спектрофотометрические измерения можно
осуществить лишь для сравнительно
небольшого числа звезд, поток излучения
от которых наибольший. В тех случаях,
когда это удается сделать, оказывается,
что звезды излучают не по закону Планка,
причем нередко отличие сильнее, чем в
случае Солнца.

Для слабых звезд,
излучение которых удается зарегистрировать
лишь в широком участке спектра,
единственным источником информации
остается поток излучения, определяющий
их звездные величины.

Некоторое
представление о распределении энергии
в спектре звезд можно получить, если
измерять поток их излучения в различных
частях спектра, пользуясь светофильтрами.
Так получаются различные системы
звездных величин.

Звездные величины,
полученные в результате применения
визуальных фотометров или путем
глазомерных оценок, называются
визуальными.
До изобретения фотографии и применения
ее в астрономии визуальные методы
определения звездных величин были
единственным способом фотометрии звезд.
Сейчас этот метод играет меньшую роль,
хотя его и применяют при исследовании
переменных звезд.

Звездные величины,
которые получаются методом фотометрических
измерений изображений звезд, полученных
на фотопластинках, называются
фотографическими
звездными
величинами.

Наиболее точные
современные определения потока излучения
от звезд получаются фотоэлектрическими
или фотографическими методами с
применением специально подобранных
светофильтров в новой международной
системе U,
В,
V,
что соответствует измерению потока в
трех участках спектра: ультрафиолетовой
области (ультрафиолетовая
звездная величина U),
синей и близкой ультрафиолетовой области
(синяя
звездная величина
В
) и
желто-зеленой области (желтая
звездная величина
V).
Существуют и другие многоцветные
фотометрические системы, включающие,
например, измерения в красной или
инфракрасной областях спектра.

Обычно рассматривают
не длину волны максимума излучения, а
некоторую объективную характеристику
цвета звезды, называемую показателем
цвета
,
и устанавливают эмпирическую зависимость
ее от эффективной температуры,
характеризующей суммарную энергию
излучения звезды. Судить о цвете можно,
сравнивая потоки излучения в различных
областях спектра. Поэтому показатель
цвета определяется как разность между
звездными величинами, измеренными в
двух каких-либо фотометрических системах,
например, фотографической и визуальной.
В этом случае обычный
показатель цвета

равен

,
где mpg
и mv
соответственно
фотографическая и визуальная звездные
величины. В системе U,
В,
V
обычно пользуются двумя показателями
цвета: основным
(В — V)
и ультрафиолетовым
(U
— В
) или (U
V).

Условились считать,
что все рассмотренные выше показатели
цвета равны нулю для звезд чисто белого
цвета. Показатели цвета звезд других
цветов могут быть как положительными,
так и отрицательными.

Раздел астрофизики,
посвященный изучению показателей цвета
звезд, называется колориметрией.
Его целью является измерение показателей
цвета различными методами и нахождение
других величин, характеризующих
спектральный состав излучения звезд,
а также установление связи между этими
характеристиками и температурой. 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как известно, светимость звёзд является одной из их главных характеристик. Поскольку это первый признак, по которому мы отличаем светила на ночном небе.

Однако звёздное сияние разное, ведь даже невооружённым глазом видно, что одни блестят ярче других. В действительности, в астрономии светимость звёзд отражает не то, какие они яркие для наблюдателя, а их силу излучения.

Звёздный космос

Звёздный космос

Почему звёзды светятся на небе и излучают свет

Всё просто, потому что светила в результате происходящих внутри термоядерных реакций, очень высокой температуре вырабатывают энергию и излучают свет.

Если говорить точнее, при синтезе гелия из водорода высвобождается огромнейшее количество энергии, происходит горение водорода. У массивных звёзд горит не только он, но и гелий, а иногда и другие более тяжёлые элементы. В таком случае энергии производится намного больше.

Большая часть энергии производит разные виды излучений, а в совокупности они придают светилам способность светиться.

Таким образом, светимость звезды — это суммарное значение энергии излучения за определённый отрезок времени.

Светимость Бетельгейзе больше светимости Солнца в 80 тысяч раз, а максимальная — в 105 тысяч раз

Светимость Бетельгейзе больше светимости Солнца в 80 тысяч раз, а максимальная — в 105 тысяч раз

Соответственно, чем больше энергии вырабатывает звёздное тело, тем выше светимость. Получается, что она зависит от массы объекта.

На самом деле, массивность играет важную роль. Правда, не только она определяет уровень светимости звёзд. Так как мало получить энергию, она же внутри, нужно её вывести на поверхность. Как оказалось, площадь излучающей поверхности также влияет на то, как светит звёздное тело. Чем она больше, тем сильнее излучение.

Можно сказать, что светимость звёзд отражает не только количество излучаемой энергии, но и размер её поверхности.

Также стоит отметить, что температура внутри и на поверхности любого космического объекта влияет практически на все его показатели и свойства.

Как определить светимость звёзд

Прежде всего, данная характеристика позволяет проводить сравнение между разными видами звёзд. Так как на неё влияют почти все звёздные параметры.

Рассчитать светимость звёзд можно по формуле:

Формула светимости звезды

Формула светимости звезды

где R — радиус звезды,
T — температура поверхности,
σ — постоянная Стефана — Больцмана.

Как видно из формулы, важными факторами являются масса, размер и температура. А зная суммарную энергию излучения светила, можно узнать всё остальное.

Однако не стоит путать светимость звёзд с их сиянием и блеском. Ведь блеск является всего лишь визуальным показателем яркости объекта, а мы говорим про количество излучаемой энергии. Правда, чтобы её вычислить необходимо знать абсолютную величину звезды (звездная величина при расстоянии до тела 10 парсек).

Спика - самая яркая звезда в созвездии Девы и шестнадцатая по яркости звезда неба с видимой звёздной величиной +1,04

Спика — самая яркая звезда в созвездии Девы и шестнадцатая по яркости звезда неба с видимой звёздной величиной +1,04

Кроме того, часто светимость звёзд ошибочно называют видимой звёздной величиной. Хотя это также субъективная величина, при которой большое значение имеет расстояние до объекта.

Для изучения звёздных тел уровень светимости имеет важное значение, поскольку он зависит от химических и физических характеристик светила. То есть зная данный показатель можно узнать многое. Например, состав, цвет, размер, массу, и даже интенсивность термоядерных реакции.

Что интересно, обычное для нас мерцание звёзд на небе обусловлено многими факторами. Сколько всего происходит вокруг нас, что мы не видим и о чём даже не задумываемся.

Для земного наблюдателя светящиеся звезды, бесспорно, красивые небесные тела. А что за этим стоит и как происходит на самом деле, порой, непонятно и непостижимо. Но согласитесь, Вселенная прекрасна в своих порождениях.

Светимость звездыЗвезды выбрасывают в открытый космос громадное количество энергии, почти полностью представленной разными видами лучей. Суммарная энергия излучения светила, испускаемая за отрезок времени — это и есть светимость звезды. Показатель светимости очень важен для изучения светил, поскольку зависит от всех характеристик звезды.

Содержание:

  • 1 Простые тонкости светимости
  • 2 Материалы по теме
  • 3 Светимость от А до Я
  • 4 Материалы по теме
  • 5 Использование светимости в астрономии

Простые тонкости светимости

Первое, что стоит отметить, говоря о светимости звезды — ее легко спутать с другими параметрами светила. Но в деле все очень просто — надо только знать, за что отвечает каждая характеристика.

Светимость звезды (L) отражает в первую очередь количество энергии, излучаемой звездой — и потому измеряется в ваттах, как и любая другая количественная характеристика энергии. Это объективная величина: она не меняется при перемещении наблюдателя. У Солнца этот параметр составляет 3,82 × 1026 Вт. Показатель яркости нашего светила часто используется для измерения светимости других звезд, что куда удобнее для сопоставления — тогда он отмечается как L, (☉— это графический символ Солнца.)

  • Светимость часто путают с видимой звездной величиной (m), которая описывает количество энергии, видимое наблюдателем — проще говоря, насколько ярко видно от или иной объект в определенной точке Вселенной. (Еще этот параметр называют блеском). Звездная величина безразмерная — измеряется условными единицами, и чем меньше показатель, тем ярче объект. Также величина субъективная — расстояние от светящегося объекта значит больше, чем его истинная светимость.

    Материалы по теме

  • К примеру, звездная величина Солнца на Земле — −26,7, а звезды Арктур, самого яркого светила созвездия Волопас — −0,05. При этом Арктур в 210 раз ярче и в 25 раз больше нашего светила! Поэтому звездная величина применяется астрономами преимущественно во время земных наблюдений — так проще классифицировать звезды и искать их на звездном небе. Также она заложена в компьютеры беспилотных космических аппаратов, которые ориентируются в пространстве по звездным картам.
  • Более объективной, но не синонимичной светимости является абсолютная звездная величина (M). Это звездная величина светила, видимая на расстоянии 10 парсек. Чаще всего используется болометрическая абсолютная величина — то есть учитывающая все спектры излучения звезды: рентгеновский, ультрафиолетовый и т. д. У Солнца этот параметр составляет +4,7, когда у Арктура — −0,38. Абсолютная величина используется астрономами для вычисления светимости звезды.

Арктур, автор снимка F. Espenak

Звезда Арктур из земли. Автор снимка F. Espenak.

Очевидно, что наиболее информативной и универсальной характеристикой среди вышеперечисленных является светимость. Так как этот параметр отображает интенсивность излучения звезды наиболее подробно, с его помощью можно узнать многие характеристики звезды — от размера и массы до интенсивности ядерных реакций.

Светимость от А до Я

Источник излучения в звезде искать долго не приходится. Вся энергия, которая может покинуть светило, создается в процессе термоядерных реакций синтеза в звездном ядре. Атомы водорода, сливаясь под давлением гравитации в гелий, высвобождают громадное количество энергии. А в звездах помассивнее «горит» не только водород, но и гелий — порой даже более массивные элементы, вплоть до железа. Энергии тогда получается в разы больше.

Количество энергии, выделяемой во время ядерной реакции, напрямую зависит от массы звезды — чем она больше, тем сильнее гравитация сжимает ядро светила, и тем больше водорода одновременно превращается в гелий. Но не одна ядерная энергия определяет светимость звезды — ведь ее надо еще излучать наружу.

Материалы по теме

И тут вступает в игру площадь излучения. Ее влияние в процессе передачи энергии очень велико, что легко проверяется даже в быту. Лампа накаливания, нить которой нагревается до 2800 °C, за 8 часов работы существенно не изменит температуру в помещении — а обычная батарея температурой в 50–80 °C сумеет прогреть комнату до ощутимой духоты. Разницу в эффективности обуславливают отличия в количестве поверхности, излучающей энергию.

Соотношение площади ядра звезды и ее поверхности часто бывает соизмеримо с пропорциями нити лампочки и батареи — поперечник ядра красного сверхгиганта может составлять всего одну десятитысячную общего диаметра звезды. Таким образом, на светимость звезды серьезно влияет площадь ее излучающей поверхности — то есть поверхности самой звезды. Температура тут оказывается не столь существенной. Накал поверхности звезды Альдебаран на 40% меньше температуры фотосферы Солнца — но из-за больших размеров, ее светимость превышает солнечную в 150 раз.

Получается, в вычислениях светимости звезды роль размеров важнее температуры и энергии ядра? На самом деле нет. Голубые гиганты с высокой светимостью и температурой обладают схожей светимостью с красными сверхгигантами, которые намного больше размерами. Кроме того, самая массивная и одна из наиболее горячих звезд, R136a1, обладает самой высокой яркостью среди всех известных звезд. До открытия нового рекордсмена, это ставит точку в дискуссии о наиболее важном для светимости параметре.

Использование светимости в астрономии

Диаграмма Герцшпрунга — Рассела

Диаграмма Герцшпрунга — Рассела

Таким образом, светимость достаточно точно отражает как и энергию звезды, так и площадь ее поверхности — поэтому она задействована во многих классификационных диаграммах, используемых астрономами для сравнения звезд. Среди них стоить выделить диаграмму Герцшпрунга-Рассела, отображающую интересные закономерности в распределении звезд во Вселенной — например, по ней легко определить возраст звезды. Также на светимости базируется йеркская спектральная классификация звезд — именно в ней фигурируют такие термины «белые карлики» или «сверхгиганты».

Абзацем выше упоминалось о том, как температура звезды влияет на светимость. Эту зависимость астрономы используют для выяснения параметров звезды — особенно тогда, когда цвет, самый точный индикатор нагрева объекта, искажается гравитацией. Также яркость звезды косвенно связана с ее составом. Чем меньше в веществе светила элементов, тяжелее гелия и водорода, тем больше она может набрать массы — критической характеристики в определении яркости звезды.

Понравилась статья? Поделить с друзьями:
  • Как найти звуко буквенный разбор слова
  • Как найти аккаунты привязанные к моему номеру
  • Абсцисса как найти примеры
  • Как составить звуковую модель слова шмель
  • Гидра как найти закладку