Как найти свободное падение в физике формула

Ускорение свободного падения характеризует то, как быстро будет увеличиваться скорость тела при свободном падении. Свободным падением называется ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести. Из физики известно, что ускорение свободного падения на Земле составляет (9,8) 

мс2

.

Вопрос, почему эта величина именно такая, мы рассмотрим в этой теме.

Ускорение свободного падения в упрощённом виде можно рассчитать по формуле 

g=Fm

, которая получается из формулы 

F=m⋅g

, где (F) — сила тяжести либо вес тела в состоянии покоя или равномерного прямолинейного движения, (m) — масса тела, которое притягивает планета, (g) — ускорение свободного падения.

Сила тяжести, действующая на тело, зависит от массы тела, массы планеты, притягивающей тело, и от расстояния, на котором находится тело от центра массы планеты.

(F) — сила тяжести, Н;

(G) — гравитационная постоянная,

G=6,6720⋅10−11Н⋅м2кг2

;

(R) — расстояние между центрами планеты и объекта в метрах. Если притягиваемое тело находится на поверхности планеты, тогда (R) равен радиусу планеты (если планета имеет сферическую форму);

m1 и 

m2

 — масса планеты и притягиваемого тела, выраженные в кг.

Обрати внимание!

Если мы объединим обе формулы, тогда получим формулу 

g=G⋅mR2

, с помощью которой можно вычислить ускорение свободного падения на любом космическом объекте — на планете или звезде.

Пример:

ускорение свободного падения у поверхности Земли вычисляют таким образом:

g=G⋅МЗRЗ2=6,6720⋅10−11⋅5,976⋅10246,371⋅1062=9,8мс2

, где

(g) — ускорение свободного падения;

(G) — гравитационная постоянная,

G=6,6720⋅10−11Н⋅м2кг2

;

Практически на Земле ускорение свободного падения на полюсах немного больше ((9,832) 

мс2

), чем на экваторе ((9,78) 

мс2

), так как Земля не имеет форму идеального шара, а на экваторе скорость вращения больше, чем на полюсах. Среднее значение ускорения свободного падения у поверхности Земли равно (9,8) 

мс2

.

Ускорение свободного падения у поверхности любого космического тела — на планете или звезде — зависит от массы этого тела и квадрата его радиуса. Таким образом, чем больше масса звезды и чем меньше её размеры, тем больше значение ускорения свободного падения у её поверхности.

При помощи формулы расчёта ускорения свободного падения и измерений, проведённых для удалённых объектов, учёные-физики могут определить величину ускорения свободного падения на любой планете или звезде.

Рис. (1). Планеты Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун; и карликовые планеты: Церера, Плутон, Эрида ((2003) UB (313))

SolSys_IAU06.jpg

Таблица (1). Ускорение свободного падения и другие характеристики планет Солнечной системы и карликовых планет

Небесное

тело

Ускорение

свободного

падения, мс2

Диаметр,

км 

Расстояние

до Солнца,

миллионы км

Масса,

кг

Соотношение

 с массой

Земли

Меркурий

(3,7)

(4878)

(58)

(3,3*)

1023

(0,055)

Венера

(8,87)

(12103)

(108)

(4,9*)

1024

(0,82)

Земля

(9,8)

(12756,28)

(150)

(6,0*)

1024

(1)

Марс

(3,7)

(6794)

(228)

(6,4*)

1023

(0,11)

Юпитер

(24,8)

(142984)

(778)

(1,9*)

1027

(317,8)

Сатурн

(10,4)

(120536)

(1427)

(5,7*)

1026

(95,0)

Уран

(8,87)

(51118)

(2871)

(8,7*)

1025

(14,4)

Нептун

(10,15)

(49532)

(4498)

(1,02*)

1026

(17,1)

Плутон

(0,66)

(2390)

(5906)

(1,3*)

1022

(0,0022)

Луна

(1,62)

(3473,8)

(0,3844 )

(до Земли)

(7,35*)

1022

(0,0123)

Солнце

(274,0)

(1391000)

(2,0*)

1030

(332900)

Нейтронные звёзды имеют малый диаметр — порядка десятков километров, — а масса их сопоставима с массой Солнца. Поэтому гравитационное поле у них очень сильное.

Пример:

если диаметр нейтронной звезды равен (20) км, а масса её в (1,4) раза больше массы Солнца, тогда ускорение свободного падения будет в (200000000000) раз больше, чем у поверхности Земли.

Его величина приблизительно равна 

2⋅1012 мс2

. Значение ускорения свободного падения для нейтронной звезды может достигать значения 

7⋅1012 мс2

.

Скорость свободного падения

Общие сведения

Основоположником создания учения о движении стал Аристотель. Он утверждал, что скорость падения тела зависит от его веса. Значит, тяжёлый предмет сможет долететь до Земли быстрее, чем лёгкий. Если же на объект не будут воздействовать какие-либо силы, его движение невозможно.

Галилео галилей

Но Галилео Галилей, известный итальянский изобретатель и физик, изучая падение различных предметов и их инерцию, смог опровергнуть догадки Аристотеля. Результаты его исследований были революционными в науке. При этом даже была выпущена книга «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению», в которой были изложены основные размышления Галилея.

За дату рождения кинематики как науки можно принять 20 января 1700 года. В это время проходило заседание Академии наук, на котором Пьер Вариньона не только дал определения понятиям скорость, ускорение, но и описал их в дифференциальном виде. Уже после Ампер использовал для изучения процессов вариационное исчисление. Наглядные опыты провёл Лейбниц, а потом. профессор МГУ Н. А. Любимов смог продемонстрировать появление невесомости при свободном падении.

Под невесомостью понимают состояние тела, при котором силы взаимодействия с опорой, существующие из-за гравитационного притяжения, не оказывают никакого влияния. Такое положение имеет место, когда воздействующие на тело внешние силы можно охарактеризовать массовостью, например, тяготения.

Свободное падение тел

В этом случае силы поля сообщают всем частицам предмета в любом из его положений равные по модулю и направлению ускорения, либо при движении возникают одинаковые по модулю скорости всех частиц тела. Например, поступательное движение. Состояние невесомости особо ярко проявляется в начальный момент при падении тела в атмосфере. Это связано с тем, что сопротивление воздуха ещё невелико.

Таким образом, для существования свободного падения нужно выполнение как минимум двух условий:

  • малость или отсутствие сопротивления среды;
  • действие лишь одной силы тяжести.

Что интересно, движение вверх тоже считается свободным падением, несмотря на обратное интуитивное восприятие, поэтому траектория движения может иметь форму как участка параболы, так и отрезка прямой. Например, камень, брошенный с небольшой высоты или поверхности под любым углом.

Опыт Галилея

Падение относится к реальному движению. Любое взаимодействие с Землёй приводит к изменению скорости из-за чего возникает ускорение. В 1553 году итальянец Джованни Бенедетти заявил, что 2 тела с разной массой, но одинаковой формы, брошенные в одной среде за одинаковое время пролетят равные расстояния. Это утверждение нуждалось в доказательстве, так как противоречило общепринятому на тот момент времени пониманию процессов. В частности, высказываниям Аристотеля.

Галилео галилей опыты

Одним из экспериментаторов стал Галилей. Для проведения опыта учёному понадобилось:

  • стофунтовое ядро;
  • однофунтовый шар.

Существует мнение, что вместо шара учёный использовал мушкетную пулю. Эксперимент заключался в следующем. Подняв 2 предмета на Пизанскую башню, Галилей сбросил их одновременно. Наблюдающие люди воочию смогли убедиться, что 2 тела упали на землю одновременно. Когда же один из учеников Аристотеля упрекнул итальянца, что на такой малой высоте невозможно оценить достоверно разницу, экспериментатор ответил: «Проделайте опыт самостоятельно, вы найдёте, что более тяжёлый предмет опередит тот, что легче на 2 пальца, поэтому, когда первый упадёт на землю, то второй будет от него на расстоянии толщины двух пальцев».

Свободное падение

В своих работах Галилей рассуждал, что если связать верёвкой 2 тела разной тяжести, то с большим весом, по мнению Аристотеля, предмет будет лететь быстрее. Причём лёгкий объект начнёт замедлять падение тяжёлого. Но так как система в целом тяжелее, чем отдельно взятые тела, падать она должна быстрее самого тяжёлого тела. Другими словами, возникает противоречие, значит, предположение о влиянии веса на скорость падения неверно.

Сегодня эксперимент, подтверждающий доводы Галилея, может провести самостоятельно, пожалуй, каждый интересующийся. Такой опыт часто демонстрируют в средних классах общеобразовательной школы. Для этого нужно взять 2 трубки, длиной более метра и поместить в них 2 шарика разной массы. Затем создать внутри вакуум и одновременно их перевернуть. Если все условия соблюдены верно, то 2 тела опустятся на дно ёмкостей одновременно.

Если же опыт повторить не в вакууме, на шары будет действовать сила сопротивления, поэтому время падения уже не будет совпадать. Причём зависеть оно будет от формы предмета и его плотности.

Закон ускорения

Формула для свободного падения была выведена из выражения, определяющего силу тяжести: F = m * g. В соответствии с законом, падение предметов выполняется с одним и тем же ускорением вне зависимости от массы тела. По сути, это частный случай равноускоренного движения, обусловленное силой тяжести.

Для количественного анализа нужно ввести систему координат, взяв начало у поверхности Земли. Тогда можно рассмотреть падение тела массой m с высоты y0. Причём вращением планеты и сопротивлением воздушной среды нужно пренебречь.

Ускорение свободного падения формула

Дифференциальное уравнение будет иметь вид: my = — mg, где: g — ускорение свободного падения. Само же дифференцирование выполняется по времени. При заданных начальных условиях y = y0 и беря во внимание проекцию скорости на вертикальную ось после интегрирования, зависимость переменных от t примет вид:

  • v = v0 + gt;
  • y = y0 + v0t — (gt2 / 2).

Из полученных формул становится понятно, почему свободное падение не зависит от массы тела. При этом если начальная скорость будет равна нулю, то есть при падении предмету не сообщается импульс, текущее движение пропорционально времени, а пройденный путь определяется его квадратом.

Как показали эксперименты, если сопротивления воздуха нет, ускорение для любых летящих предметов по отношению к Земле составит 9,8 м / с2. Формулы, которые используются при расчёте величин, совпадают с выражениями, справедливыми для любого равноускоренного движения. Например, если тело падает без начальной скорости, его скорость можно найти по формуле: V2 = g * t, а высоту падения определить так: h = (gt2 / 2).

Свободное падение формула

Следует отметить, что при удалении предмета от Земли значение свободного движения уменьшается. Причём из-за формы планеты на экваторе оно будет составлять 9,78 м / с2, а с противоположной стороны — 9,832 м / с2. Чтобы определить значение в любом месте, используют нитяной маятник. Его период колебаний определяется по формуле: T = 2p√(l / g), где l — длина нити.

Значения силы тяжести также зависит от строения земной коры и содержащихся в недрах полезных ископаемых. С учётом этого рассчитываются гравитационные аномалии: Δg = g — gср. Например, если g > gcp, то с большой вероятностью в земле содержатся залежи железной руды, в ином случае — нефти или газа.

Решение задач

Свободно двигаться, то есть не испытывать действие сторонних сил, могут любые тела в вакууме. Но в реальности на них оказывается воздействие как атмосферными явлениями, так и сопротивлением среды. При решении задач учитывается только сила тяжести, а вот остальными явлениями пренебрегают, считая их ничтожно малыми.

Вот некоторые из типовых задач, используемые при обучении в среднеобразовательных школах:

Свободное падение задача

  1. Деревянная бочка падает с 30 метров. Какова будет её скорость перед столкновением с Землёй? Так как рассматривается свободное падение, для решения нужно использовать формулу: v2 = 2 * g * h. Отсюда, v = √(2 * g * h) = (2 * 9,81 м / с2 * 30 м) = 24,26 м/с.
  2. Тело вылетает вертикально вверх со скоростью 45 м/с. Какой высоты оно достигнет перед изменением направления полёта и сколько для этого понадобится времени. Для начала следует записать формулу скорости: v = v0 — gt. Отсюда можно рассчитать время полёта: t = v0 / g = 45 / 9,8 = 4,6 c. Теперь можно определить максимальную высоту: h = vot — (gt 2 / 2) = 45 м / с * 4,6 с — 9,8 м / с2 * (4,6 c)2 / 2 = 207 м — 103,7 м = 103,3 м.

  3. Камень летит со скоростью 30 м/с. Найти время, за которое он достигнет 25 метров. Система уравнений, описывающая движение, будет выглядеть так: h = v0t — (gt2 / 2); 25 = 30t — 5t2. Полученные уравнения в системе называются квадратными, поэтому нужно выразить одно из другого и определить корни: t2 — 6t + 5 = 0. В результате должно получиться время, равное одной секунде.

Рассмотренные задания довольно простые. Но есть и повышенной сложности, требующие не только знания формул, но и умения выполнять анализ. Вот одно из таких.

Мяч бросили с горки под углом к горизонту. Через время, равное t = 0,5 c он достигнет наибольшей высоты, а t2 = 2,5 он упадёт. Определить высоту горки, ускорение падения принять равное g = 10 м / с2. Скорость движущегося предмета можно представить в координатной плоскости x и y. В горизонтальном направлении сил, оказывающих воздействие, нет. Движение равномерное. Наибольшая высота будет достигнута при h = H + v0y * t1 — (gt21 / 2).

Вертикальную составляющую можно вычислить, руководствуясь геометрическими принципами: v0y = v0 * sin (a). Учитывая, что h = (gt2 / 2), для высоты горки можно записать: H = (g * (t21 + t22) / 2) — t1 * v0 sin (a). Так как gt1 = v0 sin (a), то рабочая формула примет вид: H = (g * (t21 + t22) / 2) — gt21. После подстановки данных в ответе должна получиться высота равная 30 метров. Задача решена.

Формула скорости свободного падения в физике

Формула скорости свободного падения

Ускорение и скорость при свободном падении

Движение тела около поверхности Земли под воздействием силы тяжести называют свободным падением. При исследовании свободного падения тела, обычно силы сопротивления воздуха не учитывают.

Напомним, что величина ускорения свободного падения около поверхности Земли вычисляется как:

[g=gamma frac{M}{({R+h)}^2}left(1right),]

где $gamma =6,67cdot {10}^{-11}frac{Нcdot м^2}{{кг}^2}$- гравитационная постоянная; $M$ — масса Земли; $R$ — радиус Земли.

Если расстояние, с которого падает тело много меньше, чем радиус Земли ($ hll R$), то ускорение свободного падения считают постоянной величиной, равной:

[g=gamma frac{M}{R^2}approx 9,8 (frac{м}{с^2})left(2right).]

Кинематическое уравнение скорости при свободном падении

Свободное падение происходит с постоянным ускорением, что было установлено еще Галилеем, поэтому скорость в кинематике определяет уравнение для равнопеременного движения:

[overline{v}left(tright)={overline{v}}_0+overline{g}t left(3right).]

Уравнение (3) показывает изменение вектора скорости $overline{v}left(tright),$ где ${overline{v}}_0$ — начальная скорость движения тела.

Используя это уравнение, и зная начальные условия движения тела можно найти скорость тела относительно избранной системы отсчета для любого момента времени.

Скорость тела, брошенного под углом к горизонту

Допустим, что тело бросили под углом $alpha $ к горизонту. Ось X системы координат направим горизонтально, ось Y перпендикулярно горизонту вверх, тогда начальные условия движения для скорости данного тела запишем как:

[left{ begin{array}{c}
v_xleft(t=0 right)=v_0{cos alpha , } \
v_yleft(t=0 right)=v_0{sin alpha } end{array}
right.left(4right).]

Это означает, что тело бросили под углом $alpha $ к горизонту с начальной скоростью ${overline{v}}_0$. При этом проекции уравнения (3) дадут нам систему уравнений:

[left{ begin{array}{c}
v_xleft(tright)=v_0{cos alpha , } \
v_yleft(tright)=v_0{sin alpha -gt } end{array}
right.left(5right).]

Формула скорости при свободном падении тела из состояния покоя

Формула скорости свободного падения, рисунок 1

Начальные условия для скорости движения для тела, которое падает из состояния покоя, запишем так:

[left{ begin{array}{c}
v_xleft(t=0 right)=0, \
v_yleft(t=0 right)=0 end{array}
right.left(6right).]

В таком случае выражение (3) в проекции на ось Y, которую выберем вдоль направления движения (рис.1), тела будет выглядеть как:

[left{ begin{array}{c}
v_y=-gt end{array}
right.left(7right).]

В момент падения скорость тела при свободном его падении с высоты $h$ равна:

[v_{pad}=-sqrt{2gh}left(8right).]

Знак минус в формуле (8) означает, что скорость падения направлена против нашей оси Y.

Отметим, что тело, брошенное вертикально вверх движется до максимальной высоты подъема столько же времени, сколько оно потом падает с этой высоты до точки бросания.

Примеры задач с решением

Пример 1

Задание. Тело бросили вертикально вверх. Оно вернулось в точку бросания через $t’$ секунд. Какова начальная скорость тела?textit{}

Решение. Сделаем рисунок.

Формула скорости свободного падения, пример 1

Запишем уравнение для скорости движения тела в векторном виде:

[overline{v}left(tright)={overline{v}}_0+overline{g}t left(1.1right).]

Найдем проекцию этого уравнения на ось Y:

[v=v_0-gt left(1.2right).]

В точке максимального подъема скорость тела равна нулю, следовательно:

[0=v_0-g{t }_{pod}to v_0=g{t }_{pod}left(1.3right).]

Принимая во внимание, что время подъема равно времени спуска при отсутствии сил трения, имеем:

[{t }_{pod}=frac{t’}{2}left(1.4right).]

Подставим (1.4) в (1.3), имеем:

[v_0=gfrac{t’}{2}.]

Ответ. $v_0=gfrac{t’}{2}$

Пример 2

Задание. Одно тело бросили вертикально вверх с начальной скоростью равной $v_0.$ В этот же момент времени вертикально вниз с начальной скоростью $v_0$ бросили второе тело. Высота, с которой бросили это тело равно высоте максимального подъема первого тела. Какова скорость первого и второго тел в момент встречи этих двух тел? Тела считайте материальными точками, сопротивление воздуха не учитывать.

Решение. Сделаем рисунок.

Формула скорости свободного падения, пример 2

За основу решения задачи примем уравнение для скорости движения тела в поле тяжести Земли:

[overline{v}left(tright)={overline{v}}_0+overline{g}t left(2.1right).]

Для первого тела уравнение (2.1) в проекции на ось Y будет иметь вид:

[v_1=v_0-gt left(2.2right).]

Уравнение скорости второго тела при его падении выглядит как:

[{-v}_2=-v_0-gt left(2.3right).]

Для решения задачи будем использовать кинематическое уравнение для перемещения тела с постоянным ускорением:

[overline{s}left(tright)={overline{s}}_0+{overline{v}}_0t+frac{overline{g}t^2}{2}left(2.4right).]

В проекции на ось Y это уравнение для первого тела, поднимающегося вверх, даст выражение:

[y_1=v_0t-frac{gt^2}{2}left(2.5right).]

Для второго тела при его падении в проекции на ось Y (2.4) запишется как:

[y_2=h-v_0t-frac{gt^2}{2}left(2.6right).]

Найдем время встречи тел ($t’$) из системы уравнений (2.5) и (2.6), учитывая, что при встрече тел $y_1=y_2$:

[v_0t’-frac{g{t’}^2}{2}=h-v_0t’-frac{g{t’}^2}{2}to 0=h-2v_0t’to t’=frac{h}{2v_0}left(2.7right).]

Подставим время $t’$ в уравнение (2.2) получим скорость первого тела в момент встречи:

[v_1=v_0-gfrac{h}{2v_0}left(2.8right).]

Найдем высоту $h$, на которую способно подняться первое тело. Для этого найдем время подъема тела, зная, что в точке максимального подъема скорость тела равна нулю:

[v_1=v_0-gt=0to t_{pod}=frac{v_0}{g}left(2.9right).]

Высота подъема, она же высота с которой бросили второе тело найдётся из уравнения (2.5), если в него подставить $t_{pod}$:

[y_1=h=v_0t-frac{g{t_{pod}}^2}{2}=v_0frac{v_0}{g}-frac{g}{2}frac{v^2_0}{g^2}=frac{v^2_0}{2g}left(2.10right).]

Подставляя вместо $h$ правую часть уравнения (2.10) в формулу (2.8) получим скорость движения первого тела в его момент встречи со вторым телом:

[v_1=v_0-gfrac{v^2_0}{2g}frac{1}{2v_0}=frac{3}{4}v_0.]

Используя уравнение (2.3), подставляя в нее время встречи тел ($t’$) из (2.7), учитывая (2.10) получим скорость движения второго тела в момент встречи:

[v_2=v_0+gt=v_0+gfrac{1}{2v_0}frac{v^2_0}{2g}=v_0+frac{v_0}{4}=frac{5}{4}v_0.]

Ответ. $v_1=frac{3}{4}v_0,$ $v_2=frac{5}{4}v_0$

Читать дальше: формула ускорения свободного падения.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Ускорение свободного падения

Ускорение свободного падения — движение объекта, который получает ускорение из-за действующей на него силы тяжести; обозначается буквой g и измеряется в м/с². На поверхности Земли ускорение свободного падения примерно равно 9,81 м/с².

На полюсах (Южном и Северном) ускорение свободного падения будет больше, а на экваторе — меньше. Это происходит из-за двух фактов:

  • Земля — не идеальный круг, а приплюснутый шар и её радиус на полюсах меньше, чем на экваторе (ускорение зависит от радиуса),
  • центробежные силы (при вращении Земли) минимально компенсируют гравитацию больше на экваторе, чем на полюсах.

В вакууме тела падают с одинаковой скоростью потому, что ускорение свободного падения не зависит от массы.

Таблица ускорения свободного падения небесных тел

Небесное тело g (в м/с²)
Луна 1,62
Солнце 274
Меркурий 3,72
Венера 8,87
Земля 9,81
Марс 3,711
Юпитер 24,79
Сатурн 10,44
Уран 8,87
Нептун 11,15

От чего зависит ускорение свободного падения?

Ускорение свободного падения зависит от массы планеты и радиуса планеты — чем она тяжелее, тем сильнее притягивает тела (т.е. масса тела не влияет на ускорение).

Возможно для будущих вычислений нужны будут эти данные:

  1. Масса Земли = 5,98 × (10^24) кг (или 5,972E24 кг)
  2. Радиус Земли = 6 371 км = 6,37×(10^6) м.

Как найти ускорение свободного падения?

Формула ускорения свободного падения

ускорение свободного падения формула g = G × (M/R²)
Где:
g — ускорение свободного падения
G — гравитационная постоянная
M — масса планеты
R — радиус планеты

Гравитационная постоянная («G», не путайте с «g») — это фундаментальная физическая константа, которая примерно равна

Гравитационная постоянная G

и связывает силы гравитационного притяжения между двумя телами (G) с их массами (m1 и m2) и расстоянием между ними (R) в формуле:

Гравитационная постоянная 'G', F= G*(m1.m2)/r^2

Пример расчёта ускорения свободного падения (для Земли):

Вспомним формулу:

ускорение свободного падения формула g = G × (M/R²)
g — ускорение свободного падения
G — гравитационная постоянная
M — масса планеты
R — радиус планеты

Пример расчёта ускорения свободного падения для Землиб Формула ускорения свободного падения g = G × (M/R²) пример

Как узнать время падения тела?

Формула времени свободного падения (когда тело падает вертикально):

t = V / g = √(2h/g)

Где:

  • t — время
  • V — скорость тела
  • g — ускорение ≈ 9,8 м/с²
  • h — расстояние

Пример:

Высота (h) = 20 м

Нужно найти скорость и время падения.

Решение:

Формула скорости:

Формула скорости     (V² = V²0 + 2×g×h)

V0 = 0

g ≈ 9,8 м/с²

h = 20 м

V² = 0² + 2 × 9,8 м/с² × 20 м ⇔ V = √392 м/с ≈ 19,8 м/с

Зная скорость, применяем эту формулу:

t = V / g = (19,8 м/с) / (9,8 м/с²) ≈ 2,02 с

Либо используя только высоту и ускорение:

t = √(2h/g) = √(2 × 20 м / 9,8 м/с²) ≈ 2,02 с

Где нужны знания о свободном падении?

Они могут понадобиться:

  • в авиации,
  • в космонавтике,
  • при поиске полезных ископаемых (там, где есть залежи тяжёлых ископаемых, g меняется),
  • при разработке новых лыжных трамплинов и полос приземления,
  • при разработке новых автомобилей (рассчитываются наилучшие показатели для экономии топлива).

Узнайте также про Закон сохранения энергии, Силу Архимеда, Законы Ньютона и Космологию.

Свободное падение

Свободное падение представляет собой частный случай равномерно ускоренного движения без начальной скорости. Ускорение этого движения равно ускорению свободного падения, называемого также ускорением силы тяжести.
Для этого движения справедливы формулы:

Если:
u — скорость падения тела спустя время t,
g — ускорение свободного падения, 9.81 (м/с²),
h — высота с которой падает тело,
t — время, в течение которого продолжалось падение,
То, свободное падение описывается следующими формулами:

Расстояние, пройденное телом за время падения, зная конечную скорость

[ h = frac{ut}{2} ]

Расстояние, пройденное телом за время падения, зная ускорение свободного падения

[ h = frac{gt^2}{2} ]

Скорость тела, в конце падения, зная ускорение свободного падения и время

[ u = gt ]

Скорость тела, в конце падения, зная ускорение свободного падения и высоту

[ u = sqrt{2gh} ]

Примечание к статье: Свободное падение

Свободное падение

стр. 408

Понравилась статья? Поделить с друзьями:
  • Как найти моей маме папу
  • Как найти ник в psn
  • Как составить исковое заявление в суд образец на страховую
  • Как найти на смартфоне индикатор
  • Как найти всех слаймиков