Как найти свойства атома

Вспомните:

  • что такое атом;
  • из чего состоит атом;
  • изменяется ли атом в химических реакциях?

АТОМ — это электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов.

Число электронов в ходе химических процессов может изменяться, но заряд ядра всегда остается неизменным. Зная распределение электронов в атоме (строение атома), можно предсказать многие свойства данного химического элемента, а также простых и сложных веществ, в состав которых этот элемент входит.

Содержание

  • Структура Периодической системы Менделеева
  • Ядро атома. Изотопы
  • Распределение электронов в поле ядра атома
  • Строение атома и свойства элементов
  • Выводы

Структура Периодической системы Менделеева

Строение атома, т. е. состав ядра, распределение электронов вокруг ядра, несложно определить по положению элемента в Периодической системе. В Периодической системе Менделеева химические элементы располагаются в определённой последовательности. Эта последовательность тесно связана со строением атома этих элементов. Каждому химическому элементу в системе присвоен порядковый номер, кроме того, для него можно указать:

  • номер периода;
  • номер группы;
  • вид подгруппы.

Зная точный «адрес» химического элемента, т. е. его группу, подгруппу и номер периода, можно однозначно определить строение его атома.

Период — это горизонтальный ряд химических элементов. В современной Периодической системе семь периодов. Первые три — малые, так как они содержат 2 или 8 элементов:

  • 1-й период — Н, Не — 2 элемента;
  • 2-й период — Li…Nе — 8 элементов;
  • 3-й период — Na…Аr — 8 элементов.

Остальные периоды — большие. Каждый из них содержит 2–3 ряда элементов:

  • 4-й период (2 ряда) — К…Кr — 18 элементов;
  • 6-й период (3 ряда) — Сs…Rn — 32 элемента. В этот период входит ряд лантаноидов.

Группа — вертикальный ряд химических элементов. Всего групп восемь. Каждая группа состоит из двух подгрупп: главной подгруппы и побочной подгруппы (см. рис. 5).

Главную подгруппу (подгруппу А) образуют химические элементы малых периодов и больших периодов. На рисунке 5 показано, что главную подгруппу пятой группы составляют элементы малых периодов (N, P) и больших периодов (As, Sb, Bi).

Побочную подгруппу (подгруппу Б) образуют химические элементы только больших периодов. В нашем случае это V, Nb, Ta.

Визуально эти подгруппы различить легко: главная подгруппа «высокая», начинается с первого или второго периода. Побочная подгруппа — «низкая», начинается с 4-го периода.

Итак, каждый химический элемент Периодической системы имеет свой адрес:

  • период;
  • группу;
  • подгруппу;
  • порядковый номер.

Например, ванадий (V) — это химический элемент 4-го периода, V группы, побочной подгруппы, порядковый номер 23.

Задание 3.1. Укажите период, группу и подгруппу для химических элементов с порядковыми номерами 8, 26, 31, 35, 54.

Задание 3.2. Укажите порядковый номер и название химического элемента, если известно, что он находится:

  1. в 4-м периоде, VI группе, побочной подгруппе;
  2. в 5-м периоде, IV группе, главной подгруппе.

Каким образом можно связать эти сведения об элементе со строением его атома?

Ядро атома. Изотопы

Атом состоит из ядра, которое имеет положительный заряд, и электронов, которые имеют отрицательный заряд. В целом атом электронейтрален.

Положительный заряд ядра атома равен порядковому номеру химического элемента.

Ядро атома — сложная частица. В ней сосредоточена почти вся масса атома. Поскольку химический элемент — совокупность атомов с одинаковым зарядом ядра, то около символа элемента указывают (рис. 6).

По этим данным можно определить состав ядра. Ядро состоит из протонов и нейтронов.

  • Протон (р) имеет массу, равную 1 (1,0073 а. е. м.) и заряд, равный +1.
  • Нейтрон (n) заряда не имеет (нейтрален), а масса его приблизительно равна массе протона (1,0087 а. е. м.).

Какие частицы определяют заряд ядра? Протоны! Причём число протонов равно (по величине) заряду ядра атома, т. е. порядковому номеру:

Число нейтронов определяют по разности между величинами: «масса ядра» и «порядковый номер».

Задание 3.3. Определите состав ядер атомов, если химический элемент находится в:

  1. 3-м периоде, VII группе, главной подгруппе;
  2. 4-м периоде, IV группе, побочной подгруппе;
  3. 5-м периоде, I группе, главной подгруппе.

Обратите внимание, что при определении массового числа ядра атома приходится округлять атомную массу, указанную в Периодической системе! Почему? Ведь массы протона и нейтрона практически целочисленны, а массой электронов можно пренебречь.

Для того,чтобы ответить на этот вопрос, нужно понять:

  1. Что происходит с атомом в ходе химических процессов;
  2. Что такое «химический элемент».

В химических процессах обязательно изменяется распределение электронов вокруг ядра или даже изменяется их число. В последнем случае атом отдаёт или принимает электроны и превращается в заряженную частицу — ион. Но в химических реакциях никогда не меняется состав ядра атома, его заряд. Поэтому заряд ядра атома является своеобразным «паспортом» химического элемента.

Химический элемент — совокупность атомов или ионов с одинаковым зарядом ядра.

Для того чтобы разобраться, попробуйте определить, какие из ядер, состав которых указан ниже, принадлежат одному и тому же химическому элементу:

Атомам одного химического элемента принадлежат ядра А и В, так как они содержат одинаковое число протонов, т. е. заряд этих ядер одинаковый. Но ведь у них разная масса! Исследования показывают, что масса атома не оказывает существенного влияния на его химические свойства. Поэтому атомы одного и того же химического элемента (одинаковое число протонов), но с разной массой (разное число нейтронов) являются ИЗОТОПАМИ* этого элемента.

* Слово «изотоп» означает по смыслу «одно место», т. е. все изотопы данного химического элемента находятся в одной клетке ПСХЭ.

В таблице Менделеева указана средняя атомная масса всех природных изотопов данного элемента (Аr). Изотопы и их химические соединения отличаются друг от друга по физическим свойствам, но химические свойства у изотопов одного химического элемента одинаковы. Так, изотоп углерода-14 (14С) имеет такие же химические свойства, как и углерод-12 (12С), который входит в ткани любого живого организма, отличаясь от него только радиоактивностью. Поэтому изотопы применяют для диагностики и лечения различных заболеваний, для научных исследований.

Элемент «водород» встречается в природе в виде трёх изотопов:

Химический элемент «кислород» также представлен тремя природными изотопами:

Задание 3.4. Укажите состав ядер этих изотопов водорода и кислорода.

Если разные вещества содержат атомы одного и того же химического элемента, это не означает, что эти вещества имеют одни те же свойства. Например, химический элемент «хлор» в виде атомарного хлора Cl разрушает метан, а также атмосферный озон. Тот же элемент в виде молекулярного хлора Cl2 ядовит, активно реагирует с водой, многими металлами, а ионы хлора (химический элемент — тот же!) в составе NaCl химически инертен, а с биологической точки зрения не только безвреден, но и полезен для нас. Эти ионы являются макроэлементами нашей пищи, которые входят в состав крови, желудочного сока. Суточная потребность — до 6 граммов.

Но вернемся к описанию строения атома.

Распределение электронов в поле ядра атома

Как известно, ядро атома в химических процессах не меняется. А что меняется? Общее число электронов и распределение электронов. Общее число электронов определить несложно: оно равно порядковому номеру, т. е. заряду ядра атома:

Электроны имеют отрицательный заряд –1, а масса их ничтожна: 1/1840 от массы протона.

Отрицательно заряженные электроны отталкиваются и поэтому находятся на разных расстояниях от ядра. При этом электроны, имеющие приблизительно равный запас энергии, образуют энергетический уровень.

Число энергетических уровней в атоме равно номеру периода, в котором находится химический элемент. Энергетические уровни условно обозначают так (рис. 7).

Задание 3.5. Определите число энергетических уровней в атомах кислорода, магния, кальция, свинца.

На каждом энергетическом уровне может находиться ограниченное число электронов:

  • на первом энергетическом уровне не более 2 электронов;
  • на втором энергетическом уровне не более 8 электронов;
  • на третьем энергетическом уровне не более 18 электронов.

ЗАПОМНИТЕ ЭТИ ЧИСЛА!

Они показывают, что, например, на втором энергетическом уровне может находиться 2 или 5 или 7 электронов, но не может быть 9 или 12 электронов.

Важно знать, что, независимо от номера энергетического уровня, на внешнем (последнем) уровне не может быть больше восьми электронов. Внешний восьмиэлектронный энергетический уровень является наиболее устойчивым и называется завершённым. Такие энергетические уровни имеются у самых неактивных элементов — благородных газов.

Как определить число электронов на внешнем уровне остальных атомов? Для этого существует простое правило – число внешних электронов равно:

  • для элементов главных подгрупп — номеру группы;
  • для элементов побочных подгрупп — оно не может быть больше двух (рис. 8).

Например:

Задание 3.6. Укажите число внешних электронов для химических элементов с порядковыми номерами 15, 25, 30, 53.

Задание 3.7. Найдите в Периодической системе химические элементы, в атомах которых имеется завершённый внешний уровень.

Очень важно правильно определять число внешних электронов, так как именно с ними связаны важнейшие свойства атома. Так, в химических реакциях атомы стремятся «приобрести» устойчивый, завершённый внешний уровень (8ē). Для этого атомы, на внешнем уровне которых мало электронов, «предпочитают» их отдать.

Химические элементы, атомы которых способны только отдавать электроны, относятся к МЕТАЛЛАМ. Очевидно, что на внешнем уровне атома металла должно быть мало электронов: 1, 2, 3.

Если на внешнем энергетическом уровне атома много электронов, то такие атомы стремятся принять электроны до завершения внешнего энергетического уровня, т. е. до восьми электронов. Такие элементы относятся к НЕМЕТАЛЛАМ.

Вопрос. К каким элементам (металлам или неметаллам) относятся химические элементы побочных подгрупп? Почему?

Металлы и неметаллы главных подгрупп в таблице Менделеева отделяет линия, которую можно провести от бора к астату. Выше этой линии (и на линии) располагаются неметаллы, ниже — металлы.

Задание 3.8. Определить, к металлам или неметаллам относятся: фосфор, ванадий, кобальт, селен, висмут. Вывод сделайте, определив положение элемента в Периодической системе химических элементов и число электронов на внешнем уровне.

Для того чтобы составить распределение электрона по остальным уровням и подуровням, следует воспользоваться следующим АЛГОРИТМОМ:

  1. Определить общее число электронов в атоме (по порядковому номеру).
  2. Определить число энергетических уровней (по номеру периода).
  3. Определить число внешних электронов (по виду подгруппы и номеру группы).
  4. Указать число электронов на всех уровнях, кроме предпоследнего.
  5. Рассчитать число электронов на предпоследнем уровне.

Например, согласно пунктам 1…4 для атома марганца определено:

Получили распределение электронов в атоме марганца (рис. 9):

Задание 3.9. Отработайте алгоритм, составив схемы строения атомов для элементов № 16, 26, 33, 37. Укажите: металлы это или неметаллы? Ответ поясните.

Составляя вышеприведенные схемы строения атома, мы не учитывали, что электроны в атоме занимают не только определённые уровни, но и определённые подуровни каждого уровня. Вид подуровня обозначается латинской буквой: s, p, d.

Число возможных подуровней равно номеру уровня, т. е.

  • первый уровень состоит из одного s-подуровня;
  • второй уровень состоит из двух подуровней: s и р и т. д.

На каждом подуровне может находиться строго ограниченное число электронов:

  • на s-подуровне — не больше 2ē;
  • на р-подуровне — не больше 6ē;
  • на d-подуровне — не больше 10ē.

Подуровни одного уровня заполняются в строго определённом порядке:

Таким образом, р-подуровнь не может начать заполняться, если не заполнен s-подуровень данного энергетического уровня и т. д. Исходя из этого правила, несложно составить электронную конфигурацию атома марганца (рис. 10).

В целом электронная конфигурация атома марганца выглядит так:

Здесь и далее приняты обозначения (рис. 11).

Задание 3.10. Составьте электронные конфигурации атомов для химических элементов № 16, 26, 33, 37.

Для чего необходимо составлять электронные конфигурации атомов? Для того чтобы определять свойства этих химических элементов!

Для этого следует помнить: в химических процессах участвуют только валентные электроны.

Валентные электроны находятся на внешнем энергетическом уровне и незавершённом d-подуровне предвнешнего уровня.

Определим число валентных электронов для марганца:

или сокращённо:

Строение атома и свойства элементов

Мы получили краткую электронную формулу атома марганца, которая отражает распределение его валентных электронов. Что можно определить по этой формуле?

1. Какие свойства — металла или неметалла — преобладают у этого элемента? Ответ: марганец — металл, так как на внешнем (четвёртом) уровне 2 электрона.

2. Какой процесс характерен для металла? Ответ: всегда только отдача электронов.

3. Какие электроны и сколько их будет отдавать атом марганца? Ответы: 

  • два внешних электрона (они дальше всех от ядра и слабее притягиваются им);
  • семь (2+5) валентных электронов (так как в этом случае на третьем уровне атома останется восемь электронов, т. е. образуется завершённый уже внешний уровень).

Все эти рассуждения и заключения можно отразить при помощи схемы (рис. 12).

Полученные условные заряды атома называются степенью окисления.

Рассматривая строение атомов кислорода и водорода и рассуждая аналогично, можно показать, что типичными степенями окисления для кислорода является –2, а для водорода +1.

Вопрос. С каким из этих химических элементов может образовывать соединения марганец, если учесть полученные выше степени окисления его?

Только с кислородом, так как его атом имеет противоположную по заряду (знаку) степень окисления. В этом случае несложно составить формулы соответствующих оксидов марганца (здесь степени окисления соответствуют валентностям этих химических элементов):

Строение атома марганца подсказывает, что большей степени окисления, чем +7, у марганца быть не может, так как в этом случае пришлось бы затрагивать устойчивый, теперь уже завершённый предвнешний уровень. Поэтому степень окисления +7 является высшей, а соответствующий оксид Мn2О7высшим оксидом марганца.

Для закрепления всех этих понятий рассмотрим строение атома теллура и некоторые его свойства (см. рис. 13). Этот рисунок показывает, что теллур относится к неметаллам, так как, во-первых, у него на внешнем уровне шесть электронов и, во-вторых, его символ находится в главной подгруппе выше линии В — At. Поэтому его атом может и принимать (до завершения внешнего уровня, и отдавать электроны. В результате, в отличие от металлов, неметалл теллур может проявлять низшую степень окисления (–2) и образовывать летучие водородные соединения с водородом (Н2Те). Высшая степень окисления атома теллура (+6), как и у металлов соответствует номеру группы и, находясь в этой степени окисления, теллур образует высший оксид ТеО3.

Задание 3.11. Изобразить электронные конфигурации атомов Nа, Rb, Сl, I, Si, Sn. Определить свойства этих химических элементов, формулы их простейших соединений (с кислородом и с водородом).

Сделаем выводы.

  1. В химических реакциях участвуют только валентные электроны, которые могут находиться только на последних двух уровнях.
  2. Атомы металлов могут только отдавать эти электроны (все или несколько), принимая положительные степени окисления.
  3. Атомы неметаллов могут принимать (недостающие до восьми) электроны, получая при этом отрицательные степени окисления, и отдавать валентные электроны (все или несколько), принимая при этом положительные степени окисления.

Возникает вопрос: как составить краткую электронную формулу (распределение валентных электронов), сразу, не составляя длинных электронных конфигураций? Для этого нужно помнить несколько простых правил.

1. Номер периода соответствует числу энергетических уровней у атомов химических элементов этого периода.

2. Номер группы, как правило, совпадает с числом валентных электронов, (исключение составляют только подгруппы меди и железа).

3. Подгруппа (главная или побочная) включает химические элементы, у которых имеется одинаковое распределение валентных электронов, причём в атомах элементов главной и побочной подгруппы электроны распределяются по-разному.

3.1. У элементов главных подгрупп все валентные электроны находятся на внешнем уровне, например:

V группа, главная 5 валентных электронов

Поэтому для всех химических элементов главной подгруппы пятой группы (пять валентных электронов) распределение этих электронов следующее:

3.2. У элементов побочных подгрупп число внешних электронов не превышает двух, например:

5 валентных электронов ← V группа, побочная → 2 электрона на внешнем уровне*.

* За счёт «провала электрона» число внешних электронов может быть меньше. Но число валентных электронов при этом не меняется, поэтому свойства элемента будут такими же. Эти случаи рассмотрены в Самоучителе второго уровня, часть 1.

Для большинства химических элементов побочных подгрупп, у которых на внешнем энергетическом уровне два электрона, остальные (N – 2) валентные электроны будут находиться на d-подуровне предвнешнего уровня (N – номер группы), например:

Вопрос. Для элементов какой группы составлена такая запись?

Задание 3.12. Составьте краткие электронные формулы для атомов химических элементов № 35 и 42, а затем составьте распределение электронов в этих атомах по алгоритму. Убедитесь, что ваше «предсказание» сбылось.

Сравним теперь свойства химических элементов одной подгруппы, например:

Что общего в строении атомов этих элементов? На внешнем уровне каждого атома по одному электрону — это активные металлы. Металлическая активность связана со способностью отдавать электроны: чем легче отдает электроны атом, тем сильнее выражены его металлические свойства.

Что удерживает электроны в атоме? Притяжение их к ядру. Чем ближе электроны к ядру, тем сильнее они притягиваются ядром атома, тем труднее их «оторвать».

Исходя из этого, сделаем вывод: какой элемент — или Rb — легче отдает внешний электрон? Какой из них является более активным металлом? Очевидно, рубидий, так как его валентные электроны находятся дальше от ядра (и слабее удерживаются ядром).

Вывод. В главных подгруппах сверху вниз металлические свойства усиливаются, так как возрастает радиус атома и валентные электроны слабее притягиваются к ядру.

Сравним свойства:

Оба химических элемента — неметаллы, так как до завершения внешнего уровня не хватает одного электрона, и эти атомы будут активно притягивать недостающий электрон. При этом, чем сильнее притягивает атом неметалла недостающий электрон, тем сильнее проявляются его неметаллические свойства (способность принимать электроны).

За счёт чего происходит притяжение электрона? За счёт положительного заряда ядра атома. Но в таком случае чем ближе электрон к ядру, тем сильнее их взаимное притяжение, тем активнее неметалл.

Сделаем вывод, у какого элемента сильнее выражены неметаллические свойства: у хлора или у йода? Очевидно, у хлора, так как его валентные электроны ближе к ядру.

Вывод. Активность неметаллов в подгруппах сверху вниз убывает, так как возрастает радиус атома и все труднее притянуть недостающие электроны.

Сравним свойства кремния и олова:

На внешнем уровне обоих атомов по четыре электрона. Тем не менее эти элементы в Периодической системе находятся по разные стороны от линии, соединяющей бор и астат (см. правило в уроке 2.1.). Поэтому:

  • у кремния, символ которого находится выше линии В–At, сильнее проявляются неметаллические свойства;
  • у олова, символ которого находится ниже линии В–At, сильнее проявляются металлические свойства;

Почему? Потому что в атоме олова четыре валентных электрона находятся так далеко от ядра, что присоединение недостающих четырех электронов затруднено, в то время как отдача электронов с пятого энергетического уровня происходит достаточно легко. Для кремния возможны оба процесса, причём первый (приём электронов) — преобладает.

Выводы:

  • чем меньше электронов в атоме и чем дальше они от ядра, тем сильнее проявляются металлические свойства;
  • чем больше внешних электронов в атоме, чем ближе они к ядру, тем сильнее проявляются неметаллические свойства.

Сравним строение атомов и свойства химических элементов одного периода:

Вопрос. О каком периоде и каких элементах идёт речь?

Видно, что металлические свойства убывают, так как увеличивается число внешних электронов, а неметаллические свойства — возрастают. Если речь идёт о большом периоде, где большинство элементов имеет 2 электрона на внешнем уровне (элементы побочных подгрупп), то в этом случае главной причиной убывания металлических свойств в периоде является уменьшение радиуса атома. Дело в том, что за счёт увеличения заряда ядра в периоде увеличивается сила притяжения электронов к нему и уменьшается радиус атома:

Сравните: r (Ca) = 0,197 нм и r (Zn) = 0,139 нм

Вопрос. Какой из металлов более активен?

Основываясь на этих и других выводах, сформулированных в этой главе, можно для любого химического элемента Периодической системы составить алгоритм описания свойств химического элемента по его положению в Периодической системе.

1. Составить схему строения атома, т. е. определить состав ядра, распределение электронов по энергетическим уровням и подуровням:

  • определить общее число электронов в атоме (по порядковому номеру);
  • определить число энергетических уровней (по номеру периода);
  • определить число внешних электронов (по виду подгруппы и номеру группы);
  • указать число электронов на всех энергетических уровнях, кроме предпоследнего;
  • рассчитать число электронов на предпоследнем уровне.

2. Определить число валентных электронов и число внешних электронов.

3. Определить, какие свойства — металла или неметалла — сильнее проявляются у данного химического элемента (по положению в ПСХЭ).

4. Определить число отдаваемых (принимаемых) электронов.

5. Определить высшую и низшую степени окисления химического элемента.

6. Составить для этих степеней окисления химические формулы простейших соединений с кислородом и водородом.

7. Определить характер оксида (см. урок 2.1.) и составить уравнения его реакции с водой.

8. Для указанных (пункт 6) веществ составить уравнения характерных реакций (см. урок 2).

Задание 3.13. Составить по данной схеме описания атомов серы, селена, кальция и стронция и свойства этих химических элементов. Какие общие свойства имеют их оксиды? Гидроксиды?

Если вы выполнили упражнения 3.11 и 3.12, то легко заметить, что не только атомы элементов одной подгруппы, но и их соединения имеют общие свойства и похожий состав. Это отражено в Периодическом законе Менделеева: Свойства химических элементов, а также свойства простых и сложных веществ, образованных ими, находятся в периодической зависимости от ЗАРЯДА ЯДЕР ИХ АТОМОВ.

Физический смысл Периодического закона ясен: свойства химических элементов периодически повторяются потому, что периодически повторяются конфигурации валентных электронов (распределение электронов внешнего и предпоследнего уровней).

Так, у химических элементов одной и той же подгруппы одинаковое распределение валентных электронов и, значит, похожие свойства.

Выводы

Строение атома связано с положением элемента в Периодической системе. Зная строение атома, можно предсказать свойства элемента и его соединений. Эти свойства находятся в периодической зависимости от заряда ядер атомов элементов, в соответствии с Периодическим законом Менделеева.

Содержание:

Строение атома:

Атом — наименьшая составная часть простых и сложных веществ. Говоря об атомах, мы подчёркивали, что это химически неделимые частицы, не исчезающие и не возникающие при химических реакциях.

В течение многих веков атом считался элементарной, т. е. далее неделимой частицей. И только открытия, сделанные физиками в XIX веке, дали весомые доказательства сложности строения атома. К этим открытиям относятся прежде всего: а) изучение электролиза, т. е. процесса разложения веществ электрическим током; б) открытие катодных лучей — потока отрицательно заряженных частиц, которые впоследствии получили название электроны; и, наконец, в) обнаружение явления радиоактивности, которое представляет собой самопроизвольный распад атомов одних элементов с образованием атомов других элементов.

Ядерная модель строения атома

В начале XX века на основе исследований многих учёных и прежде всего английского физика Э. Резерфорда была установлена принципиальная модель строения атома, получившая название ядерная (планетарная). Согласно этой модели атом состоит из положительно заряженного ядра и движущихся вокруг него отрицательно заряженных электронов. Почти вся масса атома (более 99,96 %) сосредоточена в его ядре. Диаметр ядра приблизительно в 100 000 раз меньше диаметра всего атома (порядка Атом в химии - строение, формула, определение с примерами

Состав атомных ядер

Согласно современным представлениям ядра атомов состоят из двух видов частиц: протонов и нейтронов, имеющих общее название нуклоны (от лат. nucleus — ядро).

Протоны и нейтроны имеют практически одинаковую массу, равную примерно lu, т. е. одной атомной единице массы (см. § 4). Протон (его символ р) имеет заряд 1+, а нейтрон (символ n) электронейтрален.

Заряд электрона (символическое обозначениеАтом в химии - строение, формула, определение с примерами

В таблице 4 приведены основные характеристики элементарных частиц, входящих в состав атома.
Атом в химии - строение, формула, определение с примерами

Протоны и нейтроны удерживаются в ядре особыми силами, которые так и называются ядерные силы. Ядерные силы действуют только на очень малых расстояниях (порядка 10-13 см), но их величина в сотни и тысячи раз превышает силу отталкивания одноимённо заряженных протонов. Энергия связи нуклонов в ядрах атомов в миллион раз превышает энергию химической связи. Поэтому при химических реакциях ядра атомов не разрушаются, а происходит лишь перегруппировка атомов.

Число протонов (Z) в ядре атома носит название протонное число. Оно равно атомному номеру элемента и определяет его место в периодической системе. В этом заключается физический смысл атомного номера. Атомный номер определяет место элемента в периодической системе и поэтому его часто называют порядковым номером.

Заряд ядра определяется числом протонов, и поскольку атом в целом электроцентралей, то очевидно, что число протонов в его ядре равно числу электронов.Атом в химии - строение, формула, определение с примерами

Общее число протонов (Z) и нейтронов (N) называется массовым (или нуклонным) числом (A):
A=Z + N.

Массовое число практически определяет массу атома в атомных единицах, так как масса электронов составляет ничтожную часть общей массы атома.

Заряд ядра атома (протонное число) и его массовое число указывают числовыми индексами слева от символа химического элемента Атом в химии - строение, формула, определение с примерами, например: Атом в химии - строение, формула, определение с примерамиАтом в химии - строение, формула, определение с примерами

Вид атомов с определёнными значениями атомного номера и массового числа называется нуклидом.
Для обозначения нуклидов используют названия элементов или их символы, указывая массовые (нуклонные) числа: углерод-12, или Атом в химии - строение, формула, определение с примерами кислород-17, или Атом в химии - строение, формула, определение с примерамихлор-35, или Атом в химии - строение, формула, определение с примерами

Изотопы

Большинство элементов существуют в виде нескольких нуклидов, которые отличаются друг от друга своими массовыми числами. Это объясняется тем, что в их ядрах при одном и том же числе протонов может находиться разное число нейтронов. Так, природный кислород (Z = 18), кроме атомов, в ядрах которых находится 8 нейтронов Атом в химии - строение, формула, определение с примерами имеет нуклиды с числом нейтронов 9 и 10 — Атом в химии - строение, формула, определение с примерами и Атом в химии - строение, формула, определение с примерамиТакие нуклиды являются изотопами (от греч. изос — равный, топос — место), т. е. «занимающими одно место» в таблице периодической системы.

Изотопы — нуклиды, имеющие одинаковый атомный номер, но различные массовые числа.

Другими словами, изотопы — это нуклиды одного и того же элемента. Поэтому термин «изотопы» следует употреблять только во множественном числе. Изотопы любого элемента действительно занимают одно место в периодической системе, так как принадлежат одному и тому же элементу. Следовательно, и химические свойства изотопов данного элемента также будут практически одинаковы.

Теперь мы можем дать более точное определение химического элемента.

Химический элемент — это совокупность всех нуклидов, имеющих одинаковый атомный номер (т. е. одинаковый заряд ядра).

Названия и символы изотопов совпадают с названиями и символами соответствующих элементов.

Только изотопы водорода имеют собственные названия и символы: протий —Атом в химии - строение, формула, определение с примерамидейтерий — D, илиАтом в химии - строение, формула, определение с примерами тритий — Т, илиАтом в химии - строение, формула, определение с примерами (рис. 6).

Так как большинство химических элементов в природе существует в виде смеси нуклидов, то относительная атомная масса данного элемента является средней величиной массовых чисел нуклидов с учётом доли каждого из них в природной смеси. Это объясняет тот факт, что относительные атомные массы большинства элементов не являются целочисленными величинами.

Атом в химии - строение, формула, определение с примерами

Например, углерод существует в природе в виде двух нуклидов —Атом в химии - строение, формула, определение с примерами (его доля в природной смеси равна 0,9889) и Атом в химии - строение, формула, определение с примерами (доля которого равна 0,0111). Относительная атомная масса этого элемента составляет:

Атом в химии - строение, формула, определение с примерами

Явление радиоактивности

Все нуклиды делятся на два типа: стабильные и радиоактивные (радионуклиды). Стабильные нуклиды могут существовать без изменения состава ядер неограниченно долго. Поэтому большинство природных нуклидов, входящих в состав окружающих нас веществ, стабильны.

Устойчивому состоянию ядер атомов соответствуют определённые соотношения чисел протонов и нейтронов: для лёгких элементов (с атомными номерами от 1 до 20) — Атом в химии - строение, формула, определение с примерами для тяжёлых — около 0,6. При нарушении протонно-нейтронного соотношения ядро (а вместе с ним и атом) становится радиоактивным.

Радиоактивностью называется самопроизвольное превращение неустойчивых атомных ядер в другие ядра, сопровождающееся испусканием различных частиц.
Атом в химии - строение, формула, определение с примерами

Основными типами радиоактивных превращений являются (рис. 7):

1)    а-распад:

Атом в химии - строение, формула, определение с примерами

а-частицы представляют собой ядра атомов нуклида Атом в химии - строение, формула, определение с примерами с положительным зарядом 2 + ;

2)   Атом в химии - строение, формула, определение с примерами:    Атом в химии - строение, формула, определение с примерами

В данном случае Атом в химии - строение, формула, определение с примерамичастица является фактически электроном, образующимся в ядре атома в результате превращения нейтрона в протон:

Атом в химии - строение, формула, определение с примерами

Радиоактивный распад часто сопровождается испусканием Атом в химии - строение, формула, определение с примерамилучей — потока квантов жёсткого электромагнитного излучения, не имеющих заряда (см. рис. 7).

Устойчивость радионуклида характеризуется периодом полураспада Атом в химии - строение, формула, определение с примерами— временем, за которое число ядер уменьшается в результате распада вдвое. Для разных радионуклидов оно колеблется от долей секунды до миллиардов лет. Так, для Атом в химии - строение, формула, определение с примерами период полураспада равен 2,2 минуты, для Атом в химии - строение, формула, определение с примерами — 8 суток, для Атом в химии - строение, формула, определение с примерами— 30,17 года, а для Атом в химии - строение, формула, определение с примерами— почти 4,5 млрд лет.

После открытия явления радиоактивности стало возможным искусственное превращение одних химических элементов в другие, синтез ядер элементов, которые не существуют на Земле. Так были получены элементы, находящиеся в периодической системе после урана U. Конечно, такие процессы, хотя и называются ядерными реакциями, не являются химическими реакциями, при которых атомы не исчезают и не возникают вновь.
 

Изучение радиоактивности привело к созданию ядерной энергетики и, к сожалению, ядерного оружия. Явление радиоактивности широко применяется в науке, медицине, промышленности и сельском хозяйстве. Вместе с тем перед человечеством возникли проблемы, связанные с вредным воздействием радиации на живые организмы. Поэтому использование ядерных процессов и радиоактивных веществ должно осуществляться в строго контролируемых условиях, с соблюдением строжайших мер безопасности.

Атом является электронейтральной микросистемой, состоящей из положительно заряженного ядра и отрицательно заряженных электронов.

Атомный номер химического элемента равен относительному заряду ядра его атома, числу протонов в ядре и числу электронов в атоме.  Вид атомов с определёнными значениями атомного номера и массового числа называется нуклидом.  Радиоактивность — самопроизвольное превращение неустойчивых атомных ядер в другие ядра, сопровождающееся испусканием различных частиц.    

Состояние электрона в атоме

Химические свойства атомов проявляются только при химических реакциях. Так как состав ядер атомов при этом не меняется, то очевидно, что все изменения, происходящие с данным атомом в процессе химического превращения, являются результатом изменения его электронного состояния.

Большинство свойств атома определяется его электронным строением. Как оно влияет на конкретные свойства атома, на свойства веществ, в составе которых атом находится, можно понять, только правильно представляя состояние электрона в атоме.

Электронное облако

Основой современной теории строения атома являются законы и положения квантовой волновой механики — раздела физики, изучающего движение микрообъектов (электронов, протонов, нейтронов и других частиц).

Согласно квантово-механическим представлениям движущемуся электрону присуща двойственная природа. Он является частицей (имеет определённую массу, заряд), но его движение вблизи ядра имеет волновой характер (отсутствует определённая траектория движения, точное местоположение в пространстве и др.). Следовательно, микрообъекты, в том числе и электрон, обладают одновременно корпускулярными и волновыми свойствами.

Поскольку у движущегося электрона в атоме отсутствует траектория, то для описания такого движения используется вероятностный подход. Математически определяется не точное положение электрона в атоме, а вероятность его нахождения в той или иной области около ядерного пространства.

Состояние (в квантовой механике синоним слова движение) электрона в атоме описывается с помощью квантово-механической модели — электронного облака (рис. 8). Электрон движется возле ядра с огромной скоростью, при которой его отрицательный заряд как бы «размазывается» в пространстве. Получается, что ядро окружено трёхмерным электронным облаком. Плотность такого электронного облака оказывается различной в разных местах. В тех местах, где чаще находится электрон, образуется зона большей электронной плотности.

Атом в химии - строение, формула, определение с примерами

Поскольку существует вероятность нахождения электрона даже на относительно большом расстоянии от ядра, электронное облако не имеет определённых границ. Поэтому обычно его ограничивают условной поверхностью, которая охватывает примерно 90 % электронного облака. Такую область околоядерного пространства называют атомной электронной орбиталью или просто орбиталью.

Орбиталь — область околоядерного пространства, в которой наиболее вероятно нахождение данного электрона.

Орбитали, в зависимости от энергии электронов, имеют различные формы и размеры. Так, орбиталь единственного электрона атома водорода имеет сферическую (шарообразную) форму. Такие орбитали, имеющие шарообразную форму, обозначаются буквой s, а электроны, которые занимают эти орбитали, называются s-электронами (рис. 9).

Чем выше энергия электрона в атоме, тем слабее он притягивается к ядру, тем больше по размеру его орбиталь (электронное облако). Электронная плотность с увеличением размера орбитали уменьшается.

Орбитали в многоэлектронных атомах могут иметь и другие формы, например форму гантели («объёмной восьмёрки») (рис. 10). Такие орбитали обозначают буквой р, а электроны, которым они соответствуют, называют р-электронами.

Три р-орбитали располагаются (ориентируются) в околоядерном пространстве взаимно перпендикулярно вдоль каждой из трёх осей системы координат (рис. 11).

Более сложную форму имеют орбитали d-типа и f-типа.

Атом в химии - строение, формула, определение с примерами

Атом в химии - строение, формула, определение с примерами

Графически орбиталь изображают в виде клеточки (квантовой ячейки), а электрон — в виде стрелки. Так, орбиталь атома водорода с его единственным электроном можно изобразить следующим образом:

Атом в химии - строение, формула, определение с примерами

Кроме движения вокруг ядра, каждый электрон характеризуется собственным моментом движения, который называется спином. Упрощённо спин (от англ, spin — вращение) можно представить как вращение электрона вокруг собственной оси. Спиновое вращение электрона возможно только по часовой или против часовой стрелки. На одной орбитали может находиться не более двух электронов, имеющих противоположные (антипараллельные) спины. В этом случае два электрона называются спаренными:

Атом в химии - строение, формула, определение с примерами

Такое их состояние в атоме энергетически выгодно, в отличие от состояния с одинаковыми спинами:

Атом в химии - строение, формула, определение с примерами
Если на орбитали находится один электрон, то он является неспаренным.

Энергетические уровни

Электроны в атоме различаются своей энергией. Чем выше энергия электрона в атоме, тем дальше он находится от ядра, следовательно, тем больше размер электронного облака (орбитали). И наоборот, электроны, обладающие относительно небольшой энергией, находятся большую часть времени вблизи ядра, заслоняя (экранируя) его от других электронов, которые притягиваются к ядру слабее и находятся на большем удалении от него. Так образуются как бы оболочки из электронов с близкими значениями энергии. Можно сказать, что электроны с близкими значениями энергии составляют в атоме единый электронный слой, или энергетический уровень.

Энергетический уровень (электронный слой, электронная оболочка) — это совокупность электронов с близкими значениями энергий.

Число энергетических уровней в атоме, на которых находятся электроны, равно номеру периода, в котором располагается химический элемент в периодической системе. Каждый энергетический уровень обозначается своим номером: n = 1, 2, 3, 4, … , Атом в химии - строение, формула, определение с примерамиЧем больше номер уровня, тем выше энергия электронов, которые находятся на этом уровне, и тем слабее они притягиваются к ядру. При n = оо электрон обладает таким запасом энергии, который позволяет ему покинуть атом, при этом атом превращается в положительно заряженный ион.

Число орбиталей Атом в химии - строение, формула, определение с примерами на данном энергетическом уровне равно:

Атом в химии - строение, формула, определение с примерами Так как на каждой орбитали не может быть больше двух электронов, то максимальное число электронов Атом в химии - строение, формула, определение с примерами на энергетическом уровне равно удвоенному квадрату номера уровня:

Атом в химии - строение, формула, определение с примерами

Атом в химии - строение, формула, определение с примерами

На рисунке 12 приведена схема энергетических уровней и их электронной ёмкости.

Энергетические подуровни

Электроны одного и того же энергетического уровня могут немного различаться значениями энергии. Они образуют в пределах данного уровня энергетические подуровни. Следовательно, энергетический уровень представляет собой совокупность энергетических подуровней, несколько различающихся по энергиям. Они обозначаются буквами s, р, d, f … . Число подуровней, из которых состоит данный энергетический уровень, равно его номеру.

Первый энергетический уровень (n = 1) состоит из одного подуровня (s), второй (n = 2) — из двух

Атом в химии - строение, формула, определение с примерами

(s, р), третий (п = 3) — из трёх (s, р, d) и т. д. Каждый подуровень, в свою очередь, состоит из определённого числа атомных орбиталей. Так, s-подуровень состоит из одной орбитали, р-подуровень — из трёх, d-подуровень — из пяти орбиталей (рис. 13).

Из приведённой схемы видно, что s-подуровень каждого энергетического уровня обладает наименьшим запасом энергии:

Атом в химии - строение, формула, определение с примерами

Для того чтобы различать энергетические подуровни и орбитали разных энергетических уровней, их обозначают двумя знаками: 1s, 2р, 3s, 3d. Цифра соответствует номеру энергетического уровня, а буква — типу энергетического подуровня.

Обобщим сведения об электронном состоянии атомов элементов первых четырёх периодов в виде таблицы 5.
Атом в химии - строение, формула, определение с примерами

Движущемуся электрону в атоме присуща двойственная природа: он является частицей, имеющей волновой характер движения.

Электронное облако — это квантово-механическая модель движения электрона вокруг ядра.

Атомная орбиталь — область околоядерного пространства, в которой наиболее вероятно нахождение данного электрона.

На одной орбитали может находиться не более двух электронов, имеющих противоположные (антипараллельные) спины.

Совокупность электронов с близкими значениями энергий называется энергетическим уровнем (или, что то же самое, электронным слоем, электронной оболочкой).

Электронные конфигурации атомов

Общее число электронов в атоме определяется зарядом его ядра, т. е. протонным числом. Оно равно атомному номеру элемента. Электроны в зависимости от их энергии распределяются в атоме по энергетическим уровням и подуровням, каждый из которых состоит из определённого числа орбиталей.

Распределение электронов выражается с помощью электронных конфигураций атома. Например, у водорода, элемента с атомным номером 1, электронная конфигурация — Атом в химии - строение, формула, определение с примерамиВ этой формуле цифрой слева записывается номер энергетического уровня, затем следует буква, обозначающая подуровень, и, наконец, цифра вверху справа указывает число электронов на этом подуровне.

Схематически электронное строение атома изображается с помощью электронно-графической схемы, в которой орбитали представляются в виде клеточек, а электроны — в виде стрелок. Электронно-графическая схема атома водорода изображается так:

Атом в химии - строение, формула, определение с примерами

При составлении формул электронных конфигураций атомов необходимо соблюдать следующие правила. Атом в химии - строение, формула, определение с примерами. Распределение электронов в атоме, находящемся в основном (наиболее устойчивом) состоянии, определяется принципом минимума энергии: основному состоянию атома соответствуют наиболее низкие из возможных энергетические уровни и подуровни.

Поэтому орбитали в атомах элементов первых трёх периодов заполняются электронами в порядке увеличения их энергии:

Атом в химии - строение, формула, определение с примерами
 

Правило:

На каждой орбитали максимально может находиться не более двух электронов, причём с противоположными спинами.

Таким образом, у следующего за водородом гелия Атом в химии - строение, формула, определение с примерами электронная конфигурация — Атом в химии - строение, формула, определение с примерами а электронно-графическая схема:
Атом в химии - строение, формула, определение с примерами
Поскольку на первом электронном слое могут находиться только два электрона, то этот слой в атоме гелия является завершённым и, следовательно, очень устойчивым.

У атомов элементов второго периода заполняется второй энергетический уровень, на котором может находиться не более 8 электронов. Сначала электроны заполняют 2s-орбиталь (у атомов лития и бериллия):
Атом в химии - строение, формула, определение с примерами

Поскольку 2.s-орбиталь заполнена, то пятый электрон у атома бора В занимает одну из трёх 2р-орбиталей. Электронная конфигурация атома бора —Атом в химии - строение, формула, определение с примерами а электронно-графическая схема:

Атом в химии - строение, формула, определение с примерами
Обратите внимание, что подуровень 2р изображён вплотную к подуровню 2s, но несколько выше. Так подчёркивается его принадлежность к одному и тому же уровню (второму) и одновременно больший запас энергии.
 

Правило:

Оно устанавливает порядок заполнения орбиталей одного подуровня. Электроны сначала заполняют все пустые орбитали одного подуровня по одному, а если число электронов больше, чем число орбиталей, то по два.

Следовательно, электронные конфигурации атомов углерода и азота: Атом в химии - строение, формула, определение с примерами
а их электронно-графические схемы:
Атом в химии - строение, формула, определение с примерами

Электронная конфигурация внешнего слоя 2.S2 2р6 соответствует его полному заполнению и поэтому является весьма устойчивой.
У атомов кислорода, фтора и неона число электронов увеличивается, и они вынуждены размещаться на р-орбиталях второго энергетического уровня по два:

Атом в химии - строение, формула, определение с примерами

Электронно-графические схемы атомов этих элементов:
Атом в химии - строение, формула, определение с примерами

Электронная конфигурация внешнего слоя Атом в химии - строение, формула, определение с примерамисоответствует его полному заполнению и поэтому является весьма устойчивой.

В атомах элементов третьего периода начинает формироваться третий электронный слой. Сначала заполняется электронами s-подуровень у натрия и магния:

Атом в химии - строение, формула, определение с примерами

а затем /7-подуровень у алюминия, кремния, хлора и аргона:

Атом в химии - строение, формула, определение с примерами

Электронно-графическая схема атома аргона:

Атом в химии - строение, формула, определение с примерами

В атоме аргона на внешнем электронном слое находится 8 электронов. Следовательно, он завершён, так как в атоме любого элемента на внешнем энергетическом уровне максимально может находиться не более 8 электронов.

Застраивание третьего электронного слоя этим не исчерпывается. В соответствии с формулой Атом в химии - строение, формула, определение с примерами максимально на нём может находиться 18 электронов: 8 на s- и р-подуровнях и 10 — на d-подуровне. Этот подуровень будет формироваться у элементов четвёртого периода. Но сначала у первых двух элементов четвёртого периода — калия и кальция — появляется четвёртый электронный слой, который открывается s-подуровнем (энергия подуровня 4s несколько меньше, чем подуровня 3d, см. рис. 13):

Атом в химии - строение, формула, определение с примерами

Только после этого начнёт заполняться электронами d-подуровень третьего, теперь уже предвнешнего, энергетического уровня.

Кроме электронных конфигураций и электронно-графических схем иногда используют и электронные схемы атомов, в которых указывают только число электронов на каждом энергетическом уровне (электронном слое):

Атом в химии - строение, формула, определение с примерами

С такими схемами вы познакомились ещё в 8-м классе.

Электронное строение атома определяется зарядом его ядра, который равен атомному номеру элемента в периодической системе.

Распределение электронов по энергетическим уровням, подуровням и орбиталям отображают с помощью электронных конфигураций и электронно-графических схем, а также электронных схем атомов.

На внешнем электронном слое в атоме любого элемента может находиться не более 8 электронов.

Периодический закон и периодическая система химических элементов

Вот уже четвёртый год вы изучаете химию и всё это время пользуетесь таблицей химических элементов, которая представляет собой графическое изображение периодической системы элементов. Периодическая система, в свою очередь, является выражением периодического закона, открытого русским химиком

Д. И. Менделеевым в 1869 году. С тех пор периодический закон — основа современной химии. Физический смысл периодического закона стал понятен только после создания теории строения атома. Но сама эта теория развивалась и развивается на основе периодического закона и периодической системы.

Согласно этой теории главной характеристикой атома является положительный заряд ядра. Заряд ядра определяет число электронов в атоме, его электронное строение и, следовательно, все свойства атомов данного элемента и его положение в периодической системе. Поэтому современная формулировка периодического закона такова:

Свойства атомов химических элементов, а также состав и свойства образуемых ими веществ, находятся в периодической зависимости от зарядов атомных ядер.

Структура периодической системы 

Со структурой периодической системы в общих чертах вы уже знакомы. Все химические элементы в ней располагаются в порядке возрастания атомного номера, который поэтому имеет ещё одно название — порядковый номер. Численная величина атомного номера равна положительному заряду ядра атома соответствующего элемента.

В таблице семь горизонтальных рядов элементов, которые называются периодами, а также восемнадцать вертикальных столбцов — групп. Таким образом, каждый химический элемент имеет свой атомный (порядковый) номер, находится в определённом периоде и определённой группе.

Известно около 700 форм графического изображения периодической системы. Но принципиальный подход к построению таблиц единый — элементы располагаются в порядке возрастания зарядов ядер их атомов. По мере увеличения атомного номера происходит постепенная застройка электронной структуры атомов элементов в соответствии с принципами заполнения. Таким образом, структура периодической системы связана с электронной структурой элементов.

В зависимости от того, какой энергетический подуровень заполняется электронами последним, различают четыре типа (семейства) элементов:

  1. s-элементы — последним заполняется s-подуровень внешнего энергетического уровня;
  2. р-элементы — последним заполняется p-подуровень внешнего энергетического уровня;
  3. d-элементы — последним заполняется d-подуровень предвнешнего энергетического уровня;
  4. f-элементы — последним заполняется f-подуровень третьего снаружи уровня.

Периоды

Периодом в периодической системе называется последовательный ряд элементов, в атомах которых электронная конфигурация внешнего энергетического уровня изменяется от Атом в химии - строение, формула, определение с примерами (для первого периодаАтом в химии - строение, формула, определение с примерами(табл. 6).

Таблица 6. Последовательность заполнения энергетических подуровней у элементов различных периодов

Атом в химии - строение, формула, определение с примерами

При этом номер периода совпадает с номером п внешнего энергетического уровня.

Другими словами, номер периода указывает на число энергетических уровней, на которых находятся электроны в атомах данного элемента. В этом заключается физический смысл номера периода.

Каждый из периодов (исключая первый) начинается типичным металлом (металл щелочной группы) и заканчивается благородным газом, которому предшествует неметалл, т. е. в периоде с увеличением заряда ядра атомов наблюдается постепенное изменение свойств от металлических к типично неметаллическим, что связывается с увеличением числа электронов на внешнем энергетическом уровне.

Первые три периода содержат только s- и p-элементы. Четвёртый, пятый и последующие периоды включают в свой состав также элементы, у атомов которых происходит заполнение d-подуровня предвнешнего энергетического уровня. У элементов шестого и седьмого периодов, помимо S-, р- и d-подуровней заполняются и f-подуровни третьего снаружи электронного слоя. f-Элементы

объединяются в семейства, называемые лантанидами (4f-элементы) и актинидами (5f-элементы), которые вынесены за пределы таблицы (см. форзац 1).

Группы

В вертикальных колонках, называемых группами, объединены элементы, атомы которых имеют сходное электронное строение. Всего в таблице 18 групп, пронумерованных арабскими цифрами. Кроме того, группы имеют традиционную нумерацию римскими цифрами от I до VIII с добавлением букв А или В. У атомов элементов групп А последними заполняются s- и р-подуровни внешних энергетических уровней (табл. 7). Элементы, у которых последними заполняются d-подуровни второго снаружи или f-подуровни третьего снаружи энергетического уровня, составляют группы В.
Таблица 7. Электронная конфигурация внешнего энергетического уровня у атомов элементов групп А (1—4-й периоды)

Атом в химии - строение, формула, определение с примерами

Атомы элементов групп А и В различаются своими химическими свойствами, однако им присуще и общее, что объединяет их в группы с одинаковыми римскими номерами (I, II и т. д.).

Номер группы (римскими цифрами), как правило, указывает число электронов в атоме, которые могут участвовать в образовании химических связей. В этом состоит физический смысл номера группы.

Электроны, которые принимают участие в образовании химических связей, называются валентными. У элементов групп А валентными являются электроны внешнего энергетического уровня, а у элементов групп В — ещё и электроны предпоследних уровней. Это основное различие между элементами групп А и В.

Сейчас мы можем дать более точное определение понятия группа.

Группа — вертикальный столбец элементов с одинаковым числом валентных электронов в атомах.

Таким образом, строгая периодичность расположения химических элементов в периодической системе полностью объясняется последовательным характером заполнения энергетических уровней и подуровней их атомов.

Главной характеристикой атома является положительный заряд ядра, который численно равен атомному номеру элемента.  Каждый химический элемент имеет свой атомный (порядковый) номер, находится в определённом периоде и определённой группе.  Горизонтальный ряд элементов, расположенных в порядке возрастания их атомных номеров, начинающийся щелочным металлом и заканчивающийся благородным газом, называется периодом.  Вертикальный столбец элементов, атомы которых имеют одинаковое строение внешних электронных слоев, называется группой.    

Периодичность изменения свойств атомов химических элементов и их соединений

Поскольку электронная конфигурация атомов химических элементов изменяется периодически с ростом заряда их ядер, все их свойства, определяемые электронным строением, закономерно изменяются по периодам и группам периодической системы. К таким свойствам относятся прежде всего различные характеристики атомов: атомные и ионные радиусы, электроотрицательность, степень окисления и др. Периодически изменяются также многие химические и физические свойства простых и сложных веществ, образованных элементами-аналогами.

Атомные и ионные радиусы

С точки зрения квантовой механики атом не имеет строго определённых границ, так как орбитали, на которых расположены его электроны, также не имеют точных размеров. О размерах атомов и ионов судят по экспериментальным данным о расстояниях между соседними атомами в молекулах или кристаллах. Условно форму атома или иона считают шарообразной, поэтому количественной характеристикой их размера служит радиус.

Различают атомные радиусы и ионные радиусы. При этом радиусы положительных ионов (катионов) всегда меньше радиусов атомов соответствующих элементов, так как они образованы в результате отдачи электронов. Радиусы отрицательных ионов (анионов) больше радиусов атомов, поскольку они образовались путём присоединения дополнительных электронов. Например, радиус атома натрия Na — 189 пм, а иона натрия Атом в химии - строение, формула, определение с примерами — 99 пм, радиус атома хлора С1 — 99 пм, а его иона Атом в химии - строение, формула, определение с примерами — 181 пм (1 пм (пикометр) = Атом в химии - строение, формула, определение с примерами

Как изменяются радиусы атомов в группе и в периоде с ростом атомного номера элементов? У элементов, находящихся в одной группе, при переходе сверху вниз от одного элемента к другому увеличивается число электронных слоёв и, следовательно, увеличивается радиус как атомов, так и ионов. Например, в группе щелочных металлов радиусы атомов: Li — 155 пм, Na — 189 пм, К — 236 пм, а ионов:Атом в химии - строение, формула, определение с примерами — 68 пм, Атом в химии - строение, формула, определение с примерами — 99 пм, Атом в химии - строение, формула, определение с примерами— 138 пм.

В периодах периодической системы по мере увеличения заряда ядра атомов увеличивается притяжение к нему электронов, находящихся на одном и том же электронном слое, что приводит к уменьшению радиуса атомов. Например, у элементов третьего периода атомные радиусы уменьшаются от натрия до хлора — от 189 пм до 99 пм.

Электроотрицательность

Проявление металлических или неметаллических свойств у атомов данного элемента связано прежде всего с их способностью терять или приобретать электроны. Отдача или присоединение электронов атомами обычно происходит в процессе их химического взаимодействия. Характеристикой атома, учитывающей его способность смещать к себе валентные электроны, является электроотрицательность. Она обозначается буквой греческого алфавита X (хи).

Электроотрицательность атома — условная величина, характеризующая его способность в химических соединениях смещать к себе электроны от других атомов.

Для практической оценки этой способности атомов введена условная относительная шкала электроотрицательностей. По этой шкале наиболее электроотрицательным среди элементов, способных образовывать химические соединения, является фтор F (X = 4,1), а наименее электроотрицательным — франций Fr (X = 0,86).

У элементов групп А в периодах с ростом атомного номера элементов электроотрицательность возрастает, а в группах, как правило, убывает.

По величине электроотрицательности можно определить принадлежность элемента к металлам или неметаллам. Все неметаллы обычно имеют значение электроотрицательности больше двух.

Они располагаются в правой верхней части периодической таблицы.

У металлов значение электроотрицательности меньше двух. Несколько элементов (В, Si, Ge, As,Те) со значением электроотрицательности, близким к 2, располагаются вдоль диагонали от бора В к астату At. Атомы этих элементов проявляют промежуточные свойства, поэтому их часто называют полуметаллами (рис. 14).

Периодичность изменения свойств соединенийАтом в химии - строение, формула, определение с примерами

Периодический характер изменения строения, физических и химических свойств присущ также простым и сложным веществам. Рассмотрим в качестве примера закономерности изменения некоторых свойств атомов и соединений элементов 3-го периода (табл. 8).

Таблица 8. Изменение свойств атомов элементов 3-го периода и их соединений
Атом в химии - строение, формула, определение с примерами

Как следует из таблицы, в периоде при переходе слева направо от одного элемента к другому происходит увеличение высшей степени окисления и понижение (по абсолютной величине) низшей степени окисления. Периоды начинаются щелочными металлами, которые образуют растворимые в воде основные  оксиды и гидроксиды. При переходе от одного элемента к другому наблюдается ослабление основных и усиление кислотных свойств высших оксидов и гидроксидов.

Элементы, расположенные в одной группе, имеют одинаковое строение внешних электронных оболочек атомов и поэтому их атомы проявляют сходные химические свойства.

Такой характер изменения свойств в основном повторяется во всех периодах (кроме первого), следовательно, такое изменение свойств называется периодическим.

Таким образом, при последовательном увеличении зарядов атомных ядер периодически повторяется конфигурация внешних электронных оболочек и, как следствие, периодически повторяются химические свойства атомов элементов и их соединений. В этом заключается физический смысл периодического закона.

Атомные и ионные радиусы атомов элементов с ростом атомного номера уменьшаются в периодах слева направо и увеличиваются в группах сверху вниз.  С увеличением атомного номера в пределах каждого периода электроотрицательность возрастает, а в группе — уменьшается, т. е. металлические свойства атомов элементов в периоде ослабевают, а в группе — усиливаются.  Периодическое изменение свойств атомов химических элементов при увеличении положительного заряда ядер объясняется тем, что периодически повторяется строение внешних электронных слоёв атомов.    

Характеристика химического элемента по его положению в периодической системе и строению атома

Периодический закон и отражающая его периодическая система элементов представляют собой как бы краткое обобщение химии элементов и их соединений. Таблица периодической системы содержит сведения, позволяющие описать строение атомов химических элементов, предсказать состав, строение и свойства образованных ими простых веществ и наиболее характерных соединений: оксидов, соответствующих им гидроксидов, солей, летучих водородных соединений и т. д. Именно поэтому таблица периодической системы является непременной составляющей любого учебного и справочного пособия по химии.

В описании любого элемента особую роль играет его атомный номер Z, с которым связано положение элемента в периодической системе. Атомный номер даёт возможность знать не только порядковый номер элемента в периодической системе, но и его место в периоде и группе, а также электронное строение его атомов.

Описание любого химического элемента необходимо проводить по определённому алгоритму, т. е. соблюдая строгую последовательность действий. В этой последовательности главными этапами являются следующие:

  • а)    общие сведения об элементе;
  • б)    определение положения элемента в периодической системе;
  • в)    характеристика состава атомов элемента;
  • г)    описание электронного строения атомов;
  • д)    состав и свойства простого вещества;
  • е)    состав и свойства кислородных и водородных соединений.

Составим более детальный алгоритм такого описания химического элемента.

1.    Общие сведения об элементе:

  • а)    название химического элемента;
  • б)    его химический знак;
  • в)    относительная атомная масса.

2.    Положение химического элемента в периодической системе:

  • а)    атомный номер;
  • б)    номер периода;
  • в)    номер группы и её тип: А или В.

3.    Состав атома:

  • а)    заряд ядра атома;
  • б)    число протонов, электронов и нейтронов (для определённого нуклида).

4.    Электронное строение атомов элемента:

  • а)    электронная схема атома;
  • б)    электронная конфигурация атома;
  • в)    электронно-графическая схема атома;
  • г)    электронная конфигурация внешнего энергетического уровня;
  • д)    электронный тип элемента (s-, р-d.-f-)

5.    Состав и свойства простого вещества:

  • а)    металл — неметалл;
  • б)    формула простого вещества;
  • в)    агрегатное состояние при обычных условиях.

6.    Степени окисления элемента в высших оксидах и летучих водородных соединениях. Электроотрицательность.

7.    Формулы оксидов и соответствующих им гидроксидов. Характеристика кислотно-основных свойств этих соединений.

8.    Формула летучего водородного соединения.

Охарактеризуем, согласно приведённому алгоритму, два химических элемента — натрий и фосфор.

Натрий

1.    Название химического элемента — натрий, химический знак — Na, относительная атомная масса — 23.

2.    Натрий — элемент с атомным номером 11, находится в 3-м периоде, в группе IA.

3.    Заряд ядра атома натрия 11+, следовательно, в ядре находится 11 протонов, общее число электронов также 11. В ядре нуклида натрия Атом в химии - строение, формула, определение с примерамисодержатся ещё 12 нейтронов.

Кратко состав этого атома выражается так:

Атом в химии - строение, формула, определение с примерами

4.    Электронная схема атома натрия:
Атом в химии - строение, формула, определение с примерами

Электронная конфигурация:

Атом в химии - строение, формула, определение с примерами
Электронно-графическая схема:Атом в химии - строение, формула, определение с примерами

Электронная конфигурация внешнего энергетического уровня: Атом в химии - строение, формула, определение с примерамиследовательно, это s-элемент.

5.    Так как на внешнем энергетическом уровне у натрия находится 1 электрон, то этот элемент относится к группе металлов. Простое вещество при обычных условиях — твёрдый металл. Формула простого вещества — Na.

6.    Степень окисления в высшем оксиде +1. Летучих водородных соединений не образует. Электроотрицательность натрия Атом в химии - строение, формула, определение с примерами = 1,01.

7.    Формула высшего оксида — Атом в химии - строение, формула, определение с примерами он имеет основный характер. Гидроксид, соответствующий ему, представляет собой основание NaOH, растворимое в воде, т. е. щёлочь.

8.    Летучего водородного соединения не образует.
Следующий элемент — фосфор — проанализируем по тому же алгоритму, но более сжато.
 

Фосфор

1.    Фосфор Атом в химии - строение, формула, определение с примерами

2.    Z = 15. Положение в периодической системе: Атом в химии - строение, формула, определение с примерами— 3-й период, группа VA.

3.    Состав атома (нуклида Атом в химии - строение, формула, определение с примерами

4.    Электронная схема: Атом в химии - строение, формула, определение с примерами

Электронная конфигурация: Атом в химии - строение, формула, определение с примерамиЭлектронно-графическая схема:

Атом в химии - строение, формула, определение с примерами

Электронная конфигурация внешнего энергетического уровня: Атом в химии - строение, формула, определение с примерамир-элемент.

5.    Фосфор — неметалл. При обычных условиях — твёрдое вещество; молекулярная формула —Атом в химии - строение, формула, определение с примерами

6.    Степени окисления:

а)    в высших оксидах — +5;

б)    в летучих водородных соединениях — —3.

Электроотрицательность:Атом в химии - строение, формула, определение с примерами

7.    Формула высшего оксида — Атом в химии - строение, формула, определение с примерамикислотный. Формула высшего гидроксида — Атом в химии - строение, формула, определение с примерами (фосфорная кислота).

8.    Летучее водородное соединение —Атом в химии - строение, формула, определение с примерами

Периодический закон Д. И. Менделеева — один из наиболее общих и фундаментальных законов природы. Он является основой развития не только химии, но и всего естествознания в целом, позволяет раскрывать новые закономерности природы и проникать в их суть.  

Периодическая система химических элементов представляет собой естественно-научную классификацию элементов по электронному строению их атомов, на основе которой строится изучение химии и решение её практических задач.    

  • Кислород как химический элемент
  • Водород как химический элемент
  • Вода в химии и её элементный состав, молекулярное строение, формула и молярная масса
  • Железо как химический элемент
  • Основные законы и понятия химии 
  • Место химии в системе наук
  • Перспективы химического производства
  • Типы химических реакций в химии

Основы строения атома

Все в мире состоит из атомов. Но откуда они взялись, и из чего состоят сами? Сегодня отвечаем на эти простые и фундаментальные вопросы. Ведь многие люди, живущие на планете, говорят, что не понимают строения атомов, из которых сами и состоят.

Естественно, уважаемый читатель понимает, что в данной статье мы стараемся изложить все на максимально простом и интересном уровне, поэтому не «грузим» научными терминами. Тем, кто хочет изучить вопрос на более профессиональном уровне, советуем читать специализированную литературу. Тем не менее, сведения данной статьи могут сослужить хорошую службу в учебе и просто сделать Вас более эрудированными.

Атом – это частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, которая является носителем его свойств. Иными словами, это мельчайшая частица того или иного вещества, которая может вступать в химические реакции.

История открытия и строение

Понятия атома было известно еще в Древней Греции. Атомизм – физическая теория, которая гласит, что все материальные предметы состоят из неделимых частиц. Наряду с Древней Грецией, идеи атомизма параллельно развивался еще и в Древней Индии.

Не известно, рассказали тогдашним философам об атомах инопланетяне, или они додумались сами, но экспериментально подтвердить данную теорию химики смогли много позже – только в семнадцатом веке, когда Европа выплыла из пучины инквизиции и средневековья.

Долгое время господствующим представлением о строении атома было представление о нем как о неделимой частице. То, что атом все-таки можно разделить, выяснилось только в начале двадцатого века. Резерфорд, благодаря своему знаменитому опыту с отклонением альфа-частиц, узнал, что атом состоит из ядра, вокруг которого вращаются электроны.  Была принята планетарная модель атома, в соответствии с которой электроны вращаются вокруг ядра, как планеты нашей Солнечной системы вокруг звезды.

Планетарная модель

Планетарная модель

Современные представления о строении атома продвинулись далеко. Ядро атома, в свою очередь, состоит субатомных частиц, или нуклонов – протонов и нейтронов. Именно нуклоны составляют основную массу атома. При этом протоны и нейтроны также не являются неделимыми частицами, и состоят из фундаментальных частиц — кварков.

Ядро атома имеет положительный электрический заряд, а электроны, вращающиеся по орбите – отрицательный. Таким образом, атом электрически нейтрален.

Ниже приведем элементарную схему строения атома углерода.

Схема строения атома

Схема строения атома

Свойства атомов

Масса

Массу атомов принято измерять в атомных единицах массы – а.е.м.  Атомная единица массы представляет собой массу 1/12 части свободно покоящегося атома углерода, находящегося в основном состоянии.

В химии для измерения массы атомов используется понятие «моль». 1 моль – это такое количество вещества, в котором содержится число атомов, равное числу Авогадро.

Размер

Размеры атомов чрезвычайно малы. Так, самый маленький атом – это атом Гелия, его радиус – 32 пикометра. Самый большой атом – атом цезия, имеющий радиус 225 пикометров. Приставка пико означает десять в минус двенадцатой степени! То есть , если 32 метра уменьшить в тысячу миллиардов раз, мы получим размер радиус атома гелия.

При этом, масштабы вещей таковы, что, по сути, атом на 99% состоит из пустоты. Ядро и электроны занимают крайне малую часть его объема. Для наглядности, рассмотрим такой пример. Если представить атом в виде олимпийского стадиона в Пекине (а можно и не в Пекине, просто представьте себе большой стадион), то ядро этого атома будет представлять собой вишенку, находящуюся в центре поля. Орбиты электронов при этом находились бы где-то на уровне верхних трибун, а вишня весила бы 30 миллионов тонн. Впечатляет, не так ли?

Если предсавить атом в виде стадиона, ядро будет размером с вишню в центре поля

Если предсавить атом в виде стадиона, ядро будет размером с вишню в центре поля

Откуда взялись атомы?

Как известно, сейчас различные атомы сгруппированы в таблицу Менделеева. В ней насчитывается 118 (а если с предсказанными, но еще не открытыми элементами — 126) элементов, не считая изотопов. Но так было далеко не всегда.

Периодическая таблица Менделеева

В самом начале формирования Вселенной никаких атомов не было и подавно, существовали лишь элементарные частицы, под воздействием огромных температур взаимодействующие между собой. Как сказал бы поэт, это был настоящий апофеоз частиц.  В первые три минуты существования Вселенной, из-за понижения температуры и совпадения еще целой кучи факторов, запустился процесс первичного нуклеосинтеза, когда из элементарных частиц появились первые элементы: водород, гелий, литий и дейтерий (тяжелый водород). Именно из этих элементов образовались первые звезды, в недрах которых проходили термоядерные реакции, в результате которых водород и гелий «сгорали», образуя более тяжелые элементы. Если звезда была достаточно большой, то свою жизнь она заканчивала так называемым взрывом «сверхновой», в результате которого атомы выбрасывались в окружающее пространство. Так и получилась вся таблица Менделеева.

Вселенная

Вселенная

Так что, можно сказать, что все атомы, из которых мы состоим, когда-то были частью древних звезд.

Почему ядро атома не распадается?

В физике существует четыре типа фундаментальных взаимодействий между частицами и телами, которые они составляют. Это сильное, слабое, электромагнитное и гравитационное взаимодействия.

Именно благодаря сильному взаимодействию, которое проявляется в масштабах атомных ядер и отвечает за притяжение между нуклонами, атом и является таким «крепким орешком».

Не так давно люди поняли, что при расщеплении ядер атомов высвобождается огромная энергия. Деление тяжелых атомных ядер является источником энергии в ядерных реакторах и ядерном оружии.

Ядерный взрыв

Ядерный взрыв

Итак, друзья, познакомив Вас со структурой и основами строения атома, нам остается только напомнить о том, что наши авторы готовы в любой момент прийти Вам на помощь. Не важно, нужно Вам выполнить диплом по ядерной физике, или самую маленькую контрольную – ситуации бывают разные, но выход есть из любого положения. Подумайте о масштабах Вселенной, закажите работу в Zaochnik и помните – нет поводов для беспокойства.

Свойства атомов. Их периодичность

Такие свойства атомов, как их размер,
энергии ионизации и сродства к электрону,
электроотрицательность, степень
окисления связаны с электронной
конфигурацией атома. В их изменении с
увеличением порядкового номера элемента
наблюдается периодичность.

Радиус атома– важная его
характеристика. Чем больше атомный
радиус, тем слабее удерживаются внешние
электроны. И, наоборот, с уменьшением
атомного радиуса электроны притягиваются
к ядру сильнее.

В периоде атомный радиус, в общем,
уменьшается слева направо. Это объясняется
увеличением силы притяжения электронов
с ростом заряда ядра. В подгруппах сверху
вниз атомный радиус возрастает, так как
в результате прибавления дополнительного
электронного слоя увеличиваются объём
атома, а значит, и его радиус.

Энергия ионизации (I)
– это энергия, необходимая для отрыва
наиболее слабосвязанного электрона от
атома. Она обычно выражается в
электроно-вольтах (эВ). При отрыве
электрона от атома образуется
соответствующий катион.

Энергия ионизации для элементов одного
периода возрастает слева направо с
ростом заряда ядра. В подгруппе она
уменьшается сверху вниз вследствие
увеличения расстояния электрона от
ядра.

Энергия ионизации связана с химическими
свойствами элементов. Так, щелочные
металлы, имеющие небольшую энергию
ионизации, обладают ярко выраженными
металлическими свойствами. Химическая
инертность благородных газов обусловлена
их высокими значениями энергии ионизации.

Атомы могут не только отдавать, но и
присоединять электроны. При этом
образуются соответствующий анион.

 Энергия сродства к электрону (E)– энергия, которая выделяется при
присоединении к атому одного электрона.
Энергия сродства к электрону, как и
энергия ионизации, выражается в
электроно-вольтах. Наиболее велика она
у галогенов, имеющих на внешнем уровне
по 7 электронов. Это свидетельствует об
усилении неметаллических свойств
элементов по мере приближения к концу
периода.

Определение электроотрицательности
(ЭО)
дал американский ученый Линус
Полинг (1901-1990):электроотрицательность
есть способность атома в молекуле
притягивать к себе электроны
.

Здесь имеются ввиду валентные электроны,
то есть электроны, которые участвуют в
образовании химической связи. Очевидно,
у благородных газов электроотрицательность
отсутствует, так как внешний уровень в
их атомах завершен и устойчив.

Для количественной характеристики
предложено считать мерой электроотрицательности
энергию, равную арифметической сумме
энергий ионизации и сродства к электрону,
то есть

ЭО = I+E.

           
Фтор имеет наибольшее значение
электроотрицательности. Наименьшее
значение электроотрицательности имеют
атомы щелочных металлов. Обычно
электроотрицательность лития принимают
за 1 и сравнивают с ней электроотрицательность
других элементов, получая удобные для
сравнения значения относительной
электроотрицательности (χ)
.

           
Относительная электроотрицательность
подчиняется периодическому закону: в
периоде она растёт с увеличением
порядкового номера элемента, в группе
уменьшается. Её значения служат мерой
неметаличности элементов. Очевидно,
чем больше относительная
электроотрицательность, тем сильнее
неметаллические свойства элементов.
При химическом взаимодействии элементов
электроны смещаются от атома с меньшей
относительной электроотрицательностью
к атому с большей относительной
электроотрицательностью.

Выводы о взаимосвязи строения атомов
и свойств химических элементов, а также
причины периодического изменения их
свойств, сходства и различия между ними:

1)      свойства химических
элементов, расположенных в порядке
возрастания заряда ядра, изменяются
периодически потому, что периодически
повторяется сходное строение внешнего
электронного слоя атомов элементов;

2)      плавное изменение
свойств элементов в пределах одного
периода можно объяснить постепенным
увеличением числа электронов на внешнем
слое атомов;

3)      завершение внешнего
электронного слоя атома приводит к
резкому скачку в свойствах, при переходе
от галогена к инертному элементу;
появление нового внешнего электронного
слоя – причина резкого скачка в свойствах
при переходе от инертного элемента к
щелочному металлу;

4)     
свойства химических элементов,
принадлежащих к одному семейству, сходны
потому, что на внешнем электронном слое
их атомов одинаковое число электронов

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Такие характеристики атомов, как их радиус, энергия ионизации, сродство к электрону, электроотрицательность, степень окисления, связаны с электронным строением атома.

За радиус свободного атома принимают положение главного максимума плотности внешних электронных оболочек. Это так называемый орбитальный радиус.

Элементы одного и того же периода имеют одинаковое количество электронных слоев. Поэтому в одном периоде по мере увеличения заряда ядра увеличивается сила притяжения электронов к ядру, что вызывает уменьшение радиуса атома. Например, при переходе от лития к фтору заряд ядра атома растет от `3` до `9`, а радиус атома постепенно уменьшается — от `0,152` до `0,064` нм. Согласно закону Кулона, притя-жение электронов ядром в пределах периода слева направо увеличивается, а, следовательно, уменьшается способность атомов элементов отдавать электроны, то есть проявлять восстановительные (металлические) свойства.  Окислительные (неметаллические) свойства, напротив, становятся все более выраженными и достигают максимального проявления у фтора.

Если атом лития легко теряет свой единственный  `2s^1`-электрон, то у последующих элементов второго периода тенденция к потере электронов ослабевает по мере увеличения числа электронов. Так, у атома углерода `(1s^2 2s^2 2p^2)` способность отдавать электроны или присоединять их до полного заполнения электронного слоя примерно одинакова. У атома кислорода преобладает стремление к присоединению электронов, а фтор вообще не проявляет восстановительных свойств и является единственным элементом, который в химических реакциях не проявляет положительных степеней окисления.

В главных подгруппах с увеличением заряда ядра атома элемента увеличивается радиус атома элемента, так как в этом направлении возрастает число электронных слоев в атоме элемента. Поэтому в главной подгруппе сверху вниз нарастают металлические (восстановительные) свойства элементов.

В побочных подгруппах при переходе от первого элемента ко второму происходит увеличение радиуса атома элемента за счет добавления еще одного электронного слоя, а при переходе от второго элемента к третьему — даже некоторое уменьшение. Это объясняется `f`-(лантаноидным) сжатием.

Поэтому в побочных подгруппах с увеличением заряда ядра уменьшаются металлические свойства (за исключение побочной подгруппы третьей группы).

Радиус катиона меньше радиуса соответствующего ему атома, причём с увеличением положительного заряда катиона его радиус уменьшается. Наоборот, радиус аниона всегда больше радиуса соответствующего ему атома. Изоэлектронными называют частицы (атомы и ионы), имеющие одинаковое число электронов. В ряду изоэлектронных ионов радиус снижается с уменьшением отрицательного и возрастанием положительного радиуса иона. Такое уменьшение имеет место, например в ряду: `»O»^(2-)`, `»F»^-`, `»Na»^+`, `»Mg»^(2+)`, `»Al»^(3+)`.

энергия, необходимая для отрыва электрона от атома, находящегося в основном состоянии. Она характеризует восстановительные (металлические) свойства атомов и обычно выражается в электронвольтах `(1  «эВ»=96,485  «кДж»//»моль»)`. В периоде слева направо энергия ионизации возрастает с увеличением заряда ядра и уменьшением радиуса атомов. В главных подгруппах сверху вниз она уменьшается, т. к. увеличивается расстояние электрона до ядра и возрастает экранирующее действие внутренних электронных слоев.

Наименьшее значение энергии ионизации имеют щелочные металлы, поэтому они обладают ярко выраженными металлическими свойствами, наибольшая величина энергии ионизации у инертных газов.

энергия, выделяющаяся при присоединении электрона к нейтральному атому. Характеризует окисли-тельные (неметаллические) свойства атомов. Как и энергия ионизации, обычно выражается в электронвольтах. Наибольшее сродство к электрону — у галогенов, наименьшее — у щелочных металлов.

Самый сильный окислитель из всех элементарных окислителей — фтор (он обладает и самым малым атомным радиусом из всех элементов `»VII»` группы).

Следует отметить, что в отличие от ионизации присоединение двух и более электронов к атому энергетически затруднено, и многозарядные одноатомные отрицательные ионы, такие как `»N»^(3-)`, или `»O»^(2-)`, в свободном состоянии не существуют.

Окислительной способностью не обладают нейтральные атомы с устойчивыми конфигурациями `s^2` и `s^2p^6`. У остальных элементов в таблице Менделеева окислительная способность нейтральных атомов повышается слева направо и снизу вверх.

понятие, позволяющее оценить способность атома оттягивать на себя электронную плотность при образовании химического соединения. Согласно одному из определений (Малликен), электроотрицательность можно определить как полусумму энергии ионизации и сродства к электрону:

`X=(I+E)/2`, эВ.

Относительная ЭО (OЭO) фтора по Полингу принята  равной четырём. Наименьшими ОЭО обладают элементы `»IА»` подгруппы `(0,7 – 1,0)`, большими азот и хлор `(3)`, кислород `3,5`) и фтор. ОЭО `d` -элементов лежит в пределах `1,2 – 2,2`, а  `f` -элементов `1,1 – 1,2`.

В периодах ЭО растёт, а в группах уменьшается с ростом `»Z»`, то есть растёт от `»Cs»` к `»F»` по диагонали периодической системы. Это обстоятельство до некоторой степени определяет диагональное сродство элементов.

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

Под степенью окисления понимают условный заряд атома элемента в соединении, вычисленный из предположения, что соединение состоит из ионов и валентные электроны оттянуты к наиболее электроотрицательному атому. Иначе говоря, степень окисления показывает, сколько своих электронов атом отдал (положительная), либо притянул к себе чужих (отрицательная).

Напишите электронную конфигурацию атома фосфора и составьте орбитальную диаграмму его валентного уровня. Определите все его возможные степени окисления. Напишите электронные конфигурации всех его заряженных частиц. Расположите данные частицы в порядке увеличения радиуса.

Фосфор находится в третьем периоде, пятой группе, главной подгруппе. Следовательно, его электронная оболочка состоит из трёх уровней. Валентный уровень состоит из внешних `s`- и `p`-подуровней (на это указывает главная группа). Всего валентных электронов у фосфора пять (номер группы `5`). Конфигурация атома $$ {}_{31}mathrm{P}1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{3}$$

Орбитальная диаграмма валентного уровня:

Для того, чтобы принять конфигурацию благородного газа, фосфор может либо принять `3` электрона (тогда он примет конфигурацию аргона), либо отдать все свои валентные пять электронов (тогда он примет конфигурацию неона). Таким образом, низшая степень окисления фосфора равна `(–3)`, а высшая – `(+5)`.

Для проявления степени окисления `(+5)` фосфор поглощает квант энергии и распаривает свои `3s`-электроны в пределах энергетического уровня на `3d`-подуровень:

Однако кроме этих крайних степеней окисления фосфор может проявлять ещё и промежуточную степень окисления `(+3)` за счёт отдачи своих непарных валентных электронов с `p`-подуровня.

Конфигурации заряженных частиц фосфора:

$$ stackrel{-3}{mathrm{P}}  1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{6}$$ или `[«Ar»]`;

$$ stackrel{+3}{mathrm{P}}  1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{0}$$;

$$ stackrel{+5}{mathrm{P}}  1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{0}3{p}^{0}$$ или `[«Ne»]`.

Расположим данные заряженные частицы в порядке возрастания радиуса. Следует помнить, что число протонов в ядре не изменилось, а, значит, отрицательно заряженная частица, у которой электронов больше, чем протонов, будет иметь бóльший радиус, и чем ниже заряд частицы, тем больше её радиус. И наоборот, чем выше заряд частицы, тем меньше её радиус, так как силы притяжения электронов к ядру у такой частицы преобладают над силами межэлектронного отталкивания:

`R(«P»^(+5))<R(«P»^(+3))<R(«P»^(-3))`.

Понравилась статья? Поделить с друзьями:
  • Дом книги как найти книгу
  • Как составить доверенность на получение груза образец
  • Как найти высоты треугольника с разными сторонами
  • Как можно найти часовой
  • Как исправить день рождения мамы