Как найти тангенс на сетке

Обычно в задачах требуется найти тангенс именно острого угла, как, допустим, на этом примере:

Для этого мы строим прямоугольный треугольник, проведя линию (перпендикуляр) BD:

Далее вспоминаем определение тангенса, это отношение противолежащего катета к прилежащему.

То есть tg(BOA) = DB / DO.

Чтобы найти DO и DB достаточно будет посчитать количество клеточек.

DO = 2.

DB = 5.

Значит, tg(BOA) = 5 / 2 = 2,5.

Зная тангенс, мы можем легко найти и котангенс:

ctg(BOA) = 1 / tg(BOA) = 1 / 2,5 = 0,4.

_

А вот задача на нахождение тангенса угла по клеточкам немного другого плана (ищем тангенс угла AOB):

Если соединить точки A и B, то угол ABO будет прямым.

И тангенс можно вычислить как отношение BA к BO.

Как же нам их найти?

И BO, и BA будут гипотенузами 2 совершенно равных прямоугольных треугольников (для наглядности я их выделил красным).

Длина катетов их равна 2 и 8, а квадрат гипотенузы, как известно, равен сумме квадратов катетов.

Таким образом, у нас получится следующее:

tg(BOA) = BA / BO = √(2² + 8²) / √(2² + 8²) = 1.

И нетрудно догадаться, что треугольник этот равнобедренный с равными углами BOA и BAO по 45 градусов.

Найдите тангенс угла, изображённого на клетчатой бумаге с размером клетки…

Условие задачи:
Найдите тангенс угла, изображённого на клетчатой бумаге с размером клетки 1 см X 1 см (рис. 112).

Как найти тангенс угла по клеточкам огэ 2021

Решение:
Если построить прямоугольный треугольник, каждый из катетов которого измеряется целым числом делений сетки, так, чтобы данный угол был острым углом этого треугольника, то решить задачу удастся без труда. Для этого достаточно на наклонной стороне угла выбрать точку, являющуюся пересечением горизонтальной и вертикальной линий сетки (такие точки называют узлами сетки). Выберем одну из них, обозначим её буквой В, опустим из неё перпендикуляр ВН на горизонтальную сторону угла, а вершину угла обозначим буквой А (рис. 113).

Как найти тангенс угла по клеточкам огэ 2021

Искомый тангенс равен отношению противолежащего катета к прилежащему:

Как найти тангенс угла по клеточкам огэ 2021

Ответ: 1,5

  • 1
  • 2
  • 3
  • 4
  • 5

Оценка: 5.0 из 1

Комментарии

Всего комментариев

: 0


Каталог заданий.
Углы


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Найдите тангенс угла AOB, изображенного на рисунке.

Аналоги к заданию № 40: 348424 348519 352779 357581 369740 369808 Все

Источник: Демонстрационная версия ГИА—2013 по математике., Демонстрационная версия ГИА—2014 по математике.

Раздел кодификатора ФИПИ: 5.1 Планиметрия. Нахождение геометрических величин.

Решение

·

·

Сообщить об ошибке · Помощь


2

Задание 18 № 311485

На квадратной сетке изображён угол  A. Найдите   тангенс A.

Источник: ГИА-2013. Математика. Тренировочная работа № 4.(1 вар.)

Раздел кодификатора ФИПИ: 5.1 Планиметрия. Нахождение геометрических величин.

Решение

·

·

Сообщить об ошибке · Помощь


3

Найдите тангенс угла, изображённого на рисунке.

Аналоги к заданию № 316348: 316374 323618 348622 348734 349410 349506 349517 349574 349593 340982 … Все

Раздел кодификатора ФИПИ: 5.1 Планиметрия. Нахождение геометрических величин.

Решение

·

·

Сообщить об ошибке · Помощь


4

Задание 18 № 316374

Найдите тангенс угла, изображённого на рисунке.

Аналоги к заданию № 316348: 316374 323618 348622 348734 349410 349506 349517 349574 349593 340982 … Все

Раздел кодификатора ФИПИ: 5.1 Планиметрия. Нахождение геометрических величин.

Решение

·

·

Сообщить об ошибке · Помощь


5

Задание 18 № 323618

Найдите тангенс угла AOB, изображённого на рисунке.

Аналоги к заданию № 316348: 316374 323618 348622 348734 349410 349506 349517 349574 349593 340982 … Все

Раздел кодификатора ФИПИ: 5.1 Планиметрия. Нахождение геометрических величин.

Решение

·

·

Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

     О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2022

Как найти тангенс угла по клеточкам огэ 2021


1

10 ответов:

Как найти тангенс угла по клеточкам огэ 2021



7



0

Я слышала, что такого рода задания будут в ЕГЭ 2015 года. И сейчас учеников в школах учат находить тангенсы, синусы и косинусы угла по клеточкам.

Разберем тангенс угла треугольника:

Как найти тангенс угла по клеточкам огэ 2021

Соединяем точка А и В, так чтобы стороны являлись гипотенузами:

Как найти тангенс угла по клеточкам огэ 2021

Теперь по теореме Пифагора вычисляем все стороны, и получаем синус. А далее и косинус, тангенс и котангенс.

Вот решение:

HzushcJylQ4U5DUA1ARjbv6SFkyKZ.png

Как найти тангенс угла по клеточкам огэ 2021

rHATJMpEM0uqBX4pySY8L2acFFVKJX.png

Как найти тангенс угла по клеточкам огэ 2021

6ZcgN9uediLFNV3luVkm5t7eQisOHIQe.png

Как найти тангенс угла по клеточкам огэ 2021

U50HFrWRKjSyvrk0K4DRQjwKAtfMjlaX.png

Как найти тангенс угла по клеточкам огэ 2021

va7kdYhHoD9BGOEBSbHnKq0kZxdfI1PZ.png

Как найти тангенс угла по клеточкам огэ 2021

RDkrPWJTrFczKO7snlgRU5ViRfGfgf.png

Как найти тангенс угла по клеточкам огэ 2021

Zc2uud2EBkOw1zNO2H17qsi8PSch73nT.png

Как найти тангенс угла по клеточкам огэ 2021

Ответ: 11

Как найти тангенс угла по клеточкам огэ 2021



4



0

Давайте на примере найдём тангенс угла AOB, изображенного на рисунке ниже, по клеточкам:

Как найти тангенс угла по клеточкам огэ 2021

Прочертив прямую линию, соединяющую две имеющихся по прямым углом, мы увидим прямоугольный треугольник:

Как найти тангенс угла по клеточкам огэ 2021

В треугольнике ОВС образованный угол С является прямым.

ML0qb5VcvBHAL5f3NH2AeV5jdDrjtyK.png

Как найти тангенс угла по клеточкам огэ 2021

Противолежащий катет ВС, ясно видно, что в 3 р. больше прилежащего катета ОС. Отсюда получаем, что tg∠AOB = BC : OC = 3

Ответ = 3

Как найти тангенс угла по клеточкам огэ 2021



3



0

Найти тангенс ушла по клеточкам достаточно просто.

Допустим, у нас есть угол АОВ.

Как найти тангенс угла по клеточкам огэ 2021

Из точки В мы опускаем вниз прямую. У нас получился треугольник с сторонами а и b.

Как найти тангенс угла по клеточкам огэ 2021

Далее можно воспользоваться формулой: tg=b/a

Высчитываем по клеточкам длину сторон а и b. Получаем формулу tg=6/5. Получаем ответ 1,2.

Как найти тангенс угла по клеточкам огэ 2021



2



0

Рассмотрим, как найти тангенс угла по клеточкам на конкретном примере.

Как найти тангенс угла по клеточкам огэ 2021

Требуется найти тангенс угла АОВ.

Построим углы ХОА и ХОВ.

Как найти тангенс угла по клеточкам огэ 2021

Тангенсы углов XOB и XOA можно сосчитать «по клеточкам» (для вычисления тангенса острого угла прямоугольного треугольника, надо найти отношение противолежащего катета к прилежащему):

A = tg (XOA) = 2/4 = 0.5

B = tg (XOB) = 3/1 = 3

Как найти тангенс угла по клеточкам огэ 2021

tg (AOB) = tg (XOB — XOA) = (B — A/(1 + AB) = (3-0.5)/(1+0.5*3)=2.5/2.5=1

Как найти тангенс угла по клеточкам огэ 2021



2



0

На самом деле, несмотря на всю мою любовь к точным наукам я не припомню, чтобы нас в школе учили рассчитывать тангенс, основываясь на количествах клеточек, на которых изображён угол.

Оказывается, это весьма увлекательное задание.

Предлагаю посмотреть один из вариантов расчёта тангенса угла.

Как найти тангенс угла по клеточкам огэ 2021

Как найти тангенс угла по клеточкам огэ 2021

Как найти тангенс угла по клеточкам огэ 2021



2



0

Будем искать тангенс угла А треугольника АВС.

Как найти тангенс угла по клеточкам огэ 2021

Решение.

Сначала посчитаем длину двух сторон данного треугольника, считать будем по клеточкам, и получим результат: АС=5 и ВС=2.

Тангенс угла А равен сторона ВС разделить на АС.

Подставляем в формулу, получаем тангенс угла А= 2/5=0,4

Вот так легко можно произвести вычисление.

Как найти тангенс угла по клеточкам огэ 2021



1



0

Чтобы найти тангенс угла необходимо построить угол обозначив две точки в тетрадке в клеточку или на миллиметровой бумаге, как написал Rafail, и соединить их прямой линией. Тогда угол между этой прямой и горизонталью будет заданным углом.

Как найти тангенс угла по клеточкам огэ 2021



1



0

Найти тангенс угла по клеткам

Как по мне, то легче всего отложить прямую линию — так, чтобы образовался прямоугольный треугольник.

Здесь мы уже имеем кое-какую информацию. В прямоугольном треугольники тангенсом острого угла является отношение противоположного катета к прилежащему. Отсюда получается, что тангенс кута — это отложенная прямая линия разделенная на прилежащий катет.

Например, если прямая линия, которую мы проложили, будет длинной в 5 клеточек, а прилежащий катет длинной в одну, то 5/1 = 5. Или же если эта линия, которую мы провели, равняется, к примеру, 6, а прилежащий катет — 2, то 6/2=3. Вот такая простая арифметика, главное, понять суть вычислений и применять их на практике.

Как найти тангенс угла по клеточкам огэ 2021



1



0

Рассчитать тангенс угла по клеточкам довольно просто, если будешь знать формулу.

Как найти тангенс угла по клеточкам огэ 2021

Тангенс является отношением противолежащего катета А к прилежащему катету Б.

Рассмотрим несколько примеров, как рассчитать тангенс именно по клеточкам.

Как найти тангенс угла по клеточкам огэ 2021

В данном примере нужно найти тангенс угла АОВ.

Как найти тангенс угла по клеточкам огэ 2021

Чуть сложнее пример.

Как найти тангенс угла по клеточкам огэ 2021

Его решение.

Как найти тангенс угла по клеточкам огэ 2021

Как найти тангенс угла по клеточкам огэ 2021



1



0

Тангенс угла найти по клеткам довольно легко. Для этого нужно посчитать клеточки и делить количество клеточек противолежащей стороны на количество клеточек прилежащей к углу стороны. Вот все, расчитывается это таким вот образом.

Читайте также

Как найти тангенс угла по клеточкам огэ 2021

1)Во-первых вы решение уравнения не написали , а в задании спрашивается :» Правильное решение имеет данное уравнение? » А где решение?Решение — это ход заключений , приводящих к решению : х=…Но этого мы не видим.

2)Во-вторых-после того как первая череда выражений-дробей (x^2-4ax+4a^2)/(x^2+4ax+4a^2) * (x^2+4ax+4a^2)/(x^2-4ax+4a^2) , и это после сокращения одинаковых выражений в числителе и знаменателе =1.И остаётся только (х+2а)(х-2а) = (х+2а)(х-2а) , а это не что иное , как тождество , а не уравнение.А тождество справедливо при любом х , это тогда , когда левая часть равна правой, и совсем не зависит от величины х.

<h2>Ответ:Это уравнение -тождество , справедливое при любом значении х, или множество значений х.</h2>

Как найти тангенс угла по клеточкам огэ 2021

В химии бывают не уравнения обратимыми, а реакции. Реакции, идущие в двух противоположных направлениях, называются обратимыми. Таких реакций большинство, особенно в органической химии. Например, в неорганической химии, реакции, идущие необратимо, до конца,это реакции обмена, которые осуществляются трех случаях: когда одно из двух полученных веществ — вода (реакция нейтрализации); или одно из веществ выпадает в осадок, или выделяется в виде газа. К необратимым относятся и реакции горения, а практически все остальные реакции являются обратимыми. Например: при нагревании известняк разлагается по уравнению СаСОз <==> CaO + CO2, прямая реакция, а при более высокой температуре может идти обратная реакции соединения основного оксида СаО с кислотным оксидом СО2 по уравнению СаО + СО2 = СаСОз. Поэтому в уравнениях обратимых реакций ставится не равенство , а две стрелки во взаимно противоположных направлениях (вправо и влево <==>).

Еще один классический пример обратимой реакции — синтез аммиака:

3H2 + N2 <==> 2NHз .

Как найти тангенс угла по клеточкам огэ 2021

Ну в пределах школьной математики действительно такое уравнение рассматривать нельзя. Ответом будет пустое множество.

А вот если это уже не школа, то в данном случае тоже будет пустое множество, потому что нельзя взять такое число, которое поделив на 0 получили бы 538. Но вот если бы справа была бы бесконечность, то подошло бы любое х (с точки зрения не школьной математики).

Как найти тангенс угла по клеточкам огэ 2021

Всё просто..

Систему из двух линейных дифуравнений можно преобразовать одно в линейное дифуравнение второго порядка..

Для этого например находим у из первого уравнения:

y=6x-x’

Дифференцируем его:

y’=6x’-x»

Теперь подставляем во второе уравнение:

6x’-x»=3x+2(6x-x’)

Теперь приводим:

6x’-x»-3x-12x+2x’=0

Окончательно получаем дифуравнение второго порядка:

-x»+8x’-15x=0

Решаем это уравнение, оно имеет только свободную составляющую..

Находим решение квадратного алгебраического уравнения:

-x^2+8x-15=0

x1=5

x2=3

Оба корня действительные..

Тогда решение уравнения может быть выглядеть:

x(t)=C1e^5t+C2e^3t

Теперь ищем постоянные интегрирования:

x(0)=C1+C2

x'(0)=5C1+3C2

Откуда решая систему получим:

C2=(5x(0)-x'(0))/2

C1=(-3x(0)+x'(0))/2

Из первого уравнения:

y=6x-x’

x’=5C1e^5t+3C2e^3t

Откуда:

y(t)=6(C1e^5t+C2e^3t)-5C1e^5t-3C2e^3t

Окончательно:

y(t)=C1e^5t+3C2e^3t

Постоянные интегрирования через нулевые начальные условия по x и у:

x(0)=C1+C2

y(0)=C1+3C2

Откуда:

С1=(3х(0)-у(0))/2

С2=(х(0)-у(0))/2

Подставляем и получаем окончательные решения:

x(t)=((3x(0)-y(0))/2)e^5t+((x(0)-y(0))/2)e^3t

y(t)=((3x(0)-y(0))/2)e^5t+(3(x(0)-y(0))/2)e^3t

Как найти тангенс угла по клеточкам огэ 2021

Системы уравнений можно решить несколькими способами из тех, что распространены. Первый способ- это подстановка одного из членов одного уравнения в другое, выражение другого члена через оставшиеся и подстановка в третье и так далее. В общем это школьный способ.

Другой способ- это составление матрицы и упрощение этой матрицы. Называется методом Гаусса. Подходит для больших систем уравнений, где все члены в степени 1 (линейные уравнения). Суть та же, но запись укорочена и легче заставить компьютер решить такую систему. Изучают на первом курсе математического анализа.

Ну а ещё дифференциальны уравнения высших порядков есть. Их тоже вроде как-то решают. Но это уже второй курс университета, когда становится не до учебы.

Как найти тангенс угла по клеточкам огэ 2021

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Как найти тангенс угла по клеточкам огэ 2021

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Как найти тангенс угла по клеточкам огэ 2021

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

AsyaAsya Админ. спросил 5 лет назад

Здравствуйте!
Как найти тангенс угла по клеточкам? Дали задание, а к нему только рисунок. Не понимаю, как его можно решить. Помогите, пожалуйста.
Спасибо!

1 ответ

AsixAsix Админ. ответил 5 лет назад

Задание.
Найти тангенс угла АОВ, который изображен на данном рисунке.
Как найти тангенс угла по клеточкам огэ 2021
Решение.
Чтобы понять как найти тангенс угла по клеточкам данного рисунка вспомним, что тангенс можно найти из прямоугольного треугольника, длину катетов которого как раз и можно посчитать по клеточкам.
Рассмотрим рисунок, чтобы понять какой прямоугольный треугольник можно получить.
Построим прямоугольный треугольник таким образом, чтобы отрезок ОВ являлся его гипотенузой.

Обозначим новую точку буквой К. из полученного прямоугольного треугольника ОВК можно вычислить тангенс угла ВОК, который рассчитывается как отношение противолежащего катета к прилежащему. Из рисунка видно, что противолежащий катет к углу ВОК равен 3 клеточки, а прилежащий – 1 клеточка. Условно клеточки примем за единицы или сантиметры и рассчитаем:
tg BOK = BK / OK = 3 / 1 = 3
Аналогично поступим с отрезком ОА, который достроим до прямоугольного треугольника так, чтобы этот отрезок был гипотенузой нового треугольника.
Как найти тангенс угла по клеточкам огэ 2021
Из полученного треугольника ОАМ вычислим длины е5го катетов и найдем тангенс угла АОМ:
tg АOМ = АМ / OМ = 2 / 4 = 0,5
По условию нужно найти тангенс угла ВОА, который найдем как разницу:
tg BOA = tg BOK – tg АOМ = 3 – 0,5 = 2,5

  Ответ. 2,5.

Пожалуйста, зарегистрируйтесь или войдите, чтобы добавить ответ.

Каталог заданий.
Углы


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 18 № 40

i

Найдите тангенс угла AOB, изображенного на рисунке.

Аналоги к заданию № 40: 341331 349174 350958 … Все

Источники:

Де­мон­стра­ци­он­ная вер­сия ГИА—2013 по ма­те­ма­ти­ке;

Де­мон­стра­ци­он­ная вер­сия ГИА—2014 по ма­те­ма­ти­ке.

Решение

·

Помощь


2

Тип 18 № 311485

i

На квадратной сетке изображён угол A. Найдите  тангенс A.

Источник: ГИА-2013. Ма­те­ма­ти­ка. Тре­ни­ро­воч­ная ра­бо­та № 4.(1 вар.)

Решение

·

Помощь


3

Тип 18 № 316348

i

Найдите тангенс угла, изображённого на рисунке.

Аналоги к заданию № 316348: 316374 323618 348622 … Все

Решение

·

Помощь


4

Тип 18 № 316374

i

Найдите тангенс угла, изображённого на рисунке.

Аналоги к заданию № 316348: 316374 323618 348622 … Все

Решение

·

Помощь


5

Тип 18 № 323618

i

Найдите тангенс угла AOB, изображённого на рисунке.

Аналоги к заданию № 316348: 316374 323618 348622 … Все

Решение

·

Помощь

Пройти тестирование по этим заданиям

Угол на клетчатой бумаге. В этой статье мы с вами рассмотрим задачу, суть которой заключается в том, чтобы найти синус, косинус, тангенс или котангенс угла, построенного на листе в клетку. Такие задания входят в состав экзамена по математике. 

Способы решения существуют разные, их более трёх. Подход изложенный ниже можно было бы назвать универсальным. Если у вас найдутся задачи, которые вы таким способом решить не сможете, пришлите мне их, подберём другой. Углы могут быть построены следующим образом (примеры):

Углы построенные на листке в клетку

Итак, рассмотрим задание:

Найдите тангенс угла AOB. В ответе укажите значение тангенса, умноженное на 8.

Найти тангенс угла!

Соединим точки А и В. Получили треугольник АОВ. На сторонах полученного треугольника построим прямоугольные треугольники так, чтобы эти стороны являлись гипотенузами.

Суть подхода такова: находим все стороны треугольника (это можно сделать по теореме Пифагора); далее используя теорему косинусов, мы можем найти косинус угла; зная косинус мы без труда найдём остальные тригонометрические функции (синус, тангенс, котангенс).

АВ это гипотенуза в прямоугольном треугольнике с катетами 4 и 3,

ОВ это гипотенуза в прямоугольном треугольнике с катетами 6 и 1, 

OА является гипотенузой в прямоугольном треугольнике с катетами 4 и 2,

По теореме косинусов: квадрат любой стороны треугольника равен сумме квадратов двух других сторон, без удвоенного произведения этих сторон на косинус  угла между ними.

Из основного тригонометрического тождества можем найти sin AOB:

*Обратите внимание, что перед знаком корня у нас «+», так как угол острый (от 0 до 90 градусов). А синус острого угла имеет положительное значение. 

Теперь можем найти тангенс:

Умножим результат на 8 и запишем ответ:

Ответ: 11

Ещё раз повторим: как бы не был построен угол, мы всегда можем достроить его до треугольника, найти стороны этого треугольника (используя теорему Пифагора), далее используя теорему косинусов найти косинус угла (заданного в условии). Затем не составит труда, используя основное тригонометрическое тождество, найти синус. Тангенс и котангенс далее не сложно найти по их формулам.

Ниже предложено самостоятельно решить задачи. При их решении на сайте использовались и другие способы (вы решите представленным выше):

Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на два корня из двух.

Посмотреть решение

Найдите тангенс угла AOB.

Посмотреть решение

Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на половину корня из пяти.

Посмотреть решение

Найдите косинус угла AOB. В ответе укажите значение косинуса, умноженное на два корня из пяти.

Посмотреть решение

Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на  два корня из двух.

Посмотреть решение

Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на 2 корня из двух.

Посмотреть решение

Найдите тангенс угла AOB.

Посмотреть решение

В данной рубрике продолжим рассматривать задачи, не пропустите!

С уважением, Александр Крутицких.

*Делитесь информацией в социальных сетях )

Что такое синус, косинус, тангенс, котангенс

18 мая 2022

Сегодня мы узнаем, что такое синус, косинус, тангенс и котангенс. Это первый и самый важный урок по тригонометрии на всём сайте.

Содержание:

  1. Ключевые определения: синус, косинус, тангенс, котангенс.
  2. Почему эти значения зависят только от углов?
  3. Стандартные углы: 30°, 45°, 60°.
  4. Простейшие свойства синуса, косинуса, тангенса, котангенса.
  5. Тригонометрия на координатной сетке.

Никаких сложных формул и длинных решений. Всё расписано максимально подробно. Изучите этот урок — и никаких проблем с тригонометрией не будет. Погнали!

1. Ключевые определения

Рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:

Прямоугольный треугольник

Мы видим, что острый угол $alpha $ образован гипотенузой $c$ и катетом $b$. Такой катет будем называть прилежащим. А катет $a$, который не участвует в формировании угла $alpha $, назовём противолежащим:

Прилежащий катет, противолежащий катет и гипотенуза

Это общепринятые названия: как только в прямоугольном треугольнике отмечен острый угол, для него немедленно можно указать прилежащий катет и противолежащий. И тут мы переходим к ключевым определениям.

1.1. Синус, косинус, тангенс, котангенс

Итак, пусть дан прямоугольный треугольник с острым углом $alpha $.

Прямоугольный треугольник

Тогда:

Определение 1. Синус угла $alpha $ — это отношение противолежащего катета к гипотенузе:

[sin alpha =frac{text{противолежащий катет}}{text{гипотенуза}}=frac{a}{c}]

Определение 2. Косинус угла $alpha $ — это отношение прилежащего катета к гипотенузе:

[cos alpha =frac{text{прилежащий катет}}{text{гипотенуза}}=frac{b}{c}]

Определение 3. Тангенс угла $alpha $ — это отношение противолежащего катета к прилежащему:

[operatorname{tg}alpha =frac{text{противолежащий катет}}{text{прилежащий катет}}=frac{a}{b}]

Определение 3. Котангенс угла $alpha $ — это отношение прилежащего катета к противолежащему:

[operatorname{ctg}alpha =frac{text{прилежащий катет}}{text{противолежащий катет}}=frac{b}{a}]

Вот так всё просто! Берём один катет, делим его на гипотенузы (или на другой катет) — и получаем выражение для синуса, косинуса, тангенса и котангенса. Все эти выражения называются тригонометрическими («тригонометрия» = «треугольники измеряю»).

Рассмотрим пару примеров.

Задача 1. Дан треугольник $ABC$. Найдите синус, косинус и тангенс угла $alpha $.

Прямоугольный треугольник и острый угол

Решение. Это классический прямоугольный треугольник с катетами 3 и 4 и гипотенузой 5. Угол $alpha $ (он же — угол $A$ или угол $BAC$) образован прилежащим катетом $AB=3$гипотенузой $AC=5$. Следовательно катет $BC=4$ — противолежащий.

Имеем:

[begin{align}sin alpha& =frac{BC}{AC}=frac{5}{4} \ cos alpha& =frac{AB}{AC}=frac{3}{5} \ operatorname{tg}alpha& =frac{BC}{AB}=frac{4}{3} end{align}]

Далеко не всегда будут получаться такие красивые ответы. Чаще они будут содержать корни — это следствие теоремы Пифагора. Но важно понимать: как только мы находим длины катетов и гипотенузу, мы сразу можем найти и синусы, косинусы, тангенсы.

Далее в примерах мы не будем считать котангенсы, потому что из формулы котангенса очевидно, что они легко выражаются через тангенсы:

[operatorname{ctg}alpha =frac{1}{operatorname{tg}alpha }]

Но об этом чуть позже.

Задача 2. Дан треугольник $ABC$. Найдите синус, косинус и тангенс угла $alpha $.

Равнобедренный прямоугольный треугольник

Это равнобедренный прямоугольный треугольник с катетами $AB=BC=1$. Найдём гипотенузу по теореме Пифагора:

[begin{align}{{ AC}^{2}} & ={{AB}^{2}}+{{BC}^{2}}=1+1=2 \ AC & =sqrt{2} \ end{align}]

Теперь найдём синус, косинус и тангенс:

[begin{align}sin alpha &=frac{BC}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ cos alpha &=frac{AB}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ operatorname{tg}alpha&=frac{BC}{AB}=frac{1}{1}=1 end{align}]

Простое правило, чтобы не запутаться, где прилежащий катет, а где противолежащий. Просто помните: приставка «ко» означает «вместе», «сообща». Поэтому «косинус» — это «катет, лежащий рядом, к гипотенузе», «котангенс» — это «катет, лежащий рядом, к противолежащему». И никак иначе.:)

1.2. Задачи для тренировки

Перед тем как переходить к следующей части урока, предлагаю 4 примера для тренировки.

Задача 3. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Cинус, косинус, тангенс острого угла снизу

Решение.

[begin{align}sin alpha &=frac{5}{13} \ cos alpha &=frac{12}{13} \ operatorname{tg}alpha &=frac{5}{12} \ end{align}]

Задача 4. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Синус, косинус, тангенс острого угла сверху

Решение.

[begin{align}sin alpha &=frac{8}{17} \ cos alpha &=frac{15}{17} \ operatorname{tg}alpha &=frac{8}{15} \ end{align}]

Задача 5. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Синус, косинус, тангенс и теорема Пифагора

Прилежащий катет по теореме Пифагора:

[begin{align}{{l}^{2}}&={{3}^{2}}-{{1}^{2}}=9-1=8 \ l&=sqrt{8}=2sqrt{2} \ end{align}]

Синус, косинус и тангенс:

[begin{align}sin alpha&=frac{1}{3} \ cos alpha&=frac{2sqrt{2}}{3} \ operatorname{tg}alpha&=frac{1}{2sqrt{2}}=frac{sqrt{2}}{4} \ end{align}]

Задача 6. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Прямоугольный треугольник и теорема Пифагора

Прилежащий катет по теореме Пифагора:

[begin{align}{{l}^{2}} &={{2}^{2}}-{{1}^{2}}=4-1=3 \ l &=sqrt{3} \ end{align}]

Синус, косинус и тангенс:

[begin{align}sin alpha&=frac{1}{2} \ cos alpha&=frac{sqrt{3}}{2} \ operatorname{tg}alpha&=frac{1}{sqrt{3}}=frac{sqrt{3}}{3} \ end{align}]

Как видим, считать синусы, косинусы и тангенсы совсем несложно. Перейдём теперь к принципиально важному вопросу: а зачем вообще всё это нужно?

2. Теорема о единственности

Ключевая идея: синус, косинус, тангенс и котангенс зависят только от величины угла $alpha $ и никак не зависят от прямоугольного треугольника, в котором идут вычисления.

Такого не произойдёт. Потому что есть теорема о единственности.

2.1. Формулировка теоремы

Теорема. Значение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике определяются только величиной этого угла и никак не зависят от самого треугольника.

2.2. Доказательство

Рассмотрим произвольный острый угол $alpha $. Для удобства обозначим его вершину буквой $A$:

Острый угол

А затем впишем в него два произвольных прямоугольных треугольника — $ABC$ и $AMN$. Любым удобным способом. Например, можно вписать эти треугольники вот так:

Острый угол и подобные треугольники

А можно и вот так — это не имеет никакого значения:

Острый угол и перевернутые треугольники

Рассмотрим треугольники $ABC$ и $AMN$. Угол $A$ у них общий; углы [angle ABC=angle AMN=90{}^circ ] по условию. Следовательно, треугольники $ABC$ и $AMN$ подобны по двум углам:

[Delta ABCsim Delta AMN]

Из подобия треугольников следует двойное равенство

[frac{AB}{AM}=frac{BC}{MN}=frac{AC}{AN}]

Выпишем второе равенство — получим пропорцию

[frac{BC}{MN}=frac{AC}{AN}]

Попробуем выразить $sin alpha $. Вспомним основное свойство пропорции: произведение крайних членов равно произведению средних. Поэтому

[BCcdot AN=MNcdot AC]

Разделим обе части равенства на длину каждой гипотенузы — $AN$ и $AC$:

[begin{align}frac{BCcdot AN}{ANcdot AC} &=frac{MNcdot AC}{ANcdot AC} \ frac{BC}{AC} &=frac{MN}{AN} end{align}]

Однако по определению синуса имеем:

[begin{align}sin BAC &=frac{BC}{AC} \ sin MAN &=frac{MN}{AN} \ end{align}]

Получается, что $sin BAC=sin MAN$. Другими словами, вне зависимости от выбора треугольника для данного угла $alpha $ мы всегда будем получать одно и то же значение $sin alpha $.

То же самое касается и $cos alpha $, $operatorname{tg}alpha $ и $operatorname{ctg}alpha $ — они зависят лишь от градусной меры угла $alpha $ и никак не зависят от конкретного прямоугольного треугольника, в котором они находятся. Теорема доказана.

3. Стандартные углы

Итак, значения $sin alpha $, $cos alpha $, $operatorname{tg}alpha $ и $operatorname{ctg}alpha $ однозначно определяются величиной угла $alpha $. Нам не важен треугольник — важна только градусная мера угла. Можно один раз посчитать синусы, косинусы и т.д. для нужных углов, а затем просто подставлять их.

Но тут мы сталкиваемся с проблемой, из-за которой многие как раз и не понимают тригонометрию. Проблема состоит из двух пунктов:

  1. Для большинства углов $alpha $ нельзя найти точные значения $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.
  2. Верно и обратное: для большинства «красивых» $sin alpha $, $cos alpha $ и т.д. нельзя подобрать подходящий угол $alpha $.

Звучит немного непонятно, поэтому разберём каждый пункт на конкретных примерах.

3.1. Три стандартных угла

Существует лишь три острых угла, для которых легко считаются синусы, косинусы и т.д. Это 30°, 45°, 60°. Вот их синусы, косинусы и тангенсы:

[begin{array}{c|ccc} alpha& 30{}^circ& 45{}^circ & 60{}^circ \ hlinesin alpha & frac{1}{2} & frac{sqrt{2}}{2} & frac{sqrt{3}}{2} \ cos alpha & frac{sqrt{3}}{2} & frac{sqrt{2}}{2} & frac{1}{2} \ operatorname{tg}alpha& frac{sqrt{3}}{3} & 1 & sqrt{3} \ end{array}]

Чтобы понять, чем эти углы такие особенные, просто посчитаем все эти синусы, косинусы и тангенсы. Начнём с $alpha =45{}^circ $. Для этого рассмотрим равнобедренный прямоугольный треугольник. Мы уже встречались с ним:

Равнобедренный прямоугольный треугольник тригонометрия

Поскольку в равнобедренном треугольнике $angle A=angle B=45{}^circ $, получим:

[begin{align}sin 45{}^circ &=sin A=frac{BC}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ cos 45{}^circ &=sin A=frac{AB}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ operatorname{tg}45{}^circ&=sin A=frac{BC}{AB}=frac{1}{1}=1 end{align}]

Это именно те значения, которые указаны в таблице!

Теперь разберёмся с углами $alpha =30{}^circ $ и $alpha =60{}^circ $. Здесь рассуждения будут чуть сложнее. Сначала рассмотрим равносторонний треугольник $ABC$ со стороной $AB=2$ (просто так удобнее) и проведём высоту $BH$:

Равносторонний треугольник тригонометрия

Мы знаем, что высота $BH$ — ещё и медиана, и биссектриса. Поэтому $AH=CH=1$, $angle ABH=angle CBH=30{}^circ $.

Следовательно, треугольник $ABH$ — прямоугольный, да ещё и с острыми углами 30° и 60°. По теореме Пифагора легко найти $BH=sqrt{3}$. Нанесём все данные на чертёж:

Равносторонний треугольник высота

Разберёмся с углом 60°:

[begin{align} sin{60}^circ &=sin A=frac{BH}{AB}=frac{sqrt{3}}{2} \ cos{60}^circ&=cos A=frac{AH}{AB}=frac{1}{2} \ operatorname{tg}{60}^circ&=operatorname{tg}A=frac{BH}{AH}=sqrt{3} \ end{align}]

И с углом 30°:

[begin{align} sin{30}^circ &=sin ABH=frac{AH}{AB} =frac{1}{2} \ cos{30}^circ &=cos ABH=frac{BH}{AB} =frac{sqrt{3}}{2} \ operatorname{tg}{30}^circ &=operatorname{tg} ABH=frac{AH}{BH} =frac{1}{sqrt{3}} =frac{sqrt{3}}{3} \ end{align}]

Попробуйте повторить все эти рассуждения самостоятельно. Это очень полезное упражнение!

Возникает вопрос: как быть с другими углами? Например, можно ли найти $sin {50}^circ $? Или, быть может, $cos {10}^circ $? Спойлер: можно, но это будут очень громоздкие выражения. И у нас пока не хватает технологий, чтобы их найти.

Поэтому идём дальше и посмотрим на ситуацию с другой стороны: как подобрать угол к заданному синусу, косинусу, тангенсу?

3.2. Что с другими углами?

Взгляните ещё раз на «классический» прямоугольный треугольник, с которого мы начинали наши рассуждения:

Стандартная пифагорова тройка

Катеты 4 и 3, гипотенуза 5 — вполне обычный треугольник. Для него можно посчитать, например, синус острого угла $alpha $:

[sin alpha =sin A=frac{BC}{AB}=frac{3}{5}=0,6]

Итак, мы знаем синус. Внимание, вопрос: каким должен быть угол $alpha $, чтобы $sin alpha =0,6$? Сколько градусов должно быть в угле $alpha $? Ответ: неизвестно.:)

Точнее, правильнее сказать, что у нас пока нет технологий, позволяющих найти такой угол $alpha $, чтобы $sin alpha =0,6$. Хотя такой угол точно есть, ведь мы предъявили треугольник, в котором он присутствует.

Из всех этих рассуждений сделаем важный вывод. В тригонометрии мы:

  • Либо берём угол и считаем для него синусы, косинусы и т.д. Но лишь для трёх острых углов — 30°, 45°, 60° — всё будет считаться быстро и красиво. Такие углы называются табличными.
  • Либо берём синус, косинус или тангенс и для него пытаемся подобрать острый угол. Но лишь для табличных значений мы сможем подобрать такие углы. И да: это будут углы 30°, 45°, 60°.

Ещё раз:

Мы можем посчитать лишь синус, косинус и тангенс для трёх табличных углов.

Например, $sin 30{}^circ $, $cos 45{}^circ $, $operatorname{tg}60{}^circ $ и т.д. А всякие $sin 15{}^circ $, $cos 25{}^circ $ или $operatorname{tg}89,5{}^circ $ — не сможем. По крайней мере пока.:)

И наоборот:

Зная $sin alpha $, $cos alpha $ или $operatorname{tg}alpha $, мы сможем назвать точный угол $alpha $ только в том случае, если все эти синусы, косинусы и тангенсы — среди табличных значений.

Например, мы точно знаем, что если $sin alpha =frac{sqrt{2}}{2}$, то $alpha =45{}^circ $. Но когда $sin alpha =0,6$, мы уже не можем назвать угол $alpha $ (хотя всегда можем построить такой угол).

С этой мыслью мы и переходим к следующему пункту — свойства тригонометрических выражений.

4. Свойства синуса, косинуса, тангенса

Мы разберём три ключевых свойства:

  1. Связь между синусом, косинусом и тангенсом.
  2. Связь между острыми углами прямоугольного треугольника.
  3. Основное тригонометрическое тождество.

Свойствам 2 и 3 далее в курсе будут посвящены отдельные уроки. Но основные идеи полезно взять на вооружение уже сейчас.

4.1. Связь между синусом, косинусом и тангенсом

Рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:

Прямоугольный треугольник

Выразим синус, косинус:

[sin alpha =frac{a}{c};quad cos alpha =frac{b}{c}]

А теперь выразим тангенс и заметим, что

[operatorname{tg}alpha =frac{a}{b}=frac{a}{c}cdot frac{c}{b}=frac{sin alpha }{cos alpha }]

Точно так же можно выразить и котангенс:

[operatorname{ctg}alpha =frac{b}{a}=frac{b}{c}cdot frac{c}{a}=frac{cos alpha }{sin alpha }]

Более того, сам тангенс и котангенс тоже связаны:

[operatorname{tg}alpha cdot operatorname{ctg}alpha =frac{a}{b}cdot frac{b}{a}=1]

Мы получили три важнейших тригонометрических формулы:

Основные формулы тригонометрии:

[operatorname{tg}alpha =frac{sin alpha }{cos alpha };quad operatorname{ctg}alpha =frac{cos alpha }{sin alpha };quad operatorname{tg}alpha cdot operatorname{ctg}alpha =1]

Эти формулы нужно знать наизусть. И понимать, откуда они берутся.

4.2. Связь между острыми углами

Рассмотрим прямоугольный треугольник $ABC$, где $angle C=90{}^circ $. Пусть градусная мера $angle A=alpha $ градусов:

Острые углы прямоугольного треугольника связь

Мы помним, что сумма острых углов прямоугольного треугольника равна 90°. Поэтому если $angle A=alpha $, то угол $angle B=90{}^circ -alpha $. Но тогда:

[sin alpha =sin A=frac{BC}{AB}=cos B=cos left( 90{}^circ -alpha right)]

То же самое и с косинусами:

[cos alpha =cos A=frac{AC}{AB}=sin B=sin left( 90{}^circ -alpha right)]

И даже с тангенсами и котангенсами:

[begin{align} operatorname{tg}alpha&=operatorname{tg}A=frac{BC}{AC} =operatorname{ctg}B=operatorname{ctg}left( {90}^circ -alpharight) \ operatorname{ctg}alpha&=operatorname{ctg}A=frac{AC}{BC} = operatorname{tg}B=tgleft( {90}^circ -alpha right) \ end{align}]

Другими словами, если вместо $alpha $ поставить ${90}^circ -alpha $, то исходная тригонометрическая функция поменяется на ко-функцию:

[begin{align}sin left( {90}^circ-alpharight) &=cos alpha \ cos left( {90}^circ-alpharight) &=sin alpha \ operatorname{tg}left( {90}^circ-alpharight) &=operatorname{ctg}alpha\ operatorname{ctg}left( {90}^circ-alpharight) &=operatorname{tg}alphaend{align}]

Но это ещё не всё. Есть гораздо более интересная формула.

4.3. Основное тригонометрическое тождество

Вновь рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:

Прямоугольный треугольник

Запишем выражения для $sin alpha $ и $cos alpha $:

[sin alpha =frac{a}{c};quad cos alpha =frac{b}{c}]

Далее заметим, что

[begin{align} {{sin }^{2}}alpha +{{cos }^{2}}alpha&={{left( frac{a}{c} right)}^{2}}+{{left( frac{b}{c} right)}^{2}}= \ & =frac{{{a}^{2}}}{{{c}^{2}}} +frac{{{b}^{2}}}{{{c}^{2}}}= \ & =frac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}} end{align}]

В числителе можем применить теорему Пифагора: ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$, поэтому

[{{sin }^{2}}alpha +{{cos }^{2}}alpha =frac{{{c}^{2}}}{{{c}^{2}}}=1]

Правая часть этой формулы вообще не зависит от угла $alpha $.

Основное тригонометрическое тождество:

[{{sin }^{2}}alpha +{{cos }^{2}}alpha =1]

Это равенство связывает синус и косинус одного и того же угла и верно для всех $alpha $.

С помощью основного тригонометрического тождества можно вычислять косинус, зная синус, и наоборот.

Задача 7. Найдите $18cos alpha $ для острого угла $alpha $, если $sin alpha =frac{sqrt{65}}{9}$.

Решение. Запишем основное тригонометрическое тождество:

[{{sin }^{2}}alpha +{{cos }^{2}}alpha =1]

Подставим указанное значение $sin alpha $ и выразим $cos alpha $:

[begin{align}{{left( frac{sqrt{65}}{9} right)}^{2}}+{{cos }^{2}}alpha &=1 \ frac{65}{81}+{{cos }^{2}}alpha &=1 \ {{cos }^{2}}alpha &=frac{16}{81} \ cos alpha&=pm frac{4}{9} end{align}]

Поскольку косинус угла в прямоугольном треугольнике не может быть отрицательным, выбираем вариант $cos alpha ={4}/{9};$. Остаётся сделать финальный шаг:

[18cos alpha =18cdot frac{4}{9}=2cdot 4=8]

Вот и всё! Ответ: 8.

В следующем примере мы уже не будем подробно расписывать каждый шаг. Оформим всё так, как надо оформлять на контрольных и экзаменах.

Задача 8. Найдите $48operatorname{tg}alpha $ для острого угла $alpha $, если $cos alpha =frac{8}{sqrt{113}}$.

Решение. Найдём $sin alpha $:

[begin{align}{{sin }^{2}}alpha &=1-{{cos }^{2}}alpha = \ & =1-{{left( frac{8}{sqrt{113}} right)}^{2}}= \ & =1-frac{64}{113}=frac{49}{113} \ sin alpha&=pm frac{7}{sqrt{113}} end{align}]

Но ${0}^circ lt alpha lt {90}^circ $, поэтому $sin alpha gt 0$. Следовательно

[sin alpha =frac{7}{sqrt{113}}]

Найдём $operatorname{tg}alpha $:

[operatorname{tg}alpha =frac{sin alpha }{cos alpha }=frac{7}{sqrt{113}}cdot frac{sqrt{113}}{8}=frac{7}{8}]

Окончательный ответ:

[48operatorname{tg}alpha =48cdot frac{7}{8}=6cdot 7=42]

Ответ: 42.

Заметка на будущее: замечание о том, что угол $alpha $ острый, весьма существенно. То, как мы сейчас определяем синусы, косинусы и тангенсы (через прямоугольный треугольник), называется геометрической тригонометрией. Её проходят в 8—9 классе.

Но в 10—11 классах появится алгебраическая тригонометрия, где синусы, косинусы и т.д. вполне могут быть отрицательными. И уже не получится просто так избавиться от минуса.

Но всё это будет чуть позже. А сейчас потренируемся.

Задача 9. ►

Найдите $52cos alpha $ для острого угла $alpha $, если $sin alpha =frac{5}{13}$.

Решение. Найдём $cos alpha $:

[begin{align}{{cos }^{2}}alpha &=1-{{sin }^{2}}alpha = \ &=1-frac{25}{169}=frac{144}{169} \ cos alpha&=pm frac{12}{13} end{align}]

Поскольку $cos alpha gt 0$ для острых $alpha $, выбираем $cos alpha ={12}/{13};$. Итого

[52cos alpha =52cdot frac{12}{13}=48]

Ответ: 48.

Задача 10. ►

Найдите $1+2operatorname{tg}alpha $ для острого угла $alpha $, если $cos alpha =frac{1}{sqrt{26}}$.

Решение. Найдём $sin alpha $:

[begin{align}{{sin }^{2}}alpha &=1-{{cos }^{2}}alpha = \ & =1-frac{1}{26}=frac{25}{26} \ sin alpha&=pm frac{5}{sqrt{26}} end{align}]

Поскольку $sin alpha gt 0$ для острых $alpha $, выбираем

[sin alpha =frac{5}{sqrt{26}}]

Считаем $operatorname{tg}alpha $:

[operatorname{tg}alpha =frac{sin alpha }{cos alpha }=frac{5}{sqrt{26}}cdot frac{sqrt{26}}{1}=5]

Откуда

[1+2operatorname{tg}alpha =1+2cdot 5=11]

Ответ: 11.

5. Тригонометрия на координатной сетке

Задачи, которые мы сейчас разберём, вполне могут встретиться в ОГЭ и даже ЕГЭ. Часто в них нет прямоугольного треугольника — есть лишь угол, в который этот треугольник предлагается вписать.

Для решения задач на координатной сетке достаточно посмотреть, через какие узлы сетки проходят интересующие нас лучи. И понять, какие из этих узлов имеет смысл соединить дополнительными построениями.

Звучит страшно, но на практике всё легко.:)

Задача 11. Найдите тангенс угла $ABC$, изображённого на координатной сетке:

Координатная сетка угол

Решение. Дополнительное построение: $AHbot BC$ — перпендикуляр из точки $A$ на луч $BC$.

Координатная сетка прямоугольный треугольник

Треугольник $BAH$ — прямоугольный, причём угол $ABC$ — один из его острых углов. Поэтому

[operatorname{tg}ABC=frac{AH}{BH}=frac{3}{4}=0,75]

Это и есть искомый тангенс.

Ответ: 0,75.

Ещё раз: важно, чтобы основание перпендикуляра попадало в узел сетки. Иначе нахождение длины катетов резко усложняется. Попробуйте сами:

Задача 12. ►

Найдите тангенс угла $ABC$, изображённого на координатной сетке:

Координатная сетка угол самостоятельно

Решение.

Дополнительное построение: $AHbot BC$ — перпендикуляр из точки $A$ к лучу $BC$.

Координатная сетка треугольник самостоятельно

Треугольник $BAH$ — прямоугольный с острым углом $ABC$. Поэтому

[operatorname{tg}ABC=frac{AH}{BH}=frac{2}{4}=frac{1}{2}]

Ответ: 0,5.

Разумеется, это были совсем простые задачи. Потому что один из лучей был параллелен линиям сетки.

Куда интереснее (и полезнее) рассмотреть ситуации, где лучи направлены под углом к сетке. Суть та же: ищем и соединяем узлы на лучах. Но тут уже нужна наблюдательность.

Задача 13. Найдите тангенс угла $MNK$, изображённого на координатной сетке:

Координатная сетка наклон

Решение. Луч $KN$ содержит лишь две точки в узлах координатной сетки — собственно, $K$ и $N$. Понятно, что если продолжить луч за точку $K$, мы найдём ещё много таких точек, но будем решать задачу с тем, что есть.

Заметим, что прямая $MN$ наклонена к линиям сетки под углом 45° и образует диагонали квадратов. Это значит, что перпендикуляр к ней тоже будет наклонён под углом 45°.

Дополнительное построение: отрезок $KH$ — диагональ одного из квадратов сетки.

Координатная сетка наклон высота

Очевидно, что угол $NHK$ прямой, поэтому треугольник $KHN$ прямоугольный и содержит искомый острый угол $MNK$. Находим тангенс:

[operatorname{tg}MNK=frac{HK}{HN}=frac{sqrt{2}}{2sqrt{2}}=frac{1}{2}=0,5]

Здесь мы предположили, что сторона квадрата сетки равна 1. Но с тем же успехом можно считать, что сторона квадрата $a$:

[operatorname{tg}MNK=frac{HK}{HN}=frac{asqrt{2}}{2asqrt{2}}=frac{1}{2}=0,5]

Ответ: 0,5.

Подобные задачи считаются довольно сложными. По статистике большинство выпускников 9 классов не способны их решать. Но вы-то теперь точно справитесь. Попробуйте:

Задача 14. ►

Найдите тангенс угла $DEF$, изображённого на координатной сетке:

Координатная сетка наклон самостоятельно

Решение.

Дополнительное построение: отрезок $DH$.

Координатная сетка наклон высота самостоятельно

Очевидно, $EH=DH$, угол $EHD$ прямой. Следовательно, треугольник $EDH$ — прямоугольный и равнобедренный. Поэтому $operatorname{tg}DEF=1$.

Либо можно посчитать «напролом», полагая, что сторона квадрата сетки равна $a$:

[operatorname{tg}DEF=frac{asqrt{10}}{asqrt{10}}=1]

Ответ: 1.

Вообще, поиск «правильных» узлов на координатной сетке — это своего рода искусство. И если углубляться в эту тему, то можно быстро выйти на «полуолимпиадные» задачи.

К тому же не существует «самого правильного» дополнительного построения. Задачу на координатной сетке всегда можно решить множеством различных способов. Так, в последнем примере можно было провести перпендикуляр вот так:

Координатная сетка второе решение

И даже так (хотя вряд ли этот способ можно назвать рациональным):

Координатная сетка третье решение

Во всех случаях ответ будет один и тот же. Поэтому не бойтесь экспериментировать. И переходите к следующему уроку — к действительно важным и полезным свойствам синусов, косинусов, тангенсов и котангенсов.:)

Смотрите также:

  1. Радианная и градусная мера угла
  2. Как быстро запомнить таблицу синусов и косинусов
  3. Сложные логарифмические неравенства
  4. Сложные выражения с дробями. Порядок действий
  5. Задача B5: площадь фигур с вершиной в начале координат
  6. Обход точек в стереометрии — 2

Понравилась статья? Поделить с друзьями:
  • Как попросить у домового найти пропавшую вещь
  • Как найти корень диска
  • Как найти фенди на алиэкспресс
  • Как составить электронную формулу внешнего электронного слоя
  • Как составить бизнес план для столовой образец