Как найти тангенс угла деленного на 2

Содержание

  1. Что такое тангенс угла и как его найти
  2. Тангенс угла
  3. Тангенс — это отношение.
  4. Как найти тангенс угла (формулы)
  5. Как найти тангенс по клеточкам
  6. Комментарии и отзывы (5)
  7. Тангенс — что это такое (отношение чего к чему) и как его найти (по формулам и по клеточкам)
  8. Как пользоваться таблицей Брадиса.
  9. Решение уравнения tg x = a
  10. Тангенс угла
  11. Тригонометрические функции и их значение в изучении геометрии
  12. Тангенс — это отношение…
  13. Применение функции тангенса для решения задач

Что такое тангенс угла и как его найти

Живущим людям на Земле
всегда хотелось знать,
как путь найти в пустыне, море,
и можно к звёздам ли попасть.

Хотелось труд свой облегчить,
создать машины, чтоб летать.
И чтоб вопросы разрешить,
пришлось про тангенс всем узнать.

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Впервые встречаясь с тригонометрией в восьмом классе на геометрии, школьники оглядываются на свою жизнь, задавая вопрос, насколько пригодится им эта область науки в дальнейшем.

Редко кто задумывается, что раздел математики, позволяющий рассказать о заданном треугольнике всё (найти все его стороны и углы, выделить особенности), позволил в своё время сделать великие открытия.

Тригонометрия, дав возможность строить корабли и самолёты, отправлять человека в космос, создавать приборы для ориентирования на море, в лесу, в пустыне, определять расстояния, не измеряя их непосредственно линейкой, шагами или чем-то иным, помогла упростить жизнь человечества, раскрыть новые горизонты знаний.

Тангенс угла

Первые встречи с тангенсом происходят при изучении прямоугольных треугольников.

В них соотношения сторон, образующих прямой угол (катетов), и стороны, лежащей напротив угла в 90º (гипотенузы), задают важные параметры для изучения углов.

Для понимания связи между объектами рассматриваются отношения различных отрезков. Задавая связь между ними, вводят понятия синуса, косинуса (это что?), тангенса, котангенса.

Важно, что это отвлечённые понятия, не связанные с какими-либо единицами измерения.

Введя функции угла, определяют их свойства. Некоторые полученные формулы могут иметь довольно громоздкий вид. Чтобы избежать затруднённого чтения, вводятся другие объекты.

Так произошло и с тангенсом. Ему посчастливилось получить два определения. Каждое характеризует заданное отношение по-своему. С одной стороны, рассматривается связь между катетами и острыми углами прямоугольного треугольника, с другой – даётся возможность упростить формулы, содержащие синусы и косинусы.

Мало кто задумывается, изучая тангенс в школе, что первоначально он был необходим, чтобы найти касательные линии к заданной кривой. Само понятие возникло от латинского слова tangens, которое означает «трогающий», «касающийся» и является причастием настоящего времени от tangere («трогать», «касаться»).

Тангенс — это отношение.

Итак, есть два определения:

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Это определение удобно использовать при изучении геометрических фигур. Оно даёт возможность, минуя вычисления гипотенузы, находить углы или катеты. Выделяя прямоугольные треугольники в произвольных фигурах, задача по изучению свойств исследуемых объектов становится проще.

Тангенс – это отношение синуса к косинусу.

Благодаря этому определению, многие тригонометрические формулы принимают более удобный вид, становятся легче воспринимаемыми.

» alt=»»>

Вместо «тангенс угла альфа» пишут: tgα. На калькуляторах, в различных программах ЭВМ и ПК закрепилось другое обозначение: tan⁡(α).

Как найти тангенс угла (формулы)

Первое свойство тангенса вытекает из его определения как отношения катетов.

Сумма двух непрямых углов прямоугольного треугольника равна 90º. Поэтому

Так как тангенс – это отношение катетов, то

Учитывая особенности некоторых треугольников (равностороннего, прямоугольного, равнобедренного), а также записанное свойство, была составлена таблица значений тангенса для углов 30º, 45º, 60º.

Задача нахождения других углов по значению тангенса была решена с помощью составления более обширных таблиц. За счёт появления современных вычислительных средств необходимость применения табулированных значений уменьшилась.

Как найти тангенс по клеточкам

Учитывая первое определение, можно определить, как найти тангенс угла по клеточкам. Рисунок дополняется перпендикулярными линиями (строится высота), затем считается количество клеточек в полученном прямоугольном треугольнике на катетах, противолежащем и прилежащем искомому углу, а затем берётся их отношение.

Благодаря второму определению, задачу, как найти тангенс угла, можно решить, минуя таблицы и построение прямоугольных треугольников. Достаточно знать синус и косинус, связанные между собой основным тригонометрическим тождеством:

Из формулы тангенсов, записывающей кратко второе определение

и основного тригонометрического тождества можно понять, как найти тангенс, зная только косинус или синус угла.

Достаточно поделить основное тригонометрическое тождество на квадрат косинуса, подставить формулу тангенса. В результате получится зависимость тангенса и косинуса:

Если выразить в последнем случае косинус, то запишется связь между тангенсом и синусом:

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (5)

Я Очень Люблю Правила, Теоремы, Формулы по Предмету «Математика», «Алгебра».

Прочитал статью и остался один главный вопрос, а собственно без вспомогательных таблиц найти угол В ГРАДУСАХ вообще возможно и есть ли у вас статья, где рассказыввается как это сделать? Спасибо.

Я ни разу не математик, но почему у вас сумма углов прямоугольного треугольника равна 90 градусов. А так все хорошо начиналось. Объясняете хорошо, но после таких ошибок у меня сомнения что информация верная.

Спасибо. Уточнил в тексте, что это сумма двух непрямых углов прямоугольного треугольника.

Пишу стихи. Востребован тангенс для решения жизненных ситуаций поскольку состоит из тех же функций,как-то, касающийся,прилежащий, трогающий. Куда без них денешься.

Источник

Тангенс — что это такое (отношение чего к чему) и как его найти (по формулам и по клеточкам)

Как пользоваться таблицей Брадиса.

На некоторых примерах рассмотрим, как пользоваться таблицей Брадиса.

sin 7° = 0.1219 (косинусы находятся внизу) cos 82° = 0.1392.

sin 3°42′ = 0.0645 (ниже на изображении отмечено красным) cos 80°24′ = 0.1668.

Обратите внимание, все тоже самое верно и при определении значений тангенса и котангенса.

Далее рассмотрим вариант посложнее, когда угол, который представлен в таблице не указан, значит, нужно выбирать более близкое к нему значение (из значений, которые указаны в таблице синусов и косинусов), а на разницу, которая может составлять 1′,2′,3′, берем поправку из минут (желтая графа), как видно на примере:

sin 3°45′=sin 3°42′+3′=0.0645+0.0009=0.0654 либо

sin 3°45′=sin 3°48′−3′=0.0663−0.0009=0.0654

Кроме того, нужно помнить правило: для синуса у поправки неотрицательный знак, а у косинуса неположительный.

cos 80°27′=80°24′+3′=0.1668+(-0.0009)=0.1659 либо

Решение уравнения tg x = a

Обычная форма записи решения:

Более удобная форма записи решения:

Ограничения на число a:

Графическое обоснование решения уравнения tg x = a представлено на рисунке 3.

Частные случаи решения уравнений tg x = a

Уравнение Решение
tg x = – 1
tg x = 0
tg x = 1

Тангенс угла

Первые встречи с тангенсом происходят при изучении прямоугольных треугольников.

В них соотношения сторон, образующих прямой угол (катетов), и стороны, лежащей напротив угла в 90º (гипотенузы), задают важные параметры для изучения углов.

Для понимания связи между объектами рассматриваются отношения различных отрезков. Задавая связь между ними, вводят понятия синуса , косинуса (это что?) , тангенса, котангенса.

Важно, что это отвлечённые понятия, не связанные с какими-либо единицами измерения.

Введя функции угла, определяют их свойства. Некоторые полученные формулы могут иметь довольно громоздкий вид. Чтобы избежать затруднённого чтения, вводятся другие объекты.

Так произошло и с тангенсом. Ему посчастливилось получить два определения. Каждое характеризует заданное отношение по-своему. С одной стороны, рассматривается связь между катетами и острыми углами прямоугольного треугольника, с другой – даётся возможность упростить формулы, содержащие синусы и косинусы.

Мало кто задумывается, изучая тангенс в школе, что первоначально он был необходим, чтобы найти касательные линии к заданной кривой. Само понятие возникло от латинского слова tangens, которое означает «трогающий», «касающийся» и является причастием настоящего времени от tangere («трогать», «касаться»).

Тригонометрические функции и их значение в изучении геометрии

В геометрии особую роль имеют тригонометрические функции, при помощи которых определяют, как относятся между собой стороны и углы прямоугольного треугольника. Конечно, тригонометрия не стоит на месте и со времен Евклида она намного шагнула вперёд и теперь может эти функции могут выражаться через решение дифференциальных уравнений.

В данный момент используются шесть обозначений для основных тригонометрических функций, причем четыре функции из шести, они стоят в ряду последними, можно определять не только с помощью геометрии.

Синус (sin)

Косинус (cos)

Тангенс (tg/tan)

Котангенс (ctg/cot)

Секанс (sec)

Косеканс (cosec/csc) .

Рассмотрим сам прямоугольный треугольник, обозначения его сторон и углов во всех справочниках, как обычно, стандартные, какой бы стороной он не лежал бы на плоскости.

В этом треугольнике различают три угла, обозначаемые α, β, γ, при этом γ всегда 90°. Сторона, лежащая напротив прямого угла γ, называется гипотенузой, она обозначается буквой С. Угол α, с него начинаются все расчеты, находится напротив стороны а / ВС/, называемой противолежащей к этому углу, и сторона b /АС/, которая находится рядом, подлежит к этому углу и называется прилежащей.

По Евклидовой теории, которая верна до сих пор (и будет верна всегда), суммы углов такого треугольника, который находится в одной плоскости, будет равна 180 или числу π. И значение любого угла будут находиться в пределах между 0 и π /2.

Тогда тригонометрические функции можно выразить через размеры сторон этого треугольника. Так как угол α является первым и в греческом алфавите и в нашем треугольнике, начинаем знакомство с функциями через этот угол.

  • Синус α выражается через отношение катета, который лежит напротив этого угла, к гипотенузе нашего треугольника, то есть sin α = а: с.
  • Косинус α выражается через отношение катета, который прилежит к углу α, и гипотенузы с, cos α = b: с. Кстати, sin β = α: с, что позволяет принять то, что sin α равен cos β и следовательно sin β равен cos α.
  • Тангенс α равен частному от отношения противолежащего катета а к катету прилежащему b: tg α = а : b.
  • Котангенс угла α в соответствии равен ctg α = b : а.
  • Секанс угла α составляет отношение гипотенузы треугольника к катету, прилежащему к этому углу sec α = c : b.
  • Косеканс угла α составляет отношение гипотенузы треугольника к катету, который противостоит углу, cosecα = с : a.

Эти функции можно выразить и через окружность путем задания системы координат. Задаем систему координат с центом в точке О. Угол, на который поворачивается отрезок ОА, изображенный на чертеже, будем считать произвольным, назовем его θ.

Тогда тангенсом этого угла θсчитается отношение ординаты точки А на окружности к её абсциссе. Следовательно, если ctg α = b : а, а АС = sin θ, ОС = cos θ, то tgθ = sin θ : cos θ. Аналогично получаем ctg θ = cos θ : sin θ или 1 : tgθ.

Тангенс — это отношение…

Итак, есть два определения:

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Это определение удобно использовать при изучении геометрических фигур. Оно даёт возможность, минуя вычисления гипотенузы, находить углы или катеты. Выделяя прямоугольные треугольники в произвольных фигурах, задача по изучению свойств исследуемых объектов становится проще.

Тангенс – это отношение синуса к косинусу.

Благодаря этому определению, многие тригонометрические формулы принимают более удобный вид, становятся легче воспринимаемыми.

Вместо «тангенс угла альфа» пишут: tgα. На калькуляторах, в различных программах ЭВМ и ПК закрепилось другое обозначение: tan⁡(α).

Применение функции тангенса для решения задач

Что бы научиться пользоваться этой функцией, Нужно попробовать решить несколько примеров по применению этой функции.

Пример: есть два катета ВС = 7 см и АС = 12 см. Нам нужно узнать все остальные данные о треугольнике.

Первая формула, это tg α = а : b. тогда tg α = 7 :12= 0, 5833, далее для нахождения угла α используем таблицы Брадиса. На пересечении градусов и минут находим ближайшее значение угла – 0,5844, соответствующее 30° и 18′.

Находим ближайшую поправку, разную 3′. Отнимаем ее от нашего угла и получаем угол α = 30° 15′. Второй угол находим, исходя из того, что сумма всех углов должна быть не больше 180°, а угол γ = 90° по условию. Тогда угол β = 90° – 30° 15′= 59°45′.

Нам осталось найти гипотенузу с.

Можем найти её через sin α, который равен а: с, тогда с = а : sin α.

Находим sin α через таблицу Брадиса. Ближайшее значение 30° 36′, будет 0,5060, тогда не хватает 3′, Что по полям поправок равно 0,0008. Добавляем это число к найденному: 0, 5060 + 0,0008 = 0,5068. Подставляем это значение в формулу, с = 7:0,5068, с = 13, 8 см. Задача решена.

Можно искать значение углов через значение числа π, которое равно 180°. Тогда наиболее популярные углы, такие, как тангенс 30 градусов, тангенс 0 градусов, тангенс 60 градусов, тангенс 90 градусов, тангенс 45 градусов, тангенс 15 градусов, тангенс 75 градусов можно рассматривать намного проще. Нужно знать, что тангенс 0 градусов равен 0, а тангенс 90 градусов не имеет конкретного значения.

Можно найти тангенс угла 5 градусов, который равен 0, 0875 и добавлять или отнимать от наиболее часто встречающихся углов. Например угол 45 градусов, его тангенс равен 1, тогда тангенс угла 50 градусов будет равен 1, 0875. Тангенс 35 градусов можно рассчитать путем добавления к тангенсу 30 градусов угол 5 градусов, а тангенс 10 градусов это удвоение угла 5 градусов.

Для удобства есть рассчитанная таблица основных углов через значение π.

Значение угла α (градусов) Значение угла α в радианах tg (тангенс)
Тангенс 0 0 0
Тангенс 15 π/12 0.2679
Тангенс 30 π/6 0.5774
Тангенс 45 π/4 1
Тангенс 50 5π/18 5114
Тангенс 60 π/3 1.7321
Тангенс 65 13π/36 2.1445
Тангенс 70 7π/18 2.7475
Тангенс 75 5π/12 3.7321
Тангенс 90 π/2
Тангенс 105 5π/12 -3.7321
Тангенс 120 2π/3 -1.7321
Тангенс 135 3π/4 -1
Тангенс 140 7π/9 -0.8391
Тангенс 150 5π/6 -0.5774
Тангенс 180 π 0
Тангенс 270 3π/2
Тангенс 360 0

Если угол больше 90 градусов, нужно помнить, что функции имеют свойство повторяться, поэтому, если ищем тангенс 145 градусов, тогда 180 – 145 = 35 градусов, но уже со знаком «минус», это можно понять по чертежу окружности, где положительное или отрицательное значение абсциссы и ординаты. Научиться быстро пользоваться таблицами Брадиса и рассчитывать значения треугольника совсем не сложно, главное, уловить суть процесса.

Источник

Тангенс угла. Таблица тангенсов.

Тангенс угла через градусы, минуты и секунды

Тангенс угла через десятичную запись угла

Определение тангенса

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

tg(α) = sin(α)/cos(α)

tg(α) = 1/ctg(α)

Таблица тангенсов в радианах

tg(0°) = 0tg(π/12) = tg(15°) = 0.2679491924tg(π/6) = tg(30°) = 0.5773502692tg(π/4) = tg(45°) = 1tg(π/3) = tg(60°) = 1.732050808tg(5π/12) = tg(75°) = 3.732050808tg(π/2) = tg(90°) = ∞tg(7π/12) = tg(105°) = -3.732050808tg(2π/3) = tg(120°) = -1.732050808tg(3π/4) = tg(135°) = -1tg(5π/6) = tg(150°) = -0.5773502692tg(11π/12) = tg(165°) = -0.2679491924tg(π) = tg(180°) = 0tg(13π/12) = tg(195°) = 0.2679491924tg(7π/6) = tg(210°) = 0.5773502692tg(5π/4) = tg(225°) = 1tg(4π/3) = tg(240°) = 1.732050808tg(17π/12) = tg(255°) = 3.732050808tg(3π/2) = tg(270°) = ∞tg(19π/12) = tg(285°) = -3.732050808tg(5π/3) = tg(300°) = -1.732050808tg(7π/4) = tg(315°) = -1tg(11π/6) = tg(330°) = -0.5773502692tg(23π/12) = tg(345°) = -0.2679491924

Таблица Брадиса тангенсы

tg(0) = 0 tg(120) = -1.732050808 tg(240) = 1.732050808
tg(1) = 0.01745506493 tg(121) = -1.664279482 tg(241) = 1.804047755
tg(2) = 0.03492076949 tg(122) = -1.600334529 tg(242) = 1.880726465
tg(3) = 0.05240777928 tg(123) = -1.539864964 tg(243) = 1.962610506
tg(4) = 0.06992681194 tg(124) = -1.482560969 tg(244) = 2.050303842
tg(5) = 0.08748866353 tg(125) = -1.428148007 tg(245) = 2.144506921
tg(6) = 0.1051042353 tg(126) = -1.37638192 tg(246) = 2.246036774
tg(7) = 0.1227845609 tg(127) = -1.327044822 tg(247) = 2.355852366
tg(8) = 0.1405408347 tg(128) = -1.279941632 tg(248) = 2.475086853
tg(9) = 0.1583844403 tg(129) = -1.234897157 tg(249) = 2.605089065
tg(10) = 0.1763269807 tg(130) = -1.191753593 tg(250) = 2.747477419
tg(11) = 0.1943803091 tg(131) = -1.150368407 tg(251) = 2.904210878
tg(12) = 0.2125565617 tg(132) = -1.110612515 tg(252) = 3.077683537
tg(13) = 0.2308681911 tg(133) = -1.07236871 tg(253) = 3.270852618
tg(14) = 0.2493280028 tg(134) = -1.035530314 tg(254) = 3.487414444
tg(15) = 0.2679491924 tg(135) = -1 tg(255) = 3.732050808
tg(16) = 0.2867453858 tg(136) = -0.9656887748 tg(256) = 4.010780934
tg(17) = 0.3057306815 tg(137) = -0.9325150861 tg(257) = 4.331475874
tg(18) = 0.3249196962 tg(138) = -0.9004040443 tg(258) = 4.704630109
tg(19) = 0.3443276133 tg(139) = -0.8692867378 tg(259) = 5.144554016
tg(20) = 0.3639702343 tg(140) = -0.8390996312 tg(260) = 5.67128182
tg(21) = 0.383864035 tg(141) = -0.8097840332 tg(261) = 6.313751515
tg(22) = 0.4040262258 tg(142) = -0.7812856265 tg(262) = 7.115369722
tg(23) = 0.4244748162 tg(143) = -0.7535540501 tg(263) = 8.144346428
tg(24) = 0.4452286853 tg(144) = -0.726542528 tg(264) = 9.514364454
tg(25) = 0.4663076582 tg(145) = -0.7002075382 tg(265) = 11.4300523
tg(26) = 0.4877325886 tg(146) = -0.6745085168 tg(266) = 14.30066626
tg(27) = 0.5095254495 tg(147) = -0.6494075932 tg(267) = 19.08113669
tg(28) = 0.5317094317 tg(148) = -0.6248693519 tg(268) = 28.63625328
tg(29) = 0.5543090515 tg(149) = -0.600860619 tg(269) = 57.28996163
tg(30) = 0.5773502692 tg(150) = -0.5773502692 tg(270) = ∞
tg(31) = 0.600860619 tg(151) = -0.5543090515 tg(271) = -57.28996163
tg(32) = 0.6248693519 tg(152) = -0.5317094317 tg(272) = -28.63625328
tg(33) = 0.6494075932 tg(153) = -0.5095254495 tg(273) = -19.08113669
tg(34) = 0.6745085168 tg(154) = -0.4877325886 tg(274) = -14.30066626
tg(35) = 0.7002075382 tg(155) = -0.4663076582 tg(275) = -11.4300523
tg(36) = 0.726542528 tg(156) = -0.4452286853 tg(276) = -9.514364454
tg(37) = 0.7535540501 tg(157) = -0.4244748162 tg(277) = -8.144346428
tg(38) = 0.7812856265 tg(158) = -0.4040262258 tg(278) = -7.115369722
tg(39) = 0.8097840332 tg(159) = -0.383864035 tg(279) = -6.313751515
tg(40) = 0.8390996312 tg(160) = -0.3639702343 tg(280) = -5.67128182
tg(41) = 0.8692867378 tg(161) = -0.3443276133 tg(281) = -5.144554016
tg(42) = 0.9004040443 tg(162) = -0.3249196962 tg(282) = -4.704630109
tg(43) = 0.9325150861 tg(163) = -0.3057306815 tg(283) = -4.331475874
tg(44) = 0.9656887748 tg(164) = -0.2867453858 tg(284) = -4.010780934
tg(45) = 1 tg(165) = -0.2679491924 tg(285) = -3.732050808
tg(46) = 1.035530314 tg(166) = -0.2493280028 tg(286) = -3.487414444
tg(47) = 1.07236871 tg(167) = -0.2308681911 tg(287) = -3.270852618
tg(48) = 1.110612515 tg(168) = -0.2125565617 tg(288) = -3.077683537
tg(49) = 1.150368407 tg(169) = -0.1943803091 tg(289) = -2.904210878
tg(50) = 1.191753593 tg(170) = -0.1763269807 tg(290) = -2.747477419
tg(51) = 1.234897157 tg(171) = -0.1583844403 tg(291) = -2.605089065
tg(52) = 1.279941632 tg(172) = -0.1405408347 tg(292) = -2.475086853
tg(53) = 1.327044822 tg(173) = -0.1227845609 tg(293) = -2.355852366
tg(54) = 1.37638192 tg(174) = -0.1051042353 tg(294) = -2.246036774
tg(55) = 1.428148007 tg(175) = -0.08748866353 tg(295) = -2.144506921
tg(56) = 1.482560969 tg(176) = -0.06992681194 tg(296) = -2.050303842
tg(57) = 1.539864964 tg(177) = -0.05240777928 tg(297) = -1.962610506
tg(58) = 1.600334529 tg(178) = -0.03492076949 tg(298) = -1.880726465
tg(59) = 1.664279482 tg(179) = -0.01745506493 tg(299) = -1.804047755
tg(60) = 1.732050808 tg(180) = 0 tg(300) = -1.732050808
tg(61) = 1.804047755 tg(181) = 0.01745506493 tg(301) = -1.664279482
tg(62) = 1.880726465 tg(182) = 0.03492076949 tg(302) = -1.600334529
tg(63) = 1.962610506 tg(183) = 0.05240777928 tg(303) = -1.539864964
tg(64) = 2.050303842 tg(184) = 0.06992681194 tg(304) = -1.482560969
tg(65) = 2.144506921 tg(185) = 0.08748866353 tg(305) = -1.428148007
tg(66) = 2.246036774 tg(186) = 0.1051042353 tg(306) = -1.37638192
tg(67) = 2.355852366 tg(187) = 0.1227845609 tg(307) = -1.327044822
tg(68) = 2.475086853 tg(188) = 0.1405408347 tg(308) = -1.279941632
tg(69) = 2.605089065 tg(189) = 0.1583844403 tg(309) = -1.234897157
tg(70) = 2.747477419 tg(190) = 0.1763269807 tg(310) = -1.191753593
tg(71) = 2.904210878 tg(191) = 0.1943803091 tg(311) = -1.150368407
tg(72) = 3.077683537 tg(192) = 0.2125565617 tg(312) = -1.110612515
tg(73) = 3.270852618 tg(193) = 0.2308681911 tg(313) = -1.07236871
tg(74) = 3.487414444 tg(194) = 0.2493280028 tg(314) = -1.035530314
tg(75) = 3.732050808 tg(195) = 0.2679491924 tg(315) = -1
tg(76) = 4.010780934 tg(196) = 0.2867453858 tg(316) = -0.9656887748
tg(77) = 4.331475874 tg(197) = 0.3057306815 tg(317) = -0.9325150861
tg(78) = 4.704630109 tg(198) = 0.3249196962 tg(318) = -0.9004040443
tg(79) = 5.144554016 tg(199) = 0.3443276133 tg(319) = -0.8692867378
tg(80) = 5.67128182 tg(200) = 0.3639702343 tg(320) = -0.8390996312
tg(81) = 6.313751515 tg(201) = 0.383864035 tg(321) = -0.8097840332
tg(82) = 7.115369722 tg(202) = 0.4040262258 tg(322) = -0.7812856265
tg(83) = 8.144346428 tg(203) = 0.4244748162 tg(323) = -0.7535540501
tg(84) = 9.514364454 tg(204) = 0.4452286853 tg(324) = -0.726542528
tg(85) = 11.4300523 tg(205) = 0.4663076582 tg(325) = -0.7002075382
tg(86) = 14.30066626 tg(206) = 0.4877325886 tg(326) = -0.6745085168
tg(87) = 19.08113669 tg(207) = 0.5095254495 tg(327) = -0.6494075932
tg(88) = 28.63625328 tg(208) = 0.5317094317 tg(328) = -0.6248693519
tg(89) = 57.28996163 tg(209) = 0.5543090515 tg(329) = -0.600860619
tg(90) = ∞ tg(210) = 0.5773502692 tg(330) = -0.5773502692
tg(91) = -57.28996163 tg(211) = 0.600860619 tg(331) = -0.5543090515
tg(92) = -28.63625328 tg(212) = 0.6248693519 tg(332) = -0.5317094317
tg(93) = -19.08113669 tg(213) = 0.6494075932 tg(333) = -0.5095254495
tg(94) = -14.30066626 tg(214) = 0.6745085168 tg(334) = -0.4877325886
tg(95) = -11.4300523 tg(215) = 0.7002075382 tg(335) = -0.4663076582
tg(96) = -9.514364454 tg(216) = 0.726542528 tg(336) = -0.4452286853
tg(97) = -8.144346428 tg(217) = 0.7535540501 tg(337) = -0.4244748162
tg(98) = -7.115369722 tg(218) = 0.7812856265 tg(338) = -0.4040262258
tg(99) = -6.313751515 tg(219) = 0.8097840332 tg(339) = -0.383864035
tg(100) = -5.67128182 tg(220) = 0.8390996312 tg(340) = -0.3639702343
tg(101) = -5.144554016 tg(221) = 0.8692867378 tg(341) = -0.3443276133
tg(102) = -4.704630109 tg(222) = 0.9004040443 tg(342) = -0.3249196962
tg(103) = -4.331475874 tg(223) = 0.9325150861 tg(343) = -0.3057306815
tg(104) = -4.010780934 tg(224) = 0.9656887748 tg(344) = -0.2867453858
tg(105) = -3.732050808 tg(225) = 1 tg(345) = -0.2679491924
tg(106) = -3.487414444 tg(226) = 1.035530314 tg(346) = -0.2493280028
tg(107) = -3.270852618 tg(227) = 1.07236871 tg(347) = -0.2308681911
tg(108) = -3.077683537 tg(228) = 1.110612515 tg(348) = -0.2125565617
tg(109) = -2.904210878 tg(229) = 1.150368407 tg(349) = -0.1943803091
tg(110) = -2.747477419 tg(230) = 1.191753593 tg(350) = -0.1763269807
tg(111) = -2.605089065 tg(231) = 1.234897157 tg(351) = -0.1583844403
tg(112) = -2.475086853 tg(232) = 1.279941632 tg(352) = -0.1405408347
tg(113) = -2.355852366 tg(233) = 1.327044822 tg(353) = -0.1227845609
tg(114) = -2.246036774 tg(234) = 1.37638192 tg(354) = -0.1051042353
tg(115) = -2.144506921 tg(235) = 1.428148007 tg(355) = -0.08748866353
tg(116) = -2.050303842 tg(236) = 1.482560969 tg(356) = -0.06992681194
tg(117) = -1.962610506 tg(237) = 1.539864964 tg(357) = -0.05240777928
tg(118) = -1.880726465 tg(238) = 1.600334529 tg(358) = -0.03492076949
tg(119) = -1.804047755 tg(239) = 1.664279482 tg(359) = -0.01745506493

Похожие калькуляторы

tg(0°)=tg(360°)=0 точная, но чуть более сложная таблица ( с точностью до 1′) здесь.

Углы
1° — 90°

Углы
91 ° — 180°

Углы
181° — 270°

Углы
271 ° — 360°

Угол

tg

tg= 0.0174
tg= 0.0349
tg= 0.0524
tg= 0.0699
tg= 0.0874
tg= 0.1051
tg= 0.1227
tg= 0.1405
tg= 0.1583
10° tg= 0.1763
11° tg= 0.1943
12° tg= 0.2125
13° tg= 0.2308
14° tg= 0.2493
15° tg= 0.2679
16° tg= 0.2867
17° tg= 0.3057
18° tg= 0.3249
19° tg= 0.3443
20° tg= 0.364
21° tg= 0.3839
22° tg= 0.404
23° tg= 0.4245
24° tg= 0.4452
25° tg= 0.4663
26° tg= 0.4877
27° tg= 0.5095
28° tg= 0.5317
29° tg= 0.5543
30° tg= 0.5774
31° tg= 0.6009
32° tg= 0.6249
33° tg= 0.6494
34° tg= 0.6745
35° tg= 0.7002
36° tg= 0.7265
37° tg= 0.7535
38° tg= 0.7813
39° tg= 0.8098
40° tg= 0.8390
41° tg= 0.8693
42° tg= 0.9004
43° tg= 0.9325
44° tg= 0.9657
45° tg= 1
46° tg= 1.0355
47° tg= 1.0724
48° tg= 1.1106
49° tg= 1.1504
50° tg= 1.1918
51° tg= 1.2349
52° tg= 1.2799
53° tg= 1.327
54° tg= 1.3764
55° tg= 1.4281
56° tg= 1.4826
57° tg= 1.5399
58° tg= 1.6003
59° tg= 1.6643
60° tg= 1.7321
61° tg= 1.804
62° tg= 1.8807
63° tg= 1.9626
64° tg= 2.0503
65° tg= 2.1445
66° tg= 2.2460
67° tg= 2.3559
68° tg= 2.475
69° tg= 2.605
70° tg= 2.7475
71° tg= 2.9042
72° tg= 3.0777
73° tg= 3.2709
74° tg= 3.4874
75° tg= 3.732
76° tg= 4.0108
77° tg= 4.3315
78° tg= 4.7046
79° tg= 5.1446
80° tg= 5.6713
81° tg= 6.3138
82° tg= 7.1154
83° tg= 8.1443
84° tg= 9.5144
85° tg= 11.4301
86° tg= 14.3007
87° tg= 19.0811
88° tg= 28.6363
89° tg= 57.29
90° tg не определен

Угол

tg

91° tg= -57.29
92° tg= -28.6363
93° tg= -19.0811
94° tg= -14.3007
95° tg= -11.4301
96° tg= -9.5144
97° tg= -8.1443
98° tg= -7.1154
99° tg= -6.3138
100° tg= -5.6713
101° tg= -5.1446
102° tg= -4.7046
103° tg= -4.3315
104° tg= -4.0108
105° tg= -3.732
106° tg= -3.4874
107° tg= -3.2709
108° tg= -3.0777
109° tg= -2.9042
110° tg= -2.7475
111° tg= -2.605
112° tg= -2.475
113° tg= -2.3559
114° tg= -2.2460
115° tg= -2.1445
116° tg= -2.0503
117° tg= -1.9626
118° tg= -1.8807
119° tg= -1.804
120° tg= -1.7321
121° tg= -1.6643
122° tg= -1.6003
123° tg= -1.5399
124° tg= -1.4826
125° tg= -1.4281
126° tg= -1.3764
127° tg= -1.327
128° tg= -1.2799
129° tg= -1.2349
130° tg= -1.1918
131° tg= -1.1504
132° tg= -1.1106
133° tg= -1.0724
134° tg= -1.0355
135° tg= -1
136° tg= -0.9657
137° tg= -0.9325
138° tg= -0.9004
139° tg= -0.8693
140° tg= -0.8390
141° tg= -0.8098
142° tg= -0.7813
143° tg= -0.7535
144° tg= -0.7265
145° tg= -0.7002
146° tg= -0.6745
147° tg= -0.6494
148° tg= -0.6249
149° tg= -0.6009
150° tg= -0.5774
151° tg= -0.5543
152° tg= -0.5317
153° tg= -0.5095
154° tg= -0.4877
155° tg= -0.4663
156° tg= -0.4452
157° tg= -0.4245
158° tg= -0.404
159° tg= -0.3839
160° tg= -0.364
161° tg= -0.3443
162° tg= -0.3249
163° tg= -0.3057
164° tg= -0.2867
165° tg= -0.2679
166° tg= -0.2493
167° tg= -0.2308
168° tg= -0.2125
169° tg= -0.1943
170° tg= -0.1763
171° tg= -0.1583
172° tg= -0.1405
173° tg= -0.1227
174° tg= -0.1051
175° tg= -0.0874
176° tg= -0.0699
177° tg= -0.0524
178° tg= -0.0349
179° tg= -0.0174
180° tg= 0

Угол

tg

181° tg= 0.0174
182° tg= 0.0349
183° tg= 0.0524
184° tg= 0.0699
185° tg= 0.0874
186° tg= 0.1051
187° tg= 0.1227
188° tg= 0.1405
189° tg= 0.1583
190° tg= 0.1763
191° tg= 0.1943
192° tg= 0.2125
193° tg= 0.2308
194° tg= 0.2493
195° tg= 0.2679
196° tg= 0.2867
197° tg= 0.3057
198° tg= 0.3249
199° tg= 0.3443
200° tg= 0.364
201° tg= 0.3839
202° tg= 0.404
203° tg= 0.4245
204° tg= 0.4452
205° tg= 0.4663
206° tg= 0.4877
207° tg= 0.5095
208° tg= 0.5317
209° tg= 0.5543
210° tg= 0.5774
211° tg= 0.6009
212° tg= 0.6249
213° tg= 0.6494
214° tg= 0.6745
215° tg= 0.7002
216° tg= 0.7265
217° tg= 0.7535
218° tg= 0.7813
219° tg= 0.8098
220° tg= 0.8390
221° tg= 0.8693
222° tg= 0.9004
223° tg= 0.9325
224° tg= 0.9657
225° tg= 1
226° tg= 1.0355
227° tg= 1.0724
228° tg= 1.1106
229° tg= 1.1504
230° tg= 1.1918
231° tg= 1.2349
232° tg= 1.2799
233° tg= 1.327
234° tg= 1.3764
235° tg= 1.4281
236° tg= 1.4826
237° tg= 1.5399
238° tg= 1.6003
239° tg= 1.6643
240° tg= 1.7321
241° tg= 1.804
242° tg= 1.8807
243° tg= 1.9626
244° tg= 2.0503
245° tg= 2.1445
246° tg= 2.2460
247° tg= 2.3559
248° tg= 2.475
249° tg= 2.605
250° tg= 2.7475
251° tg= 2.9042
252° tg= 3.0777
253° tg= 3.2709
254° tg= 3.4874
255° tg= 3.732
256° tg= 4.0108
257° tg= 4.3315
258° tg= 4.7046
259° tg= 5.1446
260° tg= 5.6713
261° tg= 6.3138
262° tg= 7.1154
263° tg= 8.1443
264° tg= 9.5144
265° tg= 11.4301
266° tg= 14.3007
267° tg= 19.0811
268° tg= 28.6363
269° tg= 57.29
270° tg не определен

Угол

tg

271° tg= -57.29
272° tg= -28.6363
273° tg= -19.0811
274° tg= -14.3007
275° tg= -11.4301
276° tg= -9.5144
277° tg= -8.1443
278° tg= -7.1154
279° tg= -6.3138
280° tg= -5.6713
281° tg= -5.1446
282° tg= -4.7046
283° tg= -4.3315
284° tg= -4.0108
285° tg= -3.732
286° tg= -3.4874
287° tg= -3.2709
288° tg= -3.0777
289° tg= -2.9042
290° tg= -2.7475
291° tg= -2.605
292° tg= -2.475
293° tg= -2.3559
294° tg= -2.2460
295° tg= -2.1445
296° tg= -2.0503
297° tg= -1.9626
298° tg= -1.8807
299° tg= -1.804
300° tg= -1.7321
301° tg= -1.6643
302° tg= -1.6003
303° tg= -1.5399
304° tg= -1.4826
305° tg= -1.4281
306° tg= -1.3764
307° tg= -1.327
308° tg= -1.2799
309° tg= -1.2349
310° tg= -1.1918
311° tg= -1.1504
312° tg= -1.1106
313° tg= -1.0724
314° tg= -1.0355
315° tg= -1
316° tg= -0.9657
317° tg= -0.9325
318° tg= -0.9004
319° tg= -0.8693
320° tg= -0.8390
321° tg= -0.8098
322° tg= -0.7813
323° tg= -0.7535
324° tg= -0.7265
325° tg= -0.7002
326° tg= -0.6745
327° tg= -0.6494
328° tg= -0.6249
329° tg= -0.6009
330° tg= -0.5774
331° tg= -0.5543
332° tg= -0.5317
333° tg= -0.5095
334° tg= -0.4877
335° tg= -0.4663
336° tg= -0.4452
337° tg= -0.4245
338° tg= -0.404
339° tg= -0.3839
340° tg= -0.364
341° tg= -0.3443
342° tg= -0.3249
343° tg= -0.3057
344° tg= -0.2867
345° tg= -0.2679
346° tg= -0.2493
347° tg= -0.2308
348° tg= -0.2125
349° tg= -0.1943
350° tg= -0.1763
351° tg= -0.1583
352° tg= -0.1405
353° tg= -0.1227
354° tg= -0.1051
355° tg= -0.0874
356° tg= -0.0699
357° tg= -0.0524
358° tg= -0.0349
359° tg= -0.0174
360° tg= 0

Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π).
Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций

Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π). Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций.

Доп. Инфо:

  1. Таблица косинусов углов от 0° — 360°. Углы с шагом в 1°. Таблица значений косинусов.
  2. Таблица синусов углов от 0° — 360°. Углы с шагом в 1°. Таблица значений синусов.
  3. Таблица синусов, она-же косинусов точная.
  4. Таблица тангенсов углов углов от 0° — 360°. Углы с шагом в 1°. Таблица значений тангенса, tg
  5. Таблица котангенсов углов углов от 0° — 360°. Углы с шагом в 1°. Таблица значений котангенса, ctg
  6. Таблица тангенсов, она же котангенсов точная.
  7. Углы 0°,30°,45°,60°,90°,180°,270°,360°,(π/6,π/4,π/3,π/2,π,3π/2,2π).
    Синусы, косинусы, тангенсы и котангенсы. Таблица значений тригонометрических функций.
  8. Знаки тригонометрических функций синус, косинус, тангенс и котангенс по четвертям в тригонометрическом круге.
  9. Определение и численные соотношения между единицами измерения углов в РФ.
    Тысячные, угловые градусы, минуты, секунды, радианы, обороты.
  10. Таблица соответствия угловых градусов, радиан, оборотов, тысячных (артиллерийских РФ). 0-360 градусов, 0-2π радиан.
Определение тангенса угла

Тангенсом угла в прямоугольном треугольнике называют отношение противолежащего катета к прилежащему.

Катетами являются стороны, которые образуют прямой угол в треугольнике, соответственно, гипотенузой является третья (самая длинная) сторона.

Для простоты запоминания можно дать такое определение: тангенс угла — это отношение дальнего от рассматриваемого угла катета к ближнему катету.

1.png

В случае с рисунком, описанным выше: tg⁡α=abtgalpha=frac{a}{b}

Тангенс можно найти напрямую пользуясь данной формулой, а можно и через тригонометрические тождества. Разберем подробнее задачи.

Задача 1

В прямоугольном треугольнике катеты равны 6 см6text{ см} и 8 см8text{ см}. Найдите тангенс угла, близлежащего к меньшей стороне.

Решение

a=8a=8
b=6b=6

tg⁡α=ab=86≈1.33tgalpha=frac{a}{b}=frac{8}{6}approx1.33

Ответ

1.331.33

Формулу:

tg⁡α=abtgalpha=frac{a}{b}

Можно записать в следующем виде:

tg⁡α=sin⁡αcos⁡αtgalpha=frac{sinalpha}{cosalpha}

Проверим истинность данного выражения. Подставим вместо синуса и косинуса их определения:

tg⁡α=sin⁡αcos⁡α=acbc=abtgalpha=frac{sinalpha}{cosalpha}=frac{frac{a}{c}}{frac{b}{c}}=frac{a}{b}

Получили первичное равенство, значит выражение для тангенса через отношение синуса к косинусу верно.

Решим задачу, пользуясь этой формулой.

Задача 2

По условию задачи известен косинус угла, равный 32frac{sqrt{3}}{2} и синус того же угла, равный 12frac{1}{2}. Найдите тангенс данного угла.

Решение

cos⁡α=32cosalpha=frac{sqrt{3}}{2}

sin⁡α=12sinalpha=frac{1}{2}

tg⁡α=sin⁡αcos⁡α=1232=13tgalpha=frac{sinalpha}{cosalpha}=frac{frac{1}{2}}{frac{sqrt{3}}{2}}=frac{1}{sqrt{3}}

Ответ

13frac{1}{sqrt{3}}

Еще одно тождество помогает решить задачи, связанные с тангенсом:

1+tg⁡2α=1cos⁡2α1+tg^2alpha=frac{1}{cos^2alpha}

Оно появляется путем деление каждого слагаемого основного тождества тригонометрии на квадрат косинуса.

Задача 3

Известен квадрат косинуса угла в прямоугольном треугольнике, равный 0.80.8. Нужно найти тангенс этого угла.

Решение

cos⁡2α=0.8cos^2alpha=0.8

1+tg⁡2α=1cos⁡2α1+tg^2alpha=frac{1}{cos^2alpha}

1+tg⁡2α=10.81+tg^2alpha=frac{1}{0.8}

1+tg⁡2α=1.251+tg^2alpha=1.25

tg⁡2α=0.25tg^2alpha=0.25

tg⁡α=0.25tgalpha=sqrt{0.25}

tg⁡α=0.5tgalpha=0.5

Ответ

0.50.5

У вас есть трудности с вычислением тангенса? Можете заказать задачу по математике у наших экспертов!

Тест по теме “Вычисление тангенса”

Что такое тангенс угла и как его найти

Живущим людям на Земле
всегда хотелось знать,
как путь найти в пустыне, море,
и можно к звёздам ли попасть.

Хотелось труд свой облегчить,
создать машины, чтоб летать.
И чтоб вопросы разрешить,
пришлось про тангенс всем узнать.

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Впервые встречаясь с тригонометрией в восьмом классе на геометрии, школьники оглядываются на свою жизнь, задавая вопрос, насколько пригодится им эта область науки в дальнейшем.

Тангенс

Редко кто задумывается, что раздел математики, позволяющий рассказать о заданном треугольнике всё (найти все его стороны и углы, выделить особенности), позволил в своё время сделать великие открытия.

Тригонометрия, дав возможность строить корабли и самолёты, отправлять человека в космос, создавать приборы для ориентирования на море, в лесу, в пустыне, определять расстояния, не измеряя их непосредственно линейкой, шагами или чем-то иным, помогла упростить жизнь человечества, раскрыть новые горизонты знаний.

Тангенс угла

Первые встречи с тангенсом происходят при изучении прямоугольных треугольников.

В них соотношения сторон, образующих прямой угол (катетов), и стороны, лежащей напротив угла в 90º (гипотенузы), задают важные параметры для изучения углов.

Для понимания связи между объектами рассматриваются отношения различных отрезков. Задавая связь между ними, вводят понятия синуса, косинуса (это что?), тангенса, котангенса.

Важно, что это отвлечённые понятия, не связанные с какими-либо единицами измерения.

Введя функции угла, определяют их свойства. Некоторые полученные формулы могут иметь довольно громоздкий вид. Чтобы избежать затруднённого чтения, вводятся другие объекты.

Так произошло и с тангенсом. Ему посчастливилось получить два определения. Каждое характеризует заданное отношение по-своему. С одной стороны, рассматривается связь между катетами и острыми углами прямоугольного треугольника, с другой – даётся возможность упростить формулы, содержащие синусы и косинусы.

Мало кто задумывается, изучая тангенс в школе, что первоначально он был необходим, чтобы найти касательные линии к заданной кривой. Само понятие возникло от латинского слова tangens, которое означает «трогающий», «касающийся» и является причастием настоящего времени от tangere («трогать», «касаться»).

Тангенс — это отношение…

Итак, есть два определения:

  1. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

    Это определение удобно использовать при изучении геометрических фигур. Оно даёт возможность, минуя вычисления гипотенузы, находить углы или катеты. Выделяя прямоугольные треугольники в произвольных фигурах, задача по изучению свойств исследуемых объектов становится проще.

  2. Тангенс – это отношение синуса к косинусу.

    Благодаря этому определению, многие тригонометрические формулы принимают более удобный вид, становятся легче воспринимаемыми.

Приняты обозначения:

Вместо «тангенс угла альфа» пишут: tgα. На калькуляторах, в различных программах ЭВМ и ПК закрепилось другое обозначение: tan⁡(α).

Как найти тангенс угла (формулы)

Первое свойство тангенса вытекает из его определения как отношения катетов.

Треугольник

Сумма двух непрямых углов прямоугольного треугольника равна 90º. Поэтому

Сумма углов

Так как тангенс – это отношение катетов, то

Отношение катетов

Получается, что

Результат вычислений

Учитывая особенности некоторых треугольников (равностороннего, прямоугольного, равнобедренного), а также записанное свойство, была составлена таблица значений тангенса для углов 30º, 45º, 60º.

В частности,

Углы

Задача нахождения других углов по значению тангенса была решена с помощью составления более обширных таблиц. За счёт появления современных вычислительных средств необходимость применения табулированных значений уменьшилась.

Как найти тангенс по клеточкам

Учитывая первое определение, можно определить, как найти его по клеточкам. Рисунок дополняется перпендикулярными линиями (строится высота), затем считается количество клеточек в полученном прямоугольном треугольнике на катетах, противолежащем и прилежащем искомому углу, а затем берётся их отношение.

Благодаря второму определению, задачу, как найти тангенс угла, можно решить, минуя таблицы и построение прямоугольных треугольников. Достаточно знать синус и косинус, связанные между собой основным тригонометрическим тождеством:

Тригонометрическое тождество

Из формулы тангенсов, записывающей кратко второе определение

Формула

и основного тригонометрического тождества можно понять, как найти тангенс, зная только косинус или синус угла.

Достаточно поделить основное тригонометрическое тождество на квадрат косинуса, подставить формулу тангенса. В результате получится его зависимость от косинуса:

Зависимость

Если выразить в последнем случае косинус, то запишется связь между тангенсом и синусом:

Синус

Понравилась статья? Поделить с друзьями:
  • Как найти производную привести функцию
  • Как найти площадь параллелограмма когда есть периметр
  • Как найти лодку в геншине
  • Как найти пароль от эпик геймс
  • Тиндер найти человека по номеру телефона как