Как найти тангенс угла наклона прямой


Загрузить PDF


Загрузить PDF

Если вы умеете вычислять угловые коэффициенты (тангенс угла наклона) прямых, то на основании этих коэффициентов можно узнать другие параметры. Например, выяснить, параллельны ли прямые или же перпендикулярны, найти их точку пересечения и многие другие величины. Вычисление углового коэффициента — довольно простая задача. Прочитайте эту статью, чтобы узнать, как это сделать.

  1. Изображение с названием Find the Slope of a Line Step 1

    1

    Угловой коэффициент (тангенс угла наклона) определяется как отношение изменения координаты «у» к изменению координаты «х».

    Реклама

  1. Изображение с названием Find the Slope of a Line Step 2

    1

    Рассмотрите любую прямую линию. Убедитесь, что линия прямая, так как угловой коэффициент вычисляется только для прямых линий.

  2. Изображение с названием Find the Slope of a Line Step 3

    2

    Выберите любые две точки, лежащие на прямой. Запишите их координаты в виде (х,у). Не имеет значения, какие точки вы выберете (главное, чтобы они были разными и лежали на одной прямой).

  3. Изображение с названием Find the Slope of a Line Step 4

    3

    Дайте обозначение выбранным точкам. Не имеет значения, какую из них вы обозначите первой, а какую – второй (главное — на протяжении всего процесса вычисления строго придерживаться выбранного обозначения). Координаты первой точки запишем как x1 и y1, а координаты второй точки как x2 и y2.

  4. Изображение с названием Find the Slope of a Line Step 5

    4

    Подставьте координаты точек в формулу для вычисления углового коэффициента, приведенную выше.

  5. Изображение с названием Find the Slope of a Line Step 6

    5

    Вычтите две координаты «у».

  6. Изображение с названием Find the Slope of a Line Step 7

    6

    Вычтите две координаты «х».

  7. Изображение с названием Find the Slope of a Line Step 8

    7

    Разделите результат разности координат «у» на результат разности координат «х». Сократите дробь, если возможно.

  8. Изображение с названием Find the Slope of a Line Step 9

    8

    Проверьте полученный результат.

    • Прямые, идущие вверх слева направо, всегда имеют положительный угловой коэффициент (даже если это дробь).
    • Прямые, идущие вниз слева направо, всегда имеют отрицательный угловой коэффициент (даже если это дробь).

    Реклама

Пример

  1. Дана прямая с точками A и B, лежащими на ней.
  2. Координаты точек: A(-2,0) и B(0,-2)
  3. (y2-y1): -2-0=-2; Изменение координаты «у» = -2
  4. (x2-x1): 0-(-2)=2; Изменение координаты «х» = 2
  5. Угловой коэффициент данной прямой равен -1.

Советы

  • Как только вы обозначили координаты точек на прямой через (х1,у1) и (у1,у2), не меняйте эти обозначения, или вы получите неверный ответ.
  • Вы нашли «m» в линейном уравнении вида y=mx+b, где «у» — координата «у», «m» – угловой коэффициент, «х» — координата «х», «b» – смещение прямой по оси Y (или значение координаты «у» при х=0).
  • Для получения ответов на возникающие вопросы прочитайте школьный учебник или обратитесь к учителю.

Реклама

Предупреждения

  • Не путайте формулу для вычисления углового коэффициента (тангенса угла наклона) прямой с любой другой формулой, например, с формулой для вычисления расстояния или формулой для вычисления средней точки.

Реклама

Что вам понадобится

  • Миллиметровка (возможно).
  • Координатная плоскость или прямая с координатами двух точек, лежащих на ней.
  • Формула для вычисления углового коэффициента (тангенса угла наклона) прямой.
  • Карандаш, бумага, линейка, калькулятор.
  • Прямая.
  • Координаты «х».
  • Координаты «у».

Об этой статье

Эту страницу просматривали 103 532 раза.

Была ли эта статья полезной?

Уравнение любой прямой в общем виде задается формулой:
$$y=kx+b;$$
Где (k) — это коэффициент наклона прямой, а (b) — свободный член.

Уравнение прямой в условии задачи выглядит так (y=-4). Сопоставьте это уравнение с общим видом прямой, и увидите, что у прямой из условия (k=0), а (b=-4).

Мы получили, что коэффициент наклона прямой из условия равен нулю! Значит у любой прямой, которая будет ей параллельна, коэффициент наклона тоже будет равен нулю. А раз коэффициент наклона ноль, то и производная тоже должна быть ноль.

Переформулируем условие задачи: необходимо найти на графике функции (f(x)) точки, в которых производная равна нулю.

Производная равна нулю в точках минимума и максимума: в «вершинах» и «впадинах». Нам остается только посчитать их количество на графике. Я их отметил красными точками:

Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.

Угол наклона прямой и угловой коэффициент прямой

Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси О х с их угловым коэффициентом. Допустим, что задана декартова система координат О х на плоскости.

Угол наклона прямой к оси О х , расположенный в декартовой системе координат О х у на плоскости, это угол, который отсчитывается от положительного направления О х к прямой против часовой стрелки.

Когда прямая параллельна О х или происходит совпадение в ней, угол наклона равен 0 . Тогда угол наклона заданной прямой α определен на промежутке [ 0 , π ) .

Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.

Стандартное обозначение буквой k . Из определения получим, что k = t g α . Когда прямая параллельна Ох, говорят, что угловой коэффициент не существует, так как он обращается в бесконечность.

Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.

Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.

Посчитать угловой коэффициент прямой при угле наклона равном 120 ° .

Из условия имеем, что α = 120 ° . По определению необходимо вычислить угловой коэффициент. Найдем его из формулы k = t g α = 120 = — 3 .

Если известен угловой коэффициент, а необходимо найти угол наклона к оси абсцисс, тогда следует учитывать значение углового коэффициента. Если k > 0 , тогда угол прямой острый и находится по формуле α = a r c t g k . Если k 0 , тогда угол тупой, что дает право определить его по формуле α = π — a r c t g k .

Определить угол наклона заданной прямой к О х при угловом коэффициенте равном 3 .

Из условия имеем, что угловой коэффициент положительный, а это значит, что угол наклона к О х меньше 90 градусов. Вычисления производятся по формуле α = a r c t g k = a r c t g 3 .

Ответ: α = a r c t g 3 .

Найти угол наклона прямой к оси О х , если угловой коэффициент = — 1 3 .

Если принять за обозначение углового коэффициента букву k , тогда α является углом наклона к заданной прямой по положительному направлению О х . Отсюда k = — 1 3 0 , тогда необходимо применить формулу α = π — a r c t g k При подстановке получим выражение:

α = π — a r c t g — 1 3 = π — a r c t g 1 3 = π — π 6 = 5 π 6 .

Ответ: 5 π 6 .

Уравнение с угловым коэффициентом

Уравнение вида y = k · x + b , где k является угловым коэффициентом, а b некоторым действительным числом, называют уравнением прямой с угловым коэффициентом. Уравнение характерно для любой прямой, непараллельной оси О у .

Если подробно рассмотреть прямую на плоскости в фиксированной системе координат, которая задана уравнением с угловым коэффициентом, который имеет вид y = k · x + b . В данном случае значит, что уравнению соответствуют координаты любой точки прямой. Если подставить координаты точки М , M 1 ( x 1 , y 1 ) , в уравнение y = k · x + b , тогда в этом случае прямая будет проходить через эту точку, иначе точка не принадлежит прямой.

Задана прямая с угловым коэффициентом y = 1 3 x — 1 . Вычислить, принадлежат ли точки M 1 ( 3 , 0 ) и M 2 ( 2 , — 2 ) заданной прямой.

Необходимо подставить координаты точки M 1 ( 3 , 0 ) в заданное уравнение, тогда получим 0 = 1 3 · 3 — 1 ⇔ 0 = 0 . Равенство верно, значит точка принадлежит прямой.

Если подставим координаты точки M 2 ( 2 , — 2 ) , тогда получим неверное равенство вида — 2 = 1 3 · 2 — 1 ⇔ — 2 = — 1 3 . Можно сделать вывод, что точка М 2 не принадлежит прямой.

Ответ: М 1 принадлежит прямой, а М 2 нет.

Известно, что прямая определена уравнением y = k · x + b , проходящим через M 1 ( 0 , b ) , при подстановке получили равенство вида b = k · 0 + b ⇔ b = b . Отсюда можно сделать вывод, что уравнение прямой с угловым коэффициентом y = k · x + b на плоскости определяет прямую, которая проходит через точку 0 , b . Она образует угол α с положительным направлением оси О х , где k = t g α .

Рассмотрим на примере прямую, определенную при помощи углового коэффициента, заданного по виду y = 3 · x — 1 . Получим, что прямая пройдет через точку с координатой 0 , — 1 с наклоном в α = a r c t g 3 = π 3 радиан по положительному направлению оси О х . Отсюда видно, что коэффициент равен 3 .

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку

Необходимо решить задачу, где необходимо получить уравнение прямой с заданным угловым коэффициентом, проходящим через точку M 1 ( x 1 , y 1 ) .

Равенство y 1 = k · x + b можно считать справедливым, так как прямая проходит через точку M 1 ( x 1 , y 1 ) . Чтобы убрать число b, необходимо из левой и правой частей вычесть уравнение с угловым коэффициентом. Из этого следует, что y — y 1 = k · ( x — x 1 ) . Данное равенство называют уравнением прямой с заданным угловым коэффициентом k, проходящая через координаты точки M 1 ( x 1 , y 1 ) .

Составьте уравнение прямой, проходящей через точку М 1 с координатами ( 4 , — 1 ) , с угловым коэффициентом равным — 2 .

Решение

По условию имеем, что x 1 = 4 , y 1 = — 1 , k = — 2 . Отсюда уравнение прямой запишется таким образом y — y 1 = k · ( x — x 1 ) ⇔ y — ( — 1 ) = — 2 · ( x — 4 ) ⇔ y = — 2 x + 7 .

Ответ: y = — 2 x + 7 .

Написать уравнение прямой с угловым коэффициентом, которое проходит через точку М 1 с координатами ( 3 , 5 ) , параллельную прямой y = 2 x — 2 .

По условию имеем, что параллельные прямые имеют совпадающие углы наклона, отсюда значит, что угловые коэффициенты являются равными. Чтобы найти угловой коэффициент из данного уравнения, необходимо вспомнить его основную формулу y = 2 x — 2 , отсюда следует, что k = 2 . Составляем уравнение с угловым коэффициентом и получаем:

y — y 1 = k · ( x — x 1 ) ⇔ y — 5 = 2 · ( x — 3 ) ⇔ y = 2 x — 1

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно

Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y = k · x + b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.

Можем получить каноническое уравнение прямой на плоскости, используя уравнение прямой с угловым коэффициентом. Получаем x — x 1 a x = y — y 1 a y . Необходимо слагаемое b перенести в левую часть и поделить на выражение полученного неравенства. Тогда получим уравнение вида y = k · x + b ⇔ y — b = k · x ⇔ k · x k = y — b k ⇔ x 1 = y — b k .

Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.

Привести уравнение прямой с угловым коэффициентом y = — 3 x + 12 к каноническому виду.

Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:

y = — 3 x + 12 ⇔ — 3 x = y — 12 ⇔ — 3 x — 3 = y — 12 — 3 ⇔ x 1 = y — 12 — 3

Ответ: x 1 = y — 12 — 3 .

Общее уравнение прямой проще всего получить из y = k · x + b , но для этого необходимо произвести преобразования: y = k · x + b ⇔ k · x — y + b = 0 . Производится переход из общего уравнения прямой к уравнениям другого вида.

Дано уравнение прямой вида y = 1 7 x — 2 . Выяснить, является ли вектор с координатами a → = ( — 1 , 7 ) нормальным вектором прямой?

Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:

y = 1 7 x — 2 ⇔ 1 7 x — y — 2 = 0

Коэффициенты перед переменными являются координатами нормального вектора прямой. Запишем это так n → = 1 7 , — 1 , отсюда 1 7 x — y — 2 = 0 . Понятно, что вектор a → = ( — 1 , 7 ) коллинеарен вектору n → = 1 7 , — 1 , так как имеем справедливое соотношение a → = — 7 · n → . Отсюда следует, что исходный вектор a → = — 1 , 7 — нормальный вектор прямой 1 7 x — y — 2 = 0 , значит, считается нормальным вектором для прямой y = 1 7 x — 2 .

Решим задачу обратную данной.

Необходимо перейти от общего вида уравнения A x + B y + C = 0 , где B ≠ 0 , к уравнению с угловым коэффициентом. для этого решаем уравнение относительно у. Получим A x + B y + C = 0 ⇔ — A B · x — C B .

Результат и является уравннием с угловым коэффициентом, который равняется — A B .

Задано уравнение прямой вида 2 3 x — 4 y + 1 = 0 . Получить уравнение данной прямой с угловым коэффициентом.

Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:

2 3 x — 4 y + 1 = 0 ⇔ 4 y = 2 3 x + 1 ⇔ y = 1 4 · 2 3 x + 1 ⇔ y = 1 6 x + 1 4 .

Ответ: y = 1 6 x + 1 4 .

Аналогичным образом решается уравнение вида x a + y b = 1 , которое называют уравнение прямой в отрезках, или каноническое вида x — x 1 a x = y — y 1 a y . Нужно решить его относительно у, только тогда получим уравнение с угловым коэффициентом:

x a + y b = 1 ⇔ y b = 1 — x a ⇔ y = — b a · x + b .

Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:

x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x · ( y — y 1 ) ⇔ ⇔ a x · y = a y · x — a y · x 1 + a x · y 1 ⇔ y = a y a x · x — a y a x · x 1 + y 1

Имеется прямая, заданная уравнением x 2 + y — 3 = 1 . Привести к виду уравнения с угловым коэффициентом.

Исходя из условия, необходимо преобразовать, тогда получим уравнение вида _formula_. Обе части уравнения следует умножить на — 3 для того, чтобы получить необходимо уравнение с угловым коэффициентом. Преобразуя, получим:

y — 3 = 1 — x 2 ⇔ — 3 · y — 3 = — 3 · 1 — x 2 ⇔ y = 3 2 x — 3 .

Ответ: y = 3 2 x — 3 .

Уравнение прямой вида x — 2 2 = y + 1 5 привести к виду с угловым коэффициентом.

Необходимо выражение x — 2 2 = y + 1 5 вычислить как пропорцию. Получим, что 5 · ( x — 2 ) = 2 · ( y + 1 ) . Теперь необходимо полностью его разрешить, для этого:

5 · ( x — 2 ) = 2 · ( y + 1 ) ⇔ 5 x — 10 = 2 y + 2 ⇔ 2 y = 5 x — 12 ⇔ y = 5 2 x

Ответ: y = 5 2 x — 6 .

Для решения таких заданий следует приводит параметрические уравнения прямой вида x = x 1 + a x · λ y = y 1 + a y · λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.

Найти угловой коэффициент прямой, если она задана параметрическими уравнениями x = λ y = — 1 + 2 · λ .

Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:

x = λ y = — 1 + 2 · λ ⇔ λ = x λ = y + 1 2 ⇔ x 1 = y + 1 2 .

Теперь необходимо разрешить данное равенство относительно y , чтобы получить уравнение прямой с угловым коэффициентом. для этого запишем таким образом:

x 1 = y + 1 2 ⇔ 2 · x = 1 · ( y + 1 ) ⇔ y = 2 x — 1

Отсюда следует, что угловой коэффициент прямой равен 2 . Это записывается как k = 2 .

Угловой коэффициент прямой. В этой статье мы с вами рассмотрим задачи связанные с координатной плоскостью включённые в ЕГЭ по математике. Это задания на:

— определение углового коэффициента прямой, когда известны две точки через которые она проходит;
— определение абсциссы или ординаты точки пересечения двух прямых на плоскости.

Что такое абсцисса и ордината точки было описано в прошлой статье данной рубрики. В ней мы уже рассмотрели несколько задач связанных с координатной плоскостью. Что необходимо понимать для рассматриваемого типа задач? Немного теории.

Уравнение прямой на координатной плоскости имеет вид:

где k – это и есть угловой коэффициент прямой.

Следующий момент! Угловой коэффициент прямой равен тангенсу угла наклона прямой. Это угол между данной прямой и осью ох.

Он лежит в пределах от 0 до 180 градусов.

То есть, если мы приведём уравнение прямой к виду y = kx + b, то далее всегда сможем определить коэффициент k (угловой коэффициент).

Так же, если мы исходя из условия сможем определить тангенс угла наклона прямой, то тем самым найдём её угловой коэффициент.

Следующий теоретический момент! Уравнение прямой походящей через две данные точки. Формула имеет вид:

Подробнее об этой формуле рассказано в этой статье !

Рассмотрим задачи (аналогичные задачам из открытого банка заданий):

Найдите угловой коэффициент прямой, проходящей через точки с координатами (–6;0) и (0;6).

В данной задаче самый рациональный путь решения это найти тангенс угла между осью ох и данной прямой. Известно, что он равен угловому коэффициенту. Рассмотрим прямоугольный треугольник образованный прямой и осями ох и оу:

Тангенсом угла в прямоугольном треугольнике является отношение противолежащего катета к прилежащему:

*Оба катета равны шести (это их длины).

Конечно, данную задачу можно решить используя формулу нахождения уравнения прямой проходящей через две данные точки. Но это будет более длительный путь решения.

Найдите угловой коэффициент прямой, проходящей через точки с координатами (5;0) и (0;5).

Формула уравнения прямой походящей через две данные точки имеет вид:

Наши точки имеют координаты (5;0) и (0;5). Значит,

Получили, что угловой коэффициент k = – 1.

Прямая a проходит через точки с координатами (0;6) и (8;0). Прямая b проходит через точку с координатами (0;10) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью оx.

В данной задаче можно найти уравнение прямой a, определить угловой коэффициент для неё. У прямой b угловой коэффициент будет такой же, так как они параллельны. Далее можно найти уравнение прямой b. А затем, подставив в него значение y = 0, найти абсциссу. НО!

В данном случае, проще использовать свойство подобия треугольников.

Прямоугольные треугольники, образованные данными (параллельными) прямыми о осями координат подобны, а это значит, что отношения их соответствующих сторон равны.

Искомая абсцисса равна 40/3.

Прямая a проходит через точки с координатами (0;8) и (–12;0). Прямая b проходит через точку с координатами (0; –12) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью оx.

Для данной задачи самый рациональный путь решения — это применение свойства подобия треугольников. Но мы решим её другим путём.

Нам известны точки, через которые проходит прямая а. Можем составить уравнение прямой. Формула уравнения прямой походящей через две данные точки имеет вид:

По условию точки имеют координаты (0;8) и (–12;0). Значит,

Получили, что угловой k = 2/3.

*Угловой коэффициент можно было найти через тангенс угла в прямоугольном треугольнике с катетами 8 и 12.

Известно, у параллельных прямых угловые коэффициенты равны. Значит уравнение прямой проходящей через точку (0;-12) имеет вид:

Найти величину b мы можем подставив абсциссу и ординату в уравнение:

Таким образом, прямая имеет вид:

Теперь чтобы найти искомую абсциссу точки пересечения прямой с осью ох, необходимо подставить у = 0:

Найдите ординату точки пересечения оси оy и прямой, проходящей через точку В(10;12) и параллельной прямой, проходящей через начало координат и точку А(10;24).

Найдём уравнение прямой проходящей через точки с координатами (0;0) и (10;24).

Формула уравнения прямой походящей через две данные точки имеет вид:

Наши точки имеют координаты (0;0) и (10;24). Значит,

Угловые коэффициенты параллельных прямых равны. Значит, уравнение прямой, проходящей через точку В(10;12) имеет вид:

Значение b найдём подставив в это уравнение координаты точки В(10;12):

Получили уравнение прямой:

Чтобы найти ординату точки пересечения этой прямой с осью оу нужно подставить в найденное уравнение х = 0:

*Самый простой способ решения. При помощи параллельного переноса сдвигаем данную прямую вниз вдоль оси оу до точки (10;12). Сдвиг происходит на 12 единиц, то есть точка А(10;24) «перешла» в точку В(10;12), а точка О(0;0) «перешла» в точку (0;–12). Значит, полученная прямая будет пересекать ось оу в точке (0;–12).

Искомая ордината равна –12.

Найдите ординату точки пересечения прямой, заданной уравнением

3х + 2у = 6 , с осью Oy .

Координата точки пересечения заданной прямой с осью оу имеет вид (0;у). Подставим в уравнение абсциссу х = 0, и найдём ординату:

Ордината точки пересечения прямой с осью оу равна 3.

Найдите ординату точки пересечения прямых, заданных уравнениями

3х + 2у = 6 и у = – х .

Когда заданны две прямые, и стоит вопрос о нахождении координат точки пересечения этих прямых, решается система из данных уравнений:

В первом уравнении подставляем – х вместо у:

Ордината равна минус шести.

Найдите угловой коэффициент прямой, проходящей через точки с координатами (–2;0) и (0;2).

Найдите угловой коэффициент прямой, проходящей через точки с координатами (2;0) и (0;2).

Прямая a проходит через точки с координатами (0;4) и (6;0). Прямая b проходит через точку с координатами (0;8) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью Ox.

Прямая a проходит через точки с координатами (0;4) и (–6;0). Прямая b проходит через точку с координатами (0; –6) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью Ox.

Найдите ординату точки пересечения оси оy и прямой, проходящей через точку B (6;4) и параллельной прямой, проходящей через начало координат и точку A (6;8).

Найдите абсциссу точки пересечения прямой, заданной уравнением 2х + 2у = 6, с осью ох.

Найдите абсциссу точки пересечения прямых, заданных уравнениями 3х + 2у = 6 и у = х.

Конечно, некоторые задачи, которые мы рассмотрели можно было решить более рациональными способами. Но ставилась цель показать разные подходы к решению. Надеюсь, это удалось.

1. Необходимо чётко усвоить, что угловой коэффициент прямой равен тангенсу угла наклона прямой. Это поможет вам при решении многих задач данного типа.

2. Формулу нахождения прямой проходящей через две данные точки нужно понимать обязательно. С её помощью всегда найдёте уравнение прямой, если даны координаты двух её точек.

3. Помните о том, что угловые коэффициенты параллельных прямых равны.

4. Как вы поняли, в некоторых задачах удобно использовать признак подобия треугольников. Задачи решаются практически устно.

5. Задачи в которых даны две прямые и требуется найти абсциссу или ординату точки их пересечения можно решить графическим способом. То есть, построить их на координатной плоскости (на листе в клетку) и определить точку пересечения визуально. *Но этот способ применим не всегда.

6. И последнее. Если дана прямая и координаты точек её пересечения с осями координат, то в таких задачах удобно находить угловой коэффициент через нахождение тангенса угла в образованном прямоугольном треугольнике. Как «увидеть» этот треугольник при различных расположениях прямых на плоскости схематично показано ниже:

>> Угол наклона прямой от 0 до 90 градусов

>> Угол наклона прямой от 90 до 180 градусов

В данных двух случаях, по свойству тангенса :

То есть, чтобы найти уголвой коэффициент прямой, необходимо вычислить тангенс бетта в полученном прямоугольном треугольнике и записать результат с отрицательным знаком.

В данной рубрике продолжим рассматривать задачи, не пропустите!

Функция НАКЛОН в Excel предназначена для определения угла наклона прямой, используемой для аппроксимации данных методом линейной регрессии, и возвращает значение коэффициента a из уравнения y=ax+b. Для определения наклона используются две любые точки на прямой. При этом вычисляется частное от деления длины отрезка, полученного при проецировании этих двух точек на ось Ординат (OY), на длину отрезка, образованного проекциями этих же двух точек на ось Абсцисс (OX).

Фактически, функция НАКЛОН вычисляет значение, которое характеризует скорость изменения данных вдоль линии регрессии. Зная наклон (коэффициент a) и значение коэффициента b можно рассчитать приближенные будущие значения какого-либо свойства y, которое меняется при изменении характеристики x.

Примеры использования функции НАКЛОН в Excel

Для расчета наклона линии регрессии используется уравнение:

  • x_ср – среднее значение для диапазона известных значений независимой переменной;
  • y_ср – среднее значение для диапазона известных значений зависимой переменной.

Функция НАКЛОН не может быть использована для анализа коллинеарных данных и будет возвращать код ошибки #ДЕЛ/0! в отличие от функции ЛИНЕЙН, которая использует иной алгоритм расчета и возвращает как минимум одно полученное значение.

Пример 1. Определить наклон аппроксимирующей прямой для показателей средней пенсии на протяжении нескольких лет.

Вид исходной таблицы данных:

Для нахождения наклона используем следующую формулу:

  • B3:B13 – ссылка на диапазон ячеек, содержащих данные о средней пенсии, характеризующие зависимую переменную y;
  • A3:A13 – диапазон ячеек с данными об отчетных периодах (годах), характеризующие независимую переменную x.

В результате вычислений получим:

Полученное значение свидетельствует о том, что на протяжении обозначенного периода размер пенсионных выплат в среднем увеличивался примерно на 560 рублей.

Прогноз объема продаж по линейно регрессии в Excel

Пример 2. В таблице Excel содержатся данные о прибыли за продажи некоторого продукта компании на протяжении последних нескольких дней. Рассчитать коэффициенты a и b уравнения прямой y=ax+b, аппроксимирующей данные. На основе полученного уравнения спрогнозировать данные о продажах для трех последующих дней.

Вид таблицы с данными:

Для нахождения коэффициента a используем следующую формулу:

Коэффициент b рассчитывается с помощью следующей функции:

Искомое уравнение имеет вид:

Для определения последующих значений y достаточно лишь подставить требуемое значение x. Выполним расчет предполагаемой прибыли для 13-го дня:

  • D3 – полученное значение коэффициента a;
  • A15 – новое значение x;
  • E3 – значение коэффициента b.

Используем функцию автозаполнения чтобы получить значения для остальных дней:

Анализ корреляции спроса и объема производства в Excel

Пример 3. В таблице содержатся данные о количестве произведенной продукции за месяц, а также о числе приобретенных товаров данной марки покупателями. Отобразить взаимосвязь между данными графически, определить, целесообразно ли использовать уравнение линейно регрессии для описания корреляции между спросом и числом произведенных товаров.

Вид таблицы данных:

Для определения зависимости между двумя рядами числовых данных рассчитаем коэффициент корреляции по формуле:

Полученное значение (0,983) свидетельствует о том, что между двумя числовыми диапазонами существует сильная прямая взаимосвязь. Поэтому целесообразно использовать аппроксимирующую прямую, для нахождения коэффициентов уравнения которой используем формулы:

Для нахождения спроса на товары за июль при условии, что будет произведено, например, 2000 единиц продукции, используем полученное уравнение:

Альтернативным использованию функции НАКЛОН вариантом нахождения наклона в Excel является графический метод. Построим график на основе имеющихся данных, при этом для значений X выберем диапазон ячеек со значениями числа произведенных товаров, а для Y – с числом купленных товаров:

Отобразим на графике линию тренда:

В меню «Формат линии тренда» установим флажок напротив пункта «показывать уравнение на диаграмме»:

График примет следующий вид:

Как видно, найденные коэффициенты a и b соответствуют отображаемым на графике.

Особенности использования функции НАКЛОН в Excel

Функция имеет следующий синтаксис:

Описание аргументов (все являются обязательными для заполнения):

  • известные_значения_y – аргумент, принимающий массив числовых значений или ссылку на диапазон ячеек, которые содержат числа, характеризующие значения зависимой переменной y, которые определены для известных значений x;
  • известные_значения_x – аргумент, который может быть указан в виде массива чисел или ссылки на диапазон ячеек, содержащих числовые значения, которые характеризуют известные значения независимой переменной x.
  1. В качестве аргументов должны быть переданы массивы чисел либо ссылки на диапазоны ячеек с числовыми значениями или текстовыми строками, которые могут быть преобразованы к числам. Строки, не являющиеся текстовыми представлениями числовых данных, а также логические ИСТИНА и ЛОЖЬ в расчете не учитываются.
  2. Если в качестве аргументов были переданы массивы, содержащие разное количество элементов, или ссылки на диапазоны с разным количеством ячеек, функция НАКЛОН вернет код ошибки #Н/Д. Аналогичный код ошибки будет возвращен в случае, если оба аргумента принимают пустые массивы или ссылки на диапазоны пустых ячеек.
  3. Если оба аргумента ссылаются на нечисловые данные, функция НАКЛОН вернет код ошибки #ДЕЛ/0!.
  4. Если в диапазоне, переданном в качестве любого из аргументов, содержатся пустые ячейки, они игнорируются в расчете. Однако ячейки, содержащие значение 0 (нуль) будут учтены.


2.1. Уравнение прямой с угловым коэффициентом

Прямая – это одна из простейших геометрических фигур. Она бесконечна:

и обозначается маленькими латинскими буквами , как вариант,
с подстрочным индексом, например, . Также прямую можно обозначить двумя различными точками, которые ей принадлежат, например, .

Прямую часто задают уравнением, и начнём мы опять со школьного материала. Всем известное «школьное» уравнение   называется уравнением прямой с угловым коэффициентом . Вспомним геометрический смысл данного коэффициента и то,  как его значение влияет на расположение прямой:

Угловой коэффициент прямой равен тангенсу угла (см. Приложение Тригонометрия) между положительным направлением оси  и данной прямой: . Чтобы не загромождать чертёж, я нарисовал углы только для двух прямых:

Это «красная» прямая  с коэффициентом . Согласно вышесказанному,  (угол «альфа» обозначен зелёной дугой). Для «синей» прямой  с  справедливо равенство  (угол «бета» обозначен коричневой дугой).

Если известен тангенс угла, то при необходимости легко найти и сам угол с помощью обратной функции – арктангенса. Так, для «черной»  прямой  тангенс угла наклона равен , а сам угол наклона составляет:
 радиан или 45 градусов, что хорошо видно по чертежу. Значения углов можно находить по Таблице или с помощью Калькулятора (Приложения в помощь).

Таким образом, угловой коэффициент  характеризует степень наклона прямой к оси абсцисс. При этом возможны следующие случаи:

1) Если угловой коэффициент отрицателен: , то линия, грубо говоря, идёт «сверху вниз». Примеры – «синяя» и «малиновая» прямые на чертеже.

2) Если угловой коэффициент положителен: , то линия идёт «снизу вверх». Примеры – «чёрная» и «красная» прямые на чертеже.

3) Если угловой коэффициент равен нулю: , то уравнение  принимает вид , и соответствующая прямая параллельна оси . Пример – «жёлтая» прямая. Неформальный смысл уравнения: «игрек» ВСЕГДА (при любом «икс») равен «бэ».

4) Для семейства прямых , параллельных оси   (на чертеже нет примера, кроме самой оси ), угловой коэффициент не определён. В данной ситуации , а тангенса угла 90 градусов не существует. Неформальный смысл уравнения: «икс» ВСЕГДА (при любом «игрек») равен «цэ».

Чем больше угловой коэффициент по модулю, тем круче идёт график прямой.

Рассмотрим прямые  и . Здесь , поэтому прямая  имеет более крутой наклон. Напоминаю, что модуль позволяет не учитывать знак, нас интересуют только абсолютные значения угловых коэффициентов.
В свою очередь, прямая  более крутА, чем прямые .

Обратно: чем меньше угловой коэффициент по модулю, тем прямая является более пологой. Так, для прямых  справедливо неравенство , таким образом, прямая  более пологая.

Зачем эта информация? Продлить ваши мучения. Знания вышеперечисленных фактов позволяет немедленно увидеть свои ошибки, в частности, ошибки при построении графиков – когда на чертеже получилось явно «что-то не то». Желательно, чтобы вам сразу было понятно, что прямая  весьма крутА и идёт «снизу вверх», а прямая  – очень полога, близко прижата к оси  и идёт «сверху вниз».

Сомневался, напоминать ли, но на всякий пожарный: как построить прямую, если известно её уравнение?

Для того чтобы построить прямую, нужно знать две её точки (любые). Их легко найти из уравнения. Рассмотрим, например, уравнение  и выберем произвольное значение «икс», удобно взять , тогда: , и первая точка найдена: . Теперь выбираем другое значение , например,  и находим  – точка . Отмечаем точки на чертеже и аккуратно проводим линию по линейке.

Ах да, чуть не забыл: прямая вида  называется прямой пропорциональностью. Она проходит через начало координат, и для её построения достаточно найти одну точку. На чертеже выше изображены две таких прямых + ось .

Как составить уравнение прямой с угловым коэффициентом?

Если известна точка , принадлежащая некоторой прямой, и угловой коэффициент  этой прямой, то уравнение данной прямой выражается формулой:

Задача 59

Составить уравнение прямой с угловым коэффициентом , если известно, что точка  принадлежит данной прямой.

Решение: уравнение составим по формуле . В данном случае:

Ответ:

Проверка выполняется элементарно. Во-первых, смотрим на полученное уравнение  и убеждаемся, что наш угловой коэффициент  на своём месте. Во-вторых, координаты точки  должны удовлетворять данному уравнению. Подставим их в уравнение:

 – получено верное равенство, значит, точка  удовлетворяет полученному уравнению.

Вывод: уравнение найдено правильно.

Более хитрая задачка для самостоятельного решения:

Задача 60

Составить уравнение прямой, если известна её точка , а угол наклона к положительному направлению оси  составляет .

Ну что же, прозвенел «последний звонок», отгремел выпускной бал (как это быстро у меня происходит :) ), и за воротами родной школы нас поджидает, собственно, аналитическая геометрия:

2.2.1. Общее уравнение и направляющий вектор прямой

1.10.3. Как вычислить объём треугольной пирамиды?

| Оглавление |



Автор: Aлeксaндр Eмeлин

Калькулятор углового коэффициента прямой может не только рассчитать коэффициент, но и найдет точки пересечения прямой с осями абсцисс и ординат (x и y), а также покажет решение и построит график прямой.

Содержание:
  1. калькулятор углового коэффициента прямой
  2. определение углового коэффициента прямой
  3. формула углового коэффициента прямой
  4. геометрический смысл углового коэффициента
    1. k>0
    2. k<0
    3. k=0
    4. k не определен (k=∞)
    5. угловой коэффициент параллельных прямых
    6. угловой коэффициент перпендикулярных прямых
  5. примеры расчета углового коэффициента прямой по заданным координатам точек

Определение углового коэффициента прямой

Угловой коэффициент прямой — это число, которое определяет наклон прямой относительно положительного направления оси OX. Численно он равен тангенсу угла (отсчитываемого против часовой стрелки) между положительным направлением оси OX и прямой.

Угловой коэффициент прямой обозначается буковой k.

Угловой коэффициент показывает, как быстро прямая меняет свое положение по оси OX при изменении координаты y и является ключевым понятием в геометрии и физике, используемым для описания многих физических явлений, например, движения тела в пространстве или распространение света.

В геометрии, угловой коэффициент прямой используется для определения угла наклона прямой относительно оси абсцисс и для вычисления ее точек пересечения с осями координат. Также угловой коэффициент прямой используется для записи уравнения прямой в общем виде. Знание углового коэффициента прямой является необходимым при решении многих задач геометрии, таких как построение перпендикуляров и параллельных линий, определение углов между прямыми и плоскостями, а также решение задач на поиск расстояний между прямыми и плоскостями.

Формула углового коэффициента прямой

Формула вычисления углового коэффициента прямой определяется как отношение изменения координаты y к изменению координаты x между любыми двумя точками на прямой. Математически это можно записать следующим образом:

Формула вычисления углового коэффициента прямой

{k=dfrac{y_b — y_a}{x_b — x_a} = tg(alpha)}

k — угловой коэффициент прямой,

xa, ya — координаты точки A,

xb, yb — координаты точки B

α — угол между осью OX и прямой (против часовой стрелки).

Если прямая задана уравнением в общем виде y = kx + b, то угловой коэффициент прямой равен коэффициенту при x, то есть k.

Геометрический смысл углового коэффициента прямой

Рассмотрим возможные значения углового коэффициента и какой геометрический смысл он несет.

Угловой коэффициент прямой больше нуля

Если угловой коэффициент прямой больше нуля (k>0), то угол между осью OX и прямой является острым, а график прямой возрастающий. Обратное утверждение также справедливо — если график прямой возрастает, то ее угловой коэффициент больше нуля.

Угловой коэффициент прямой больше 0

Угловой коэффициент прямой меньше нуля

Если угловой коэффициент прямой меньше нуля (k<0), то угол между осью OX и прямой является тупым, а график прямой убывающий. И наоборот — если график прямой убывает, то ее угловой коэффициент меньше нуля.

Угловой коэффициент прямой меньше 0

Угловой коэффициент равен нулю

Если угловой коэффициент прямой равен нулю (k=0), то это значит, что прямая параллельна оси x.

Угловой коэффициент прямой равен 0

Угловой коэффициент не определен (равен бесконечности)

Если угловой коэффициент прямой не определен (или можно сказать обращается в бесконечность) (k=∞), то это значит, что прямая параллельна оси y.

Угловой коэффициент прямой равен бесконечности

Угловой коэффициент параллельных прямых

Если прямые параллельны, то их угловые коэффициенты равны и наоборот — если у прямых равные угловые коэффициенты, то они параллельны друг другу.

Угловой коэффициент перпендикулярных прямых

Если прямые перпендикулярны, то их угловые коэффициенты обратно пропорциональны и имеют противоположный знак.

Для примера рассмотрим две прямые, заданные угловыми коэффициентами:

y = k_{m} x + b_m

y = k_{n} x + b_n

Прямые будет перпендикулярны, если k_{m} = — dfrac{1}{k_{n}}

Как рассчитать угловой коэффициент прямой по заданным координатам точек

Чтобы закрепить материал, рассмотрим решение задачи.

Задача 1

Найдите угловой коэффициент прямой, проходящей через точки A(5, -2) и B(-3, 1).

Решение

Воспользуемся формулой углового коэффициента прямой. Для начала найдем разницу между соответствующими координатами двух точек:

{Delta x = x_b — x_a = -3 -5 -= -8}

{Delta y = y_b — y_a = 1 — -(2) = 3}

Осталось применить формулу и поделить Delta y на Delta x:

k = dfrac{Delta y}{Delta x} = dfrac{3}{-8} = — dfrac{3}{8} approx -0.375

Это и есть угловой коэффициент прямой AB.

А если вы внимательно читали статью, то, учитывая, что полученный угловой коэффициент отрицательный, можно сказать, что прямая AB убывающая.

Ответ: k = — dfrac{3}{8} approx -0.375

Проверить ответ нам поможет калькулятор .

Понравилась статья? Поделить с друзьями:
  • Как найти свой тату салон
  • Как найти определитель по формуле крамера
  • Как найти делитель с остатком формула
  • Как найти платный учебник бесплатно
  • Как найти математическое ожидание числа промахов