Как найти температурный коэффициент удельного сопротивления

Температурный коэффициент сопротивления (ТКС) — величина, равная относительному изменению удельного сопротивления вещества при изменении температуры на единицу.

ТКС характеризует зависимость сопротивления проводника от изменении его температуры.Как правило применяют температурный коэффициент сопротивления металлов.

Формула температурного коэффициента сопротивления через относительное изменение сопротивления

{alpha = dfrac{R_2-R_1}{R_1(T_2-T_1)}}

Формула температурного коэффициента сопротивления через удельное сопротивление

{alpha = dfrac{rho_2-rho_1}{rho_1(T_2-T_1)}}

Таблица «Температурный коэффициент сопротивления»

Проводник α (10-3/K)

Алюминий

температурный коэффициент сопротивления алюминия

4,2

Вольфрам

температурный коэффициент сопротивления вольфрама

5

Железо

температурный коэффициент сопротивления железа

6

Золото

температурный коэффициент сопротивления золота

4

Константан (сплав Ni-Cu + Mn)

температурный коэффициент сопротивления константина

0,05

Латунь

температурный коэффициент сопротивления латуни

0,1-0,4

Магний

температурный коэффициент сопротивления магния

3,9

Манганин (сплав меди марганца и никеля — приборный)

температурный коэффициент сопротивления манганин

0,01

Марганец

температурный коэффициент сопротивления марганца

0,02

Медь

температурный коэффициент сопротивления меди

4,3

Нейзильбер

температурный коэффициент сопротивления нейзильбера

0,25

Никелин (сплав меди и никеля)

температурный коэффициент сопротивления никелина

0,1

Никель

температурный коэффициент сопротивления никеля

6,5

Нихром (сплав никеля хрома железы и марганца)

температурный коэффициент сопротивления нихрома

0,1

Олово

температурный коэффициент сопротивления олова

4,4

Платина

температурный коэффициент сопротивления платины

3,9

Ртуть

температурный коэффициент сопротивления ртути

1

Свинец

температурный коэффициент сопротивления свинца

3,7

Серебро

температурный коэффициент сопротивления серебра

4,1

Сталь

температурный коэффициент сопротивления стали

1-4

Фехраль (Cr (12—15 %); Al (3,5—5,5 %); Si (1 %); Mn (0,7 %); + Fe)

температурный коэффициент сопротивления фехраля

0,1

Цинк

температурный коэффициент сопротивления цинка

4,2

Чугун

температурный коэффициент сопротивления чугуна

1

From Wikipedia, the free encyclopedia

A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature. For a property R that changes when the temperature changes by dT, the temperature coefficient α is defined by the following equation:

{displaystyle {frac {dR}{R}}=alpha ,dT}

Here α has the dimension of an inverse temperature and can be expressed e.g. in 1/K or K−1.

If the temperature coefficient itself does not vary too much with temperature and {displaystyle alpha Delta Tll 1}, a linear approximation will be useful in estimating the value R of a property at a temperature T, given its value R0 at a reference temperature T0:

R(T) = R(T_0)(1 + alphaDelta T),

where ΔT is the difference between T and T0.

For strongly temperature-dependent α, this approximation is only useful for small temperature differences ΔT.

Temperature coefficients are specified for various applications, including electric and magnetic properties of materials as well as reactivity. The temperature coefficient of most of the reactions lies between −2 and 3.

Negative temperature coefficient[edit]

Most ceramics exhibit negative temperature dependence of resistance behaviour. This effect is governed by an Arrhenius equation over a wide range of temperatures:

{displaystyle R=Ae^{frac {B}{T}}}

where R is resistance, A and B are constants, and T is absolute temperature (K).

The constant B is related to the energies required to form and move the charge carriers responsible for electrical conduction – hence, as the value of B increases, the material becomes insulating. Practical and commercial NTC resistors aim to combine modest resistance with a value of B that provides good sensitivity to temperature. Such is the importance of the B constant value, that it is possible to characterize NTC thermistors using the B parameter equation:

R = r^{infty}e^{frac{B}{T}} = R_{0}e^{-frac{B}{T_{0}}}e^{frac{B}{T}}

where R_{0} is resistance at temperature T_{0}.

Therefore, many materials that produce acceptable values of R_{0} include materials that have been alloyed or possess variable negative temperature coefficient (NTC), which occurs when a physical property (such as thermal conductivity or electrical resistivity) of a material lowers with increasing temperature, typically in a defined temperature range. For most materials, electrical resistivity will decrease with increasing temperature.

Materials with a negative temperature coefficient have been used in floor heating since 1971. The negative temperature coefficient avoids excessive local heating beneath carpets, bean bag chairs, mattresses, etc., which can damage wooden floors, and may infrequently cause fires.

Reversible temperature coefficient[edit]

Residual magnetic flux density or Br changes with temperature and it is one of the important characteristics of magnet performance. Some applications, such as inertial gyroscopes and traveling-wave tubes (TWTs), need to have constant field over a wide temperature range. The reversible temperature coefficient (RTC) of Br is defined as:

{displaystyle {text{RTC}}={frac {|Delta mathbf {B} _{r}|}{|mathbf {B} _{r}|Delta T}}times 100%}

To address these requirements, temperature compensated magnets were developed in the late 1970s.[1] For conventional SmCo magnets, Br decreases as temperature increases. Conversely, for GdCo magnets, Br increases as temperature increases within certain temperature ranges. By combining samarium and gadolinium in the alloy, the temperature coefficient can be reduced to nearly zero.

Electrical resistance[edit]

The temperature dependence of electrical resistance and thus of electronic devices (wires, resistors) has to be taken into account when constructing devices and circuits. The temperature dependence of conductors is to a great degree linear and can be described by the approximation below.

{displaystyle operatorname {rho } (T)=rho _{0}left[1+alpha _{0}left(T-T_{0}right)right]}

where

{displaystyle alpha _{0}={frac {1}{rho _{0}}}left[{frac {delta rho }{delta T}}right]_{T=T_{0}}}

rho_{0} just corresponds to the specific resistance temperature coefficient at a specified reference value (normally T = 0 °C)[2]

That of a semiconductor is however exponential:

operatorname{rho}(T) = S alpha^{frac{B}{T}}

where S is defined as the cross sectional area and alpha and B are coefficients determining the shape of the function and the value of resistivity at a given temperature.

For both, alpha is referred to as the temperature coefficient of resistance (TCR).[3]

This property is used in devices such as thermistors.

Positive temperature coefficient of resistance[edit]

A positive temperature coefficient (PTC) refers to materials that experience an increase in electrical resistance when their temperature is raised. Materials which have useful engineering applications usually show a relatively rapid increase with temperature, i.e. a higher coefficient. The higher the coefficient, the greater an increase in electrical resistance for a given temperature increase. A PTC material can be designed to reach a maximum temperature for a given input voltage, since at some point any further increase in temperature would be met with greater electrical resistance. Unlike linear resistance heating or NTC materials, PTC materials are inherently self-limiting. On the other hand, NTC material may also be inherently self-limiting if constant current power source is used.

Some materials even have exponentially increasing temperature coefficient. Example of such a material is PTC rubber.

Negative temperature coefficient of resistance[edit]

A negative temperature coefficient (NTC) refers to materials that experience a decrease in electrical resistance when their temperature is raised. Materials which have useful engineering applications usually show a relatively rapid decrease with temperature, i.e. a lower coefficient. The lower the coefficient, the greater a decrease in electrical resistance for a given temperature increase. NTC materials are used to create inrush current limiters (because they present higher initial resistance until the current limiter reaches quiescent temperature), temperature sensors and thermistors.

Negative temperature coefficient of resistance of a semiconductor[edit]

An increase in the temperature of a semiconducting material results in an increase in charge-carrier concentration. This results in a higher number of charge carriers available for recombination, increasing the conductivity of the semiconductor. The increasing conductivity causes the resistivity of the semiconductor material to decrease with the rise in temperature, resulting in a negative temperature coefficient of resistance.

Temperature coefficient of elasticity[edit]

The elastic modulus of elastic materials varies with temperature, typically decreasing with higher temperature.

Temperature coefficient of reactivity[edit]

In nuclear engineering, the temperature coefficient of reactivity is a measure of the change in reactivity (resulting in a change in power), brought about by a change in temperature of the reactor components or the reactor coolant. This may be defined as

{displaystyle alpha _{T}={frac {partial rho }{partial T}}}

Where rho is reactivity and T is temperature. The relationship shows that alpha_{T} is the value of the partial differential of reactivity with respect to temperature and is referred to as the «temperature coefficient of reactivity». As a result, the temperature feedback provided by alpha_{T} has an intuitive application to passive nuclear safety. A negative alpha_{T} is broadly cited as important for reactor safety, but wide temperature variations across real reactors (as opposed to a theoretical homogeneous reactor) limit the usability of a single metric as a marker of reactor safety.[4]

In water moderated nuclear reactors, the bulk of reactivity changes with respect to temperature are brought about by changes in the temperature of the water. However each element of the core has a specific temperature coefficient of reactivity (e.g. the fuel or cladding). The mechanisms which drive fuel temperature coefficients of reactivity are different from water temperature coefficients. While water expands as temperature increases, causing longer neutron travel times during moderation, fuel material will not expand appreciably. Changes in reactivity in fuel due to temperature stem from a phenomenon known as doppler broadening, where resonance absorption of fast neutrons in fuel filler material prevents those neutrons from thermalizing (slowing down).[5]

Mathematical derivation of temperature coefficient approximation[edit]

In its more general form, the temperature coefficient differential law is:

{displaystyle {frac {dR}{dT}}=alpha ,R}

Where is defined:

{displaystyle R_{0}=R(T_{0})}

And alpha is independent of T.

Integrating the temperature coefficient differential law:

{displaystyle int _{R_{0}}^{R(T)}{frac {dR}{R}}=int _{T_{0}}^{T}alpha ,dT~Rightarrow ~ln(R){Bigg vert }_{R_{0}}^{R(T)}=alpha (T-T_{0})~Rightarrow ~ln left({frac {R(T)}{R_{0}}}right)=alpha (T-T_{0})~Rightarrow ~R(T)=R_{0}e^{alpha (T-T_{0})}}

Applying the Taylor series approximation at the first order, in the proximity of T_{0}, leads to:

{displaystyle R(T)=R_{0}(1+alpha (T-T_{0}))}

Units[edit]

The thermal coefficient of electrical circuit parts is sometimes specified as ppm/°C, or ppm/K. This specifies the fraction (expressed in parts per million) that its electrical characteristics will deviate when taken to a temperature above or below the operating temperature.

See also[edit]

  • Microbolometer (used to measure TCRs)

References[edit]

  1. ^ «About Us». Electron Energy Corporation. Archived from the original on October 29, 2009.
  2. ^ Kasap, S. O. (2006). Principles of Electronic Materials and Devices (Third ed.). Mc-Graw Hill. p. 126.
  3. ^ Alenitsyn, Alexander G.; Butikov, Eugene I.; Kondraryez, Alexander S. (1997). Concise Handbook of Mathematics and Physics. CRC Press. pp. 331–332. ISBN 0-8493-7745-5.
  4. ^ Duderstadt & Hamilton 1976, pp. 259–261
  5. ^ Duderstadt & Hamilton 1976, pp. 556–559

Bibliography[edit]

  • Duderstadt, Jame J.; Hamilton, Louis J. (1976). Nuclear Reactor Analysis. Wiley. ISBN 0-471-22363-8.

Что такое температурный коэффициент сопротивления

На основании закона Ома и измерения удельного электрического сопротивления ряда материалов, в частности сопротивления металлов, было выявлено, что данный параметр не постоянен и меняется при изменении температуры. Как правило, при нагреве их проводимость ухудшается.

Убедиться на практике в наличии данного явления можно, включив лампочку накаливания. В момент включения уже горящие лампочки на короткое время уменьшают яркость своего свечения. Это свидетельствует о том, что холодная лампочка (спираль которой выполнена из металла вольфрама) потребляет больший ток от сети, чем разогретая, и «просаживает» напряжение. Следовательно, холодная лампочка проводит электрический ток значительно лучше разогретой.

Сравнение проводимости лампы накаливания в холодном и разогретом состоянии

Как определяется температурный коэффициент сопротивления

Количественной мерой изменения электрического сопротивления проводника служит температурный коэффициент удельного сопротивления (ТКС). Ввиду малости значений ТКС выражается в особых единицах — миллионных долях на один Кельвин или градус Цельсия и обозначается ppm/°C или К-1.

Чтобы рассчитать температурный коэффициент сопротивления меди или любого другого материала, применяют метод, основанный на измерении электрического сопротивления при различных температурных показателях. Затем используется формула:

Формула ТКС

Температурный коэффициент сопротивлений обозначают буквой α. Его можно выразить через удельное сопротивление:

Выражение ТКС через удельное электросопротивление

Исходя из этого, для расчета сопротивления резистора R или любого другого проводника применяется следующее выражение:

Определение сопротивления проводника

Знак ТКС

Чтобы определить температурный коэффициент сопротивления вольфрама или температурный коэффициент сопротивления алюминия, никеля, серебра и пр. материалов и сплавов, нужно знать проводимость исследуемого материала. Она измеряется при разной температуре. TКС характеризует средний наклон графика сопротивления проводника в исследуемом температурном интервале. Если наклон линии зависимости сопротивления от температуры постоянен, зависимость называется линейной. Но для многих материалов, например, для нихромовой проволоки свойственна нелинейная форма температурной зависимости сопротивления. Поэтому важно указывать, какая температура соответствует определенному значению ТКС. Например, температурный коэффициент сопротивления платины равен 3900 при температуре 20 градусов.

Графики проводимости металлов и полупроводников

ТКС материала может быть положительным или отрицательным по знаку. Плюсовое значение показывает, что с увеличением нагрева сопротивление также увеличивается. Отрицательный коэффициент означает, что с ростом температуры сопротивление уменьшается. Следует также знать, что в разных температурных интервалах знак может отличаться.

ТКС чистых металлов обычно имеет положительное значение, например, температурный коэффициент сопротивления никеля никогда не бывает отрицательным. Материалы с большим (по модулю) параметром используются для измерения температуры в составе датчиков температуры. Резисторы для подобных применений называют терморезисторами или термисторами.

График зависимости проводимости терморезистора от температуры

У электролитов ТКС отрицательный. Это связано с тем, что при нагреве в растворе увеличивается количество обеспечивающих электрическая проводимость свободных ионов. Таким образом, электролиты при нагревании начинают проводить лучше, но характер этой зависимости резко нелинейный.

Отрицателен этот параметр и у чистых (беспримесных) полупроводников. Связано это с тем, что при нагреве в зону проводимости переходит большее количество электронов, тем самым увеличивая концентрацию дырок в полупроводнике.

Объяснение зависимости ТКС от температурных показателей

Материалами для изготовления эталонных (образцовых) сопротивлений (резисторов) служат сплавы с равным или очень близким к нулю ТКС. Одним из таких сплавов является проволока из манганина (сплава на основе меди с добавкой марганца и никеля).

ТКС можно узнать из справочной литературы. Например, таблица, представленная ниже, позволяет определить температурный коэффициент сопротивления железа или сопротивления нихрома, а также серебра, меди, алюминия и прочих материалов.

Таблица ТКС некоторых материалов

Термин ТКС был введен с целью обозначения термической стабильности резисторов, поскольку удельное сопротивление их резистивного слоя под воздействием температуры может меняться. Температурную зависимость сопротивления используют в устройствах, называемых термометрами сопротивления. Основным их элементом является проволока из меди или платины, намотанная на жесткий каркас из диэлектрика. Платиновый термометр обычно используется для измерения температуры от +263 до 1064, а медный — 180…–50 градусов.

Если при создании электроизмерительных приборов требуются проводники с сопротивлением, мало зависящим от температурных показателей, используют специальные сплавы, такие как манганин или константан. Например, ТКС последнего в 820 раз меньше, чем температурный коэффициент сопротивления серебра.

Видео по теме

Удельные сопротивления и температурный коэффициент сопротивления металлов и сплавов

Металл

Удельное
сопротивление ρ при 20 ºС, Ом*мм²/м

Температурный
коэффициент сопротивления α, ºС
-1

Медь

0.0175=1/57

0.004

Бронза

0.020÷0.028

0.001

Алюминий

0.033=1/30

0.0037

Железо
(сталь)

0.13÷0.18

0.0048

Латунь

0.07÷0.08

0.0015

Нихром

1.0÷1.1

Константан

0.5

Манганин

0.42

Серебро

0.016

0.0038

Платина

0.094

0.0024

Графит

50÷100

Температурный
коэффициент сопротивления α показывает
на сколько увеличивается сопротивление
проводника в 1 Ом при увеличении
температуры (нагревании проводника)
на 1 ºС.

Сопротивление
проводника при температуре t
рассчитывается по формуле:

rt
= r20
+ α*
r20*(t
— 20 ºС)

или

rt
= r20
*[1 + α*(t
– 20 ºС)],

где r20
– сопротивление проводника при
температуре 20 ºС, rt
– сопротивление проводника при
температуре t.

Плотность
тока

Задача 1.

Через медный
проводник с площадью поперечного сечения
S
= 4 мм² протекает ток I
= 10 А. Какова плотность тока?

Решение

Плотность тока J
= I/S
= 10 А/4 мм² = 2.5 А/мм².

[По площади
поперечного сечения 1 мм² протекает
ток I
= 2.5 А; по всему поперечному сечению S
протекает ток I
= 10 А].

Задача 2.

По шине
распределительного устройства
прямоугольного поперечного сечения
(20х80) мм² проходит ток I
= 1000 А. Какова плотность тока в шине?

Решение

Площадь поперечного
сечения шины S
= 20х80 = 1600 мм². Плотность тока

J
= I/S
= 1000 A/1600
мм² = 0.625 А/мм².

Задача 3.

У катушки провод
имеет круглое сечение диаметром 0.8 мм
и допускает плотность тока 2.5 А/мм².
Какой допустимый ток можно пропустить
по проводу (нагрев не должен превысить
допустимый)?

Решение

Площадь поперечного
сечения провода S
= π * d²/4
= 3/14*0.8²/4 ≈ 0.5 мм².

Допустимый ток I
= J*S
= 2.5 А/мм² * 0.5 мм² = 1.25 А.

Задача 4.

Допустимая плотность
тока для обмотки трансформатора J
= 2.5 А/мм². Через обмотку проходит ток I
= 4 А. Каким должно быть поперечное сечение
(диаметр) круглого сечения проводника,
чтобы обмотка не перегревалась?

Решение

Площадь поперечного
сечения S
= I/J
= (4 А) / (2.5 А/мм²) = 1.6 мм²

Этому сечению
соответствует диаметр провода 1.42 мм.

Задача 5.

По изолированному
медному проводу сечением 4 мм² проходит
максимально допустимый ток 38 А (см.
таблицу). Какова допустимая плотность
тока? Чему равны допустимые плотности
тока для медных проводов сечением 1, 10
и 16 мм²?

Решение

1). Допустимая
плотность тока

J
= I/S
= 38 А / 4мм² = 9.5 А/мм².

2). Для сечения 1
мм² допустимая плотность тока (см. табл.)

J
= I/S
= 16 А / 1 мм² = 16 А/мм².

3). Для сечения 10
мм² допустимая плотность тока

J
= 70 A
/ 10 мм² = 7.0 А/мм²

4). Для сечения 16
мм² допустимая плотность тока

J = I/S =
85 А / 16 мм²
= 5.3 А/мм².

Допустимая плотность
тока с увеличением сечения падает. Табл.
действительна для электрических проводов
с изоляцией класса В.

Задачи для
самостоятельного решения

  1. Через обмотку
    трансформатора должен протекать ток
    I
    = 4 А. Какое должно быть сечение обмоточного
    провода при допустимой плотности тока
    J
    = 2.5 А/мм²? (S
    = 1.6
    мм²)

  2. По проводу диаметром
    0.3 мм проходит ток 100 мА. Какова плотность
    тока? (J
    = 1.415 А/мм²)

  3. По обмотке
    электромагнита из изолированного
    провода диаметром

d
= 2.26 мм (без учёта изоляции) проходит ток
10 А. Какова плотность

тока? (J
= 2.5 А/мм²).

4. Обмотка
трансформатора допускает плотность
тока 2.5 А/мм². Ток в обмотке равен 15 А.
Какое наименьшее сечение и диаметр
может иметь круглый провод (без учёта
изоляции)? (в мм²; 2.76 мм).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

2.3.1. Удельная проводимость и удельное сопротивление проводников

2.3.2. Температурный коэффициент удельного сопротивления металлов

2.3.3. Изменение удельного сопротивления металлов при плавлении

2.3.4. Изменение удельного сопротивления металлов при деформациях

2.3.5. Удельное сопротивление сплавов

2.3.6. Теплопроводность металлов

2.3.7. Термоэлектродвижущая сила

2.3.8. Механические свойства проводников

К важнейшим параметрам, характеризующим свойства проводниковых материалов, относятся:

  • удельная проводимость g или обратная ей величина – удельное сопротивление r,
  • температурный коэффициент удельного сопротивления ТКr или ar,
  • теплопроводность g т,
  • контактная разность потенциалов и термо-э.д.с.,
  • работа выхода электронов из металла,
  • предел прочности при растяжении sr и относительное удлинение при разрыве Dl/l.

2.3.1. Удельная проводимость и удельное сопротивление проводников

Связь плотности тока J, А/м2, и напряженности электрического поля Е, В/м, в проводнике дается известной формулой:

(2.1)

Здесь g, См/м – параметр проводникового материала, называемый его удельной проводимостью; в соответствии с законом Ома g не зависит от напряженности электрического поля при изменении последней в весьма широких пределах. Величина r=1/g, oбратная удельной проводимости и называемая удельным сопротивлением, для имеющего сопротивление R проводника длиной l с постоянным поперечным сечением S вычисляется по формуле

ρ = R·S/l. (2.2)

Единица СИ для удельного сопротивления — Ом·м. Диапазон значений удельного сопротивления ρ металлических проводников при нормальной температуре довольно узок: от 0.016 для серебра и до примерно 10 мкОм·м для железохромоалюминиевых сплавов, т.е. он занимает всего три порядка. Значение удельной проводимости γ в основном зависит от средней длины свободного пробега электронов в данном проводнике, которая, в свою очередь, определяется структурой проводникового материала. Все чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления; примеси, искажая решетку, приводят к увеличению ρ. И с точки зрения волновой теории, рассеяние электронных волн происходит на дефектах кристаллической решетки, которые соизмеримы с расстоянием порядка четверти длины электронной волны. Нарушения меньших размеров не вызывают заметного рассеяния волн.

2.3.2. Температурный коэффициент удельного сопротивления металлов

Число носителей заряда в металлическом проводнике при повышении температуры остается практически неизменным. Однако вследствие колебаний узлов кристаллической решетки с ростом температуры появляется все больше и больше препятствий на пути направленного под действием электрического поля движения свободных электронов, т.е. уменьшается средняя длина свободного пробега электрона, уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов, и увеличивается удельное сопротивление. Иными словами, температурный коэффициент удельного сопротивления металлов положителен.

2.3.3. Изменение удельного сопротивления металлов при плавлении

При переходе из твердого состояния в жидкое у большинства металлов наблюдается увеличение удельного сопротивления, как это видно из рис.2.1; однако некоторые металлы при плавлении повышают ρ.

Рис.2.1. Зависимость удельного сопротивления меди от температуры.

Рис.2.1. Зависимость удельного сопротивления меди от температуры.

Скачок соответствует температуре плавления меди 1083°С

Удельное сопротивление увеличивается при плавлении у тех металлов, которые при плавлении увеличивают объем, т.е. уменьшают плотность; у металлов с противоположным характером изменения объема при плавлении (аналогичным фазовому переходу лед-вода) ρ уменьшается.

2.3.4. Изменение удельного сопротивления металлов при деформациях

Изменение удельного сопротивления при растяжении или сжатии приближенно может оцениваться формулой

ρ = ρ0 (1± σ ·s) , (2.3)

где ρ — удельное сопротивление металла при механическом напряжении σ, ρ0 – удельное сопротивление металла, не подверженного механическому воздействию, s – коэффициент механического напряжения, характеризующий данный металл; знак плюс в формуле соответствует растяжению, минус – сжатию.

Изменение ρ при упругих деформациях объясняется изменением амплитуды колебаний узлов кристаллической решетки металла. При растяжении эти амплитуды увеличиваются, при сжатии – уменьшаются. Увеличение амплитуды колебаний узлов кристаллической решетки приводит к уменьшению подвижности носителей зарядов и, как следствие, к возрастанию ρ. Пластическая деформация, как правило, повышает удельное сопротивление металлов вследствие искажения кристаллической решетки. При рекристаллизации путем отжига удельное сопротивление может быть вновь снижено до первоначального значения.

2.3.5. Удельное сопротивление сплавов

Значительное возрастание ρ наблюдается при сплавлении двух металлов в том случае, если они образуют друг с другом твердый раствор, т.е. создают при отвердевании совместную кристаллизацию, и атомы одного металла входят в кристаллическую решетку другого. ρ имеет максимум, соответствующий некоторому определенному соотношению между содержанием компонентов в сплаве. Так, Н.С.Курнаков открыл, что в тех случаях, когда при определенном соотношении между компонентами они образуют друг с другом явно выраженные химические соединения (интерметаллиды), на кривых ρ в функции состава наблюдаются изломы (рис.2.2).

Рис. 2.2. Зависимость удельного сопротивления сплавов цинк – магний от состава

Рис. 2.2. Зависимость удельного сопротивления сплавов цинк – магний от состава. Точка 1 соответствует чистому Mg, 2 – соединению MgZn, 3 — Mg2Zn3, ., 4 – MgZn4 5 – MgZn6, 6 – чистому Zn.

Исследования А.Ф.Иоффе показали, что многие интерметаллиды являются не веществами с металлическим характером электропроводности, а электронными полупроводниками.

Если же сплав двух металлов создает раздельную кристаллизацию, и структура застывшего сплава представляет собой смесь кристаллов каждого из компонентов (т.е. искажение кристаллической решетки каждого компонента не имеет места), то удельная проводимость γ сплава меняется с изменением состава приблизительно линейно, т.е. определяется арифметическим правилом смешения (рис.2.3).

Рис.2.3. Зависимость удельной проводимости сплавов медь – вольфрам от состава (в процентах по массе)

Рис.2.3. Зависимость удельной проводимости сплавов медь – вольфрам от состава (в процентах по массе)

2.3.6. Теплопроводность металлов

За передачу тепла через металл в основном ответственны те же свободные электроны, которые определяют и электропроводность металлов, и количество которых в единице объема весьма велико. Поэтому, как правило, теплопроводность γт металлов намного больше, чем теплопроводность диэлектриков. Очевидно, что при прочих равных условиях, чем больше удельная электрическая проводимость γ металла, тем больше должна быть и его теплопроводность. Легко также видеть, что при повышении температуры, когда подвижность электронов в металле и соответственно его удельная проводимость уменьшаются, отношение γт/γ δ должно возрастать.

Чистота и характер механической обработки металла могут заметно сказываться на его теплопроводности, в особенности при низких температурах.

2.3.7. Термоэлектродвижущая сила

При соприкосновении двух металлических проводников между ними возникает контактная разность потенциалов. Причина ее появления заключается в различии значений работы выхода электронов из различных металлов, а также в том, что концентрация электронов, а следовательно, и давление электронного газа у разных металлов и сплавов могут быть неодинаковыми. Из электронной теории металлов следует, что контактная разность потенциалов между металлами А и В равна:

(2.4)

где UА и UВ – потенциалы соприкасающихся металлов; nА и nВ – концентрации электронов в металлах А и В.

Если температуры «спаев» одинаковы, то сумма разностей потенциалов равны нулю. Иначе обстоит дело, когда один металл имеет температуру Т1, а другой – Т2.

Рис.2.4.Схема термопары Рис.2.4.Схема термопары

В этом случае между «спаями» возникает термо-э.д.с., равная

(2.5)

что можно записать в виде

(2.6)

Где с – постоянный для данной пары проводников коэффициент термо-э.д.с., т.е. термо-э.д.с. должна быть пропорциональна разности температур металлов.

Провод, составленный из двух изолированных друг от друга проволок из различных металлов или сплавов (термопара), может быть использован для измерения температур.

2.3.8. Механические свойства проводников

Они характеризуются пределом прочности при растяжении σр и относительным удлинением при разрыве Δl/l, а так же хрупкостью, твердостью и тому подобными свойствами. Механические свойства металлических проводников в большой степени зависят от механической и термической обработки, от наличия легирующих примесей и т.п. Влияние отжига приводит к существенному уменьшению σр и увеличению Δl/l. Такие параметры проводниковых материалов, как температуры кипения и плавления, удельная теплоемкость и др., не требуют особых пояснений.

Понравилась статья? Поделить с друзьями:
  • Как найти со спутника свой дом онлайн
  • Как найти дату установки виндовс
  • Как найти школьнику работу на дому
  • Как составить декларацию 3 ндфл в личном кабинете налогоплательщика при продаже авто
  • Телеграм как найти человека без номера телефона