Как найти температуру при известном количестве теплоты

Как вы думаете, что быстрее нагревается на плите: литр воды в кастрюльке или же сама кастрюлька массой 1 килограмм? Масса тел одинакова, можно предположить, что нагревание будет происходить с одинаковой скоростью.

А не тут-то было! Можете проделать эксперимент – поставьте пустую кастрюльку на огонь на несколько секунд, только не спалите, и запомните, до какой температуры она нагрелась. А потом налейте в кастрюлю воды ровно такого же веса, как и вес кастрюли. По идее, вода должна нагреться до такой же температуры, что и пустая кастрюля за вдвое большее время, так как в данном случае нагреваются они обе – и вода, и кастрюля.

Однако, даже если вы выждете втрое большее время, то убедитесь, что вода нагрелась все равно меньше. Воде потребуется почти в десять раз большее время, чтобы нагреться до такой же температуры, что и кастрюля того же веса. Почему это происходит? Что мешает воде нагреваться? Почему мы должны тратить лишний газ на подогрев воды при приготовлении пищи? Потому что существует физическая величина, называемая удельной теплоемкостью вещества.

Эта величина показывает, какое количество теплоты надо передать телу массой один килограмм, чтобы его температура увеличилась на один градус Цельсия. Измеряется в Дж/(кг * ˚С). Существует эта величина не по собственной прихоти, а по причине разности свойств различных веществ.

Удельная теплоемкость воды примерно в десять раз выше удельной теплоемкости железа, поэтому кастрюля нагреется в десять раз быстрее воды в ней. Любопытно, что удельная теплоемкость льда в два раза меньше теплоемкости воды. Поэтому лед будет нагреваться в два раза быстрее воды. Растопить лед проще, чем нагреть воду. Как ни странно звучит, но это факт.

Обозначается удельная теплоемкость буквой c и применяется в формуле для расчета количества теплоты:

где Q – это количество теплоты,
c – удельная теплоемкость,
m – масса тела,
t2 и t1 – соответственно, конечная и начальная температуры тела.

По этой формуле можно рассчитать количество тепла, которое нам необходимо, чтобы нагреть конкретное тело до определенной температуры. Удельную теплоемкость различных веществ можно найти из соответствующих таблиц.

А что насчет удельной теплоемкости газов? Тут все запутанней. С твердыми веществами и жидкостями дело обстоит намного проще. Их удельная теплоемкость – величина постоянная, известная, легко рассчитываемая. А что касается удельной теплоемкости газов, то величина эта очень различна в разных ситуациях. Возьмем для примера воздух. Удельная теплоемкость воздуха зависит от состава, влажности, атмосферного давления.

При этом, при увеличении температуры, газ увеличивается в объеме, и нам надо ввести еще одно значение – постоянного или переменного объема, что тоже повлияет на теплоемкость. Поэтому при расчетах количества теплоты для воздуха и других газов пользуются специальными графиками величин удельной теплоемкости газов в зависимости от различных факторов и условий.

Предыдущая тема: Количество теплоты: формула, расчет
Следующая тема:&nbsp&nbsp&nbspЭнергия топлива: удельная теплота сгорания + ПРИМЕРЫ

Все неприличные комментарии будут удаляться.

все для проектирования

Формула расчета конечной температуры воды после смещения холодной и горячей:

где: Тс — температура смещенной воды, град.

М1 — масса холодной воды, кг

М2 — масса горячей воды, кг

Т1 — температура холодной воды, град.

Т2 — температура горячей воды, град.

Пример 1:

холодная вода 10 литров температурой 5 град смешивается с горячей водой 8 литров 60 градусов.

Необходимо определить конечную температуру воды. Подставляем все значения в формулу 1:

Формула расчета количество холодной и горячей воды в зависимости от температуры:

Бывает задача стоит в обратном направлении. Когда наоборот известно какую температуру необходимо иметь на выходе и общий вес воды, но не известна масса холодной и горячей воды. Тогда из формула 1 выводим новую формулу:

Пример 2:

из циркуляционного душа воды выходит температурой 36 градусов и объемом 40 литров. Необходимо определить количество холодной и горячей воды.

Как правило холодная вода имеет расчетную температуру 5 градусов. Горячая вода — 60 градусов.

Подставляем значения в формулу 2 и 3:

М1=(36*40-60*40)/(5-60)=17,45 литров холодной воды

М2=40-17,45=22,55 литров горячей воды

Удачного Вам дня! И успешных проектов!

Выше конечной целью теплового расчете являлось определение поверхности нагрева и основных размеров теплообменника для его дальнейшего конструирования. Предположим теперь, что теплообменник уже имеется или по крайней мере спроектирован. В этом случае целью теплового расчета является определение конечных температур рабочих жидкостей. Это — так называемый поверочный расчет.

При решении такой задачи известными являются следующие величины: поверхность нагрева F, коэффициент теплопередачи k, водяные эквиваленты W1 и W2 и начальные температуры t1 и t2, а искомыми: конечные температуры t1 и t2 и количество переданного тепла Q.

В приближенных расчетах можно исходить из следующих представлений. Количество тепла, отдаваемое горячей жидкостью, равно:

(2.13)

откуда конечная температура ее t1 определяется соотношением:

(a)

Соответственно для холодной жидкости имеем:

(2.14)

(b)

Если принять, что температуры рабочих жидкостей меняются по линейному закону, то

(с)

Вместо неизвестных t1 и t2 подставим их значения из уравнений (а) и (b), тогда получим:

(d)

Произведя дальнейшее преобразование, имеем:

(e)

откуда окончательно получаем:

(2.15)

Зная количество переданного тепла Q, очень просто формулам (а) и (b) определить и конечные температуры рабочих жидкостей t1 и t2.

Приведенная схема расчета, хотя и проста, однако применима лишь для ориентировочных расчетов и в случае небольших изменений температур жидкостей. В общем же случае конечная температура зависит от схемы движения рабочих жидкостей. Поэтому для прямотока и противотока ниже приводится вывод более точных формул.

1. Прямоток. Выше было показано, что температурный напор изменяется по экспоненциальному закону:

(2.16)

Имея в виду, что

и, что в конце поверхности нагрева Δt” = t1’ – t2, то, подставляя эти значения в уравнение (19), последнее можно представить в следующем виде:

(2.17)

Однако, это уравнение дает лишь разности температур. Чтобы отсюда получить конечные температуры в отдельности, необходимо обе части равенства вычесть из единицы:

(2.18)

(2.19)

[см. разд.2.1 уравнение (2.5)].

то, подставляя это значение в левую часть уравнения (2.19), получаем:

(2.20)

Последнее уравнение, показывает, что изменение температуры горячей жидкости δt1 равно некоторой доле П располагаемого начального температурного напора, t1’ – t2; эта доля зависит только от двух безразмерных параметров и .

Аналогичным образом из уравнения (2.19) можно получить выражение и для изменения температуры холодной жидкости, а именно:

(2.21)

Определив изменения температур рабочих жидкостей и зная их начальные температуры, легко определить конечные:

(2.22)

Расход тепла определяется путем умножения водяного эквивалента жидкости на изменение ее температуры:

(2.23)

Значение функции приведено на рис. 2.5. Формулы (2.21) – (2.23) могут быть применены и для расчета промежуточных значений температуры рабочих жидкостей и количества тепла. В этом случае в, расчетные формулы вместо F надо подставить значение Fx.

Пример 2.2. Имеется водяной холодильник с поверхностью нагрева F=8 м 2 . Определить конечные температуры жидкостей и часовое количество передаваемого тепла Q, если заданы следующие величины: V1= 0,25 м 3 /час, γ1 = 1100 кг/м 3 , cp1 = 0,727 ккал/кг °С и t1 = 120 °С Для охлаждения в распоряжении имеется 1000 л воды в час при температуре t2 = 10 °С. Кроме того, известно значение коэффициента теплопередачи k = 30 ккал/м 2 час °С.

Соответствующее значение функции П находим из рис.2.5:

Рис. 2.5. — вспомогательная функция для расчета конечной температуры при прямотоке

Изменение (понижение) температуры горячей жидкости согласно уравнению (2.20) равно:

Следовательно, конечная температура ее равна:

Количество переданного тепла в час определится по уравнению (2.23)

Изменение температуры холодной жидкости определяется по уравнению (2.21). Но его можно также определить и из соотношения Q = W2 (t2” — t2’), откуда

2. Противоток. Для противотока расчетные формулы выводятся так же, как и для прямотока. Окончательно они имеют следующий вид:

(2.24)

(2.25)

(2.26)

В частном случае, когда формулы

(2.24) – (2.26) принимают вид:

(2.27)

(2.28)

(2.29)

Значение функции приведено на рис. 2.6.

Рис. 2.6. — вспомогательная функция для расчета конечной температуры при противотоке

Для расчета промежуточных значений температуры рабочих жидкостей и количества переданного тепла в формулах (2.23) – (2.29) в числителе значение F заменяется на Fx, а в знаменателе остается значение полной поверхности F.

Пример 2.3. Если взять тот же теплообменник, который был рассмотрен в условиях прямотока, и допустить, что условия теплопередачи остаются без изменения (k = 30 ккал/м 2 час °С), то получим следующие соотношения:

Из рис. 2.6 находим значение функции Z:

Изменение температуры горячей жидкости равно [уравнение (2.24)]:

Конечная температура ее:

Изменение температуры холодной жидкости [уравнение (2.25)];

Конечная температура ее:

Количество переданного тепла в час [уравнение (2.26)]:

Таким образом, в случае противотока в теплообменнике происходит более глубокое охлаждение горячей жидкости.

3. Сравнение прямотока с противотоком. Чтобы выявить преимущество одной схемы перед другой, достаточно сравнить количество передаваемого тепла при прямотоке и противотоке при равенстве прочих условий. Для этого необходимо уравнение (2.23) разделить на уравнение (2.26). В результате этого действия мы получаем новую функцию тех же двух безразмерных аргументов

характер изменения которой графически показан на рис. 2.7.

Рис. 2.7. -сравнение прямотока с противотоком

Из рисунка следует, что схемы можно считать равноценными в том случае, если водяные эквиваленты обеих жидкостей значительно отличаются один от другого (при и при ) или если значение параметра — мало. Первое условие равнозначно тому, что изменение температуры одной жидкости незначительно по сравнению с изменением температуры другой. Далее, поскольку , то второе условие соответствует случаю, когда средний температурный напор значительно превышает изменения температур рабочих жидкостей. Во всех остальных случаях при одной и той же поверхности нагрева и одинаковых крайних температурах теплоносителей при прямотоке передается меньше тепла, чем при противотоке. Поэтому с теплотехнической точки зрения всегда следует отдавать предпочтение противотоку, если какие-либо другие причины (например, конструктивные) не заставляют применять прямоток. При этом следует иметь в виду, что при противотоке создаются более тяжелые температурные условия для металла, ибо одни и те же участки стенок теплообменника с обеих сторон омываются рабочими жидкостями с наиболее высокой температурой.

При конденсации и кипении температура жидкости постоянна. Это означает, что водяной эквивалент такой жидкости бесконечно велик. В этом случае прямоток и противоток равнозначны, и уравнения (2.23) и (2.26) становятся тождественными. Конечная температура той жидкости, для которой водяной эквивалент имеет конечное значение, определяется следующим образом.

При конденсации паров;

(2.30)

(2.31)

При кипении жидкостей:

(2.32)

(2.33)

Вместо t1 и t2 в уравнения (2.30) – (2.33) можно подставить температуру стенки, значение которой при этом также постоянно. Значения функции находятся из таблиц показательных функций.

В случае перекрестного тока конечные температуры рабочих жидкостей находятся между конечными температурами для прямотока и противотока. Поэтому в приближенных расчетах можно пользоваться методом расчета одной из указанных схем. Если одна из жидкостей движется навстречу другой зигзагообразно (смешанный ток), то расчет может быть произведен, как для противотока.

4. Влияние тепловых потерь и проницаемости стенок.Все вышеприведенные формулы справедливы для случая, когда тепловые потери во внешнюю среду равны нулю. В действительности они всегда имеются. Более или менее точно учесть их влияние, вообще говоря, возможно, однако расчетные формулы при этом становятся громоздкими. Поэтому для учета влияния тепловых потерь в практике обычно применяется приближенный метод, который состоит в следующем.

Тепловые потери со стороны горячей жидкости вызывают более сильное падение ее .температуры. Это равносильно случаю, когда теплоотдающая жидкость в аппарате без потерь в окружающую среду имела бы меньшее значение водяного эквивалента. Поэтому влияние потерь в окружающую среду можно учесть, изменив водяной эквивалент теплоотдающей жидкости в тепловом аппарате таким образом, чтобы в последнем происходило такое же понижение температуры, как и при потоке с действительным водяным числом при наличии тепловых потерь. Внешние тепловые потери со стороны холодной жидкости оказывают обратное влияние, они уменьшают повышение температуры жидкости, что приводит к кажущемуся увеличению ее водяного эквивалента.

Наличие присоса наружного холодного воздуха оказывает такое же влияние, как и внешняя потеря тепла. Присосанный вездух на горячей стороне понижает температуру горячей жидкости (газа) точно так же, как если бы теплообменный аппарат был абсолютно непроницаем, но жидкость имела меньшее значение водяного эквивалента. Присос вездуха на холодной стороне понижает температуру холодной жидкости, что равносильно увеличению значения водяного эквивалента.

Если потеря тепла составляет р% к общему количеству передаваемого тепла, то вместо действительного значения водяного эквивалента W в расчетные формулы следует подставить значение W’ которое определяется следующим образом:

(2.34)

Знак минус (-) берется для горячей, а знак плюс (+) для холодной жидкости.

При таком способе учета внешних тепловых потерь все приведенные выше формулы для расчета конечных температур можно применять без какого-либо их изменения.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Внутреннюю энергию термодинамической системы можно изменить двумя способами:

  1. совершая над системой работу,
  2. при помощи теплового взаимодействия.

Передача тепла телу не связана с совершением над телом макроскопической работы. В данном случае изменение внутренней энергии вызвано тем,
что отдельные молекулы тела с большей температурой совершают работу над некоторыми молекулами тела, которое имеет меньшую температуру. В этом
случае тепловое взаимодействие реализуется за счет теплопроводности. Передача энергии также возможна при помощи излучения. Система
микроскопических процессов (относящихся не ко всему телу, а к отдельным молекулам) называется теплопередачей. Количество энергии,
которое передается от одного тела к другому в результате теплопередачи, определяется количеством теплоты, которое предано от одного тела другому.

Определение

Теплотой
называют энергию, которая получается (или отдается) телом в процессе теплообмена с окружающими телами (средой).
Обозначается теплота, обычно буквой Q.

Это одна из основных величин в термодинамике. Теплота включена в математические выражения первого и второго начал термодинамики.
Говорят, что теплота – это энергия в форме молекулярного движения.

Теплота может сообщаться системе (телу), а может забираться от нее. Считают, что если тепло сообщается системе, то оно положительно.

Формула расчета теплоты при изменении температуры

Элементарное количество теплоты обозначим как . Обратим внимание,
что элемент тепла, которое получает (отдает) система при малом изменении ее состояния не является полным дифференциалом.
Причина этого состоит в том, что теплота является функцией процесса изменения состояния системы.

Элементарное количество тепла, которое сообщается системе, и температура при этом меняется от Tдо T+dT, равно:

где C – теплоемкость тела. Если рассматриваемое тело однородно, то формулу (1) для количества теплоты можно представить как:

где – удельная теплоемкость тела, m – масса тела,
— молярная теплоемкость,
– молярная масса вещества,
– число молей вещества.

Если тело однородно, а теплоемкость считают независимой от температуры, то количество теплоты
(), которое получает тело при увеличении его температуры на величину
можно вычислить как:

где t 2 , t 1 температуры тела до нагрева и после. Обратите внимание, что температуры при нахождении разности
() в расчетах можно подставлять как в градусах Цельсия, так и в кельвинах.

Формула количества теплоты при фазовых переходах

Переход от одной фазы вещества в другую сопровождается поглощением или выделением некоторого количества теплоты,
которая носит название теплоты фазового перехода.

Так, для перевода элемента вещества из состояния твердого тела в жидкость ему следует сообщить количество теплоты
() равное:

где – удельная теплота плавления, dm – элемент массы тела.
При этом следует учесть, что тело должно иметь температуру, равную температуре плавления рассматриваемого вещества.
При кристаллизации происходит выделение тепла равного (4).

Количество теплоты (теплота испарения), которое необходимо для перевода жидкости в пар можно найти как:

где r – удельная теплота испарения. При конденсации пара теплота выделяется. Теплота испарения равна теплоте конденсации одинаковых масс вещества.

Единицы измерения количества теплоты

Основной единицей измерения количества теплоты в системе СИ является: [Q]=Дж

Внесистемная единица теплоты, которая часто встречается в технических расчетах. [Q]=кал (калория). 1 кал=4,1868 Дж.

Примеры решения задач

Пример

Задание.
Какие объемы воды следует смешать, чтобы получить 200 л воды при температуре t=40С, если температура
одной массы воды t 1 =10С, второй массы воды t 2 =60С?

Решение.
Запишем уравнение теплового баланса в виде:

где Q=cmt – количество теплоты приготовленной после смешивания воды; Q 1 =cm 1 t 1 —
количество теплоты части воды температурой t 1 и массой m 1 ;
Q 2 =cm 2 t 2 — количество теплоты части воды температурой t 2 и массой m 2 .

Из уравнения (1.1) следует:

При объединении холодной (V 1) и горячей (V 2) частей воды в единый объем (V) можно принять то, что:

Так, мы получаем систему уравнений:

Решив ее получим:

Как известно, при различных механических процессах происходит изменение механической энергии . Мерой изменения механической энергии является работа сил, приложенных к системе:

При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.

Количество теплоты
— это мера изменения внутренней энергии, которую тело получает (или отдает) в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны энергии. Они не характеризуют само состояние системы, а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю). Количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры до температуры , рассчитывается по формуле

где c — удельная теплоемкость вещества;

Единицей удельной теплоемкости в СИ является джоуль на килограмм-Кельвин (Дж/(кг·К)).

Удельная теплоемкость
c численно равна количеству теплоты, которое необходимо сообщить телу массой 1 кг, чтобы нагреть его на 1 К.

Теплоемкость
тела численно равна количеству теплоты, необходимому для изменения температуры тела на 1 К:

Единицей теплоемкости тела в СИ является джоуль на Кельвин (Дж/К).

Для превращения жидкости в пар при неизменной температуре необходимо затратить количество теплоты

где L — удельная теплота парообразования. При конденсации пара выделяется такое же количество теплоты.

Для того чтобы расплавить кристаллическое тело массой m при температуре плавления, необходимо телу сообщить количество теплоты

где — удельная теплота плавления. При кристаллизации тела такое же количество теплоты выделяется.

Количество теплоты, которое выделяется при полном сгорании топлива массой m,

где q — удельная теплота сгорания.

Единица удельных теплот парообразования, плавления и сгорания в СИ — джоуль на килограмм (Дж/кг).

Как известно, при различных механических процессах происходит изменение механической энергии W
meh . Мерой изменения механической энергии является работа сил, приложенных к системе:

(~Delta W_{meh} = A.)

При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.

Количество теплоты
— это мера изменения внутренней энергии, которую тело получает (или отдает) в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны энергии. Они не характеризуют само состояние системы, а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю). Количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m
от температуры T
1 до температуры T
2 , рассчитывается по формуле

(~Q = cm (T_2 — T_1) = cm Delta T, qquad (1))

где c
— удельная теплоемкость вещества;

(~c = frac{Q}{m (T_2 — T_1)}.)

Единицей удельной теплоемкости в СИ является джоуль на килограмм-Кельвин (Дж/(кг·К)).

Удельная теплоемкость
c
численно равна количеству теплоты, которое необходимо сообщить телу массой 1 кг, чтобы нагреть его на 1 К.

Теплоемкость
тела C
T численно равна количеству теплоты, необходимому для изменения температуры тела на 1 К:

(~C_T = frac{Q}{T_2 — T_1} = cm.)

Единицей теплоемкости тела в СИ является джоуль на Кельвин (Дж/К).

Для превращения жидкости в пар при неизменной температуре необходимо затратить количество теплоты

(~Q = Lm, qquad (2))

где L
— удельная теплота парообразования. При конденсации пара выделяется такое же количество теплоты.

Для того чтобы расплавить кристаллическое тело массой m
при температуре плавления, необходимо телу сообщить количество теплоты

(~Q = lambda m, qquad (3))

где λ
— удельная теплота плавления. При кристаллизации тела такое же количество теплоты выделяется.

Количество теплоты, которое выделяется при полном сгорании топлива массой m
,

(~Q = qm, qquad (4))

где q
— удельная теплота сгорания.

Единица удельных теплот парообразования, плавления и сгорания в СИ — джоуль на килограмм (Дж/кг).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 154-155.

В данном уроке мы научимся рассчитывать количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении. Для этого мы обобщим те знания, которые были получены на предыдущих уроках.

Кроме того, мы научимся с помощью формулы для количества теплоты выражать остальные величины из этой формулы и рассчитывать их, зная другие величины. Также будет рассмотрен пример задачи с решением на вычисление количества теплоты.

Данный урок посвящен вычислению количества теплоты при нагревании тела или выделяемого им при охлаждении.

Умение вычислять необходимое количество теплоты является очень важным. Это может понадобиться, к примеру, при вычислении количества теплоты, которое необходимо сообщить воде для обогрева помещения.

Рис. 1. Количество теплоты, которое необходимо сообщить воде для обогрева помещения

Или для вычисления количества теплоты, которое выделяется при сжигании топлива в различных двигателях:

Рис. 2. Количество теплоты, которое выделяется при сжигании топлива в двигателе

Также эти знания нужны, например, чтобы определить количество теплоты, которое выделяется Солнцем и попадает на Землю:

Рис. 3. Количество теплоты, выделяемое Солнцем и попадающее на Землю

Для вычисления количества теплоты необходимо знать три вещи (рис. 4):

  • массу тела (которую, обычно, можно измерить с помощью весов);
  • разность температур, на которую необходимо нагреть тело или охладить его (обычно измеряется с помощью термометра);
  • удельную теплоемкость тела (которую можно определить по таблице).

Рис. 4. Что необходимо знать для определения

Формула, по которой вычисляется количество теплоты, выглядит так:

В этой формуле фигурируют следующие величины:

Количество теплоты, измеряется в джоулях (Дж);

Удельная теплоемкость вещества, измеряется в ;


разность температур, измеряется в градусах Цельсия ().

Рассмотрим задачу на вычисление количества теплоты.

Задача

В медном стакане массой грамм находится вода объемом литра при температуре . Какое количество теплоты необходимо передать стакану с водой, чтобы его температура стала равна ?

Рис. 5. Иллюстрация условия задачи

Сначала запишем краткое условие (Дано
) и переведем все величины в систему интернационал (СИ).

Решение:

Сначала определи, какие еще величины потребуются нам для решения данной задачи. По таблице удельной теплоемкости (табл. 1) находим (удельная теплоемкость меди, так как по условию стакан медный), (удельная теплоемкость воды, так как по условию в стакане находится вода). Кроме того, мы знаем, что для вычисления количества теплоты нам понадобится масса воды. По условию нам дан лишь объем. Поэтому из таблицы возьмем плотность воды: (табл. 2).

Табл. 1. Удельная теплоемкость некоторых веществ,

Табл. 2. Плотности некоторых жидкостей

Теперь у нас есть все необходимое для решения данной задачи.

Заметим, что итоговое количество теплоты будет состоять из суммы количества теплоты, необходимого для нагревания медного стакана и количества теплоты, необходимого для нагревания воды в нем:

Рассчитаем сначала количество теплоты, необходимое для нагревания медного стакана:

Прежде чем вычислить количество теплоты, необходимое для нагревания воды, рассчитаем массу воды по формуле, хорошо знакомой нам из 7 класса:

Теперь можем вычислить:

Тогда можем вычислить:

Напомним, что означает: килоджоули. Приставка «кило» означает , то есть .

Ответ:
.

Для удобства решения задач на нахождение количества теплоты (так называемые прямые задачи) и связанных с этим понятием величин можно пользоваться следующей таблицей.

Искомая величина

Обозначение

Единицы измерения

Основная формула

Формула для величины

Количество теплоты

В данном уроке мы научимся рассчитывать количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении. Для этого мы обобщим те знания, которые были получены на предыдущих уроках.

Кроме того, мы научимся с помощью формулы для количества теплоты выражать остальные величины из этой формулы и рассчитывать их, зная другие величины. Также будет рассмотрен пример задачи с решением на вычисление количества теплоты.

Данный урок посвящен вычислению количества теплоты при нагревании тела или выделяемого им при охлаждении.

Умение вычислять необходимое количество теплоты является очень важным. Это может понадобиться, к примеру, при вычислении количества теплоты, которое необходимо сообщить воде для обогрева помещения.

Рис. 1. Количество теплоты, которое необходимо сообщить воде для обогрева помещения

Или для вычисления количества теплоты, которое выделяется при сжигании топлива в различных двигателях:

Рис. 2. Количество теплоты, которое выделяется при сжигании топлива в двигателе

Также эти знания нужны, например, чтобы определить количество теплоты, которое выделяется Солнцем и попадает на Землю:

Рис. 3. Количество теплоты, выделяемое Солнцем и попадающее на Землю

Для вычисления количества теплоты необходимо знать три вещи (рис. 4):

  • массу тела (которую, обычно, можно измерить с помощью весов);
  • разность температур, на которую необходимо нагреть тело или охладить его (обычно измеряется с помощью термометра);
  • удельную теплоемкость тела (которую можно определить по таблице).

Рис. 4. Что необходимо знать для определения

Формула, по которой вычисляется количество теплоты, выглядит так:

В этой формуле фигурируют следующие величины:

Количество теплоты, измеряется в джоулях (Дж);

Удельная теплоемкость вещества, измеряется в ;


разность температур, измеряется в градусах Цельсия ().

Рассмотрим задачу на вычисление количества теплоты.

Задача

В медном стакане массой грамм находится вода объемом литра при температуре . Какое количество теплоты необходимо передать стакану с водой, чтобы его температура стала равна ?

Рис. 5. Иллюстрация условия задачи

Сначала запишем краткое условие (Дано
) и переведем все величины в систему интернационал (СИ).

Решение:

Сначала определи, какие еще величины потребуются нам для решения данной задачи. По таблице удельной теплоемкости (табл. 1) находим (удельная теплоемкость меди, так как по условию стакан медный), (удельная теплоемкость воды, так как по условию в стакане находится вода). Кроме того, мы знаем, что для вычисления количества теплоты нам понадобится масса воды. По условию нам дан лишь объем. Поэтому из таблицы возьмем плотность воды: (табл. 2).

Табл. 1. Удельная теплоемкость некоторых веществ,

Табл. 2. Плотности некоторых жидкостей

Теперь у нас есть все необходимое для решения данной задачи.

Заметим, что итоговое количество теплоты будет состоять из суммы количества теплоты, необходимого для нагревания медного стакана и количества теплоты, необходимого для нагревания воды в нем:

Рассчитаем сначала количество теплоты, необходимое для нагревания медного стакана:

Прежде чем вычислить количество теплоты, необходимое для нагревания воды, рассчитаем массу воды по формуле, хорошо знакомой нам из 7 класса:

Теперь можем вычислить:

Тогда можем вычислить:

Напомним, что означает: килоджоули. Приставка «кило» означает , то есть .

Ответ:
.

Для удобства решения задач на нахождение количества теплоты (так называемые прямые задачи) и связанных с этим понятием величин можно пользоваться следующей таблицей.

Искомая величина

Обозначение

Единицы измерения

Основная формула

Формула для величины

Количество теплоты

Расчет конечной температуры реакции по удельной теплоемкости

На чтение 2 мин. Просмотров 96 Опубликовано 04.06.2021

Этот пример задачи демонстрирует, как вычислить конечную температуру вещества, учитывая количество использованной энергии, массу и начальную температуру.

Содержание

  1. Проблема
  2. Решение
  3. Конечная температура После смешивания
  4. Задача
  5. Решение

Проблема

300 граммов этанола при 10 ° C нагреваются с помощью 14640 джоулей энергии. Какова конечная температура этанола?

Полезная информация : удельная теплоемкость этанола составляет 2,44 Дж/г · ° C.

Решение

Используйте формулу

q = mcΔT

Где

  • q = Нагрев Энергия
  • m = Масса
  • c = Удельная теплоемкость
  • ΔT = Изменение температуры.

14640 Дж = (300 г) (2,44 Дж/г · ° C) ΔT

Решить для ΔT:

  1. ΔT = 14640 Дж/(300 г) (2,44 Дж/г · ° C)
  2. ΔT = 20 ° C
  3. ΔT = T final – T начальный
  4. T final = T начальный + ΔT
  5. T final = 10 ° C + 20 ° C
  6. T final = 30 ° C

Ответ : Конечная температура этанола составляет 30 ° C.

Конечная температура После смешивания

Когда вы смешиваете вместе два вещества с разными начальными температурами применяются одни и те же принципы. Если материалы не вступают в химическую реакцию, все, что вам нужно сделать для определения конечной температуры, – это предположить, что оба вещества в конечном итоге достигнут одинаковой температуры.

Задача

Найдите конечную температуру, когда 10,0 граммов алюминия при 130,0 ° C смешиваются с 200,0 граммами воды при 25 ° C. Предположим, что вода не теряется в виде водяного пара.

Решение

Опять же, вы используете q = mcΔT, но предполагаете, что q aluminium = q water и решите для T, которая является конечной температурой. Вам нужно найти значения удельной теплоемкости (c) для алюминия и воды. В этом решении используется 0,901 для алюминия и 4,18 для воды:

  • (10) (130 – T) (0.901) = (200.0) ( T – 25) (4.18)
  • T = 26,12 ° C

 Связь между
молярной (Cm)
и удельной (с) теплоемкостями газа

Cm=cM,
где М
молярная
масса газа.

 Молярные
теплоемкости*
при
постоянном объеме и постоянном давлении
соответственно равны

Cv=iR/2;
Cp=(i+2)R/2

где i
— число
степеней свободы; R
молярная
газовая постоян­ная.

 Удельные
теплоемкости при постоянной объеме и
постоянном давлении соответственно
равны

,

.

 Уравнение Майера

Cр—Сv=R.

 Показатель
адиабаты

,
или
,
или.

 Внутренняя
энергия идеального газа

U=N<>
или U=vCvT,

где <>—средняя
кинетическая энергия молекулы;
N—число
молекул газа;
v
— количество
вещества.

 Работа, связанная
с изменением объема газа, в общем случае
вычисляется по формуле

,

где V1
начальный
объем газа; V2
его
конечный объем.

Работа газа:

а) при изобарном
процессе (p=const)

A=p(V2

V1);

б) при изотермическом
процессе (T=const)

;

*
Здесь и далее
в целях упрощения записи в индексах
обозначений молярной теплоемкости при
постоянном давлении и постоянном объеме
букву «m»
будем опускать.

в) при адиабатном
процессе

,
или
,

где T1
— начальная
температура газа; T2
его
конечная темпера­тура.

 Уравнение Пуассона
(уравнение газового состояния при
адиа­батном процессе)

.

 Связь между
начальным и конечным значениями
параметров состояний газа при адиабатном
процессе:

.

 Первое начало
термодинамики в общем случае записывается
в виде

Q=U+A,

где Q
– количество теплоты, сообщённое газу;
U—изменение
его внутренней энергии; А

работа, совершаемая газом против внешних
сил.

Первое начало
термодинамики:

а) при изобарном
процессе

б) при изохорном
процессе (A=0)

;

в) при изотермическом
процессе (U=0)

,

г) при адиабатном
процессе (Q=0)

.

 Термический
коэффициент полезного действия (КПД)
цикла
в
общем случае

,

где Q1—количество
теплоты, полученное рабочим телом
(газом) от нагревателя; Q2—количество
теплоты, переданное рабочим телом
охладителю.

КПД цикла Карно

,
или

,

где T1
— температура
нагревателя; T2
— температура
охладителя.

 Изменение энтропии

где A
и B
— пределы
интегрирования, соответствующие
начально­му и конечному состояниям
системы. Так как процесс равновесный,
то
интегрирование проводится по любому
пути.

 Формула Больцмана

S=klnW,

где
S — энтропия
системы;
W

термодинамическая вероятность ее
состояния; k

постоянная Больцмана.

Примеры решения задач

Пример
1.
Вычислить
удельные теплоемкости неона и водорода
при постоянных объеме (сv)
и давлении (cp),
принимая эти газы за идеальные.

Решение.
Удельные теплоемкости идеальных газов
выра­жаются формулами

; (1)

. (2)

Для неона (одноатомный
газ) i1=3,
M1=2010
кг/моль.

Подставив в формулы
(1) и
(2) значения
i1,
M1
и R
и произведя вычисления, найдем:

сv1=
624
Дж/(кгК);
сp1=1,04
кДж/(кгК).

Для водорода
(двухатомный газ) i2=5,
M2=210-3
кг/моль.

Вычисление по
формулам
(1) и
(2) дает
следующие значения удельных теплоемкостей
водорода:

сv2=10,4
кДж/(кгK);
сp2=14,6
кДж/(кгK).

Пример
2.
Вычислить
удельные теплоемкости сv
и сp
смеси неона и водорода. Массовые доли
газов соответственно равны 1=0,8
и 2=0,2.
Значения удельных теплоемкостей газов
взять из примера
1.

Решение.
Удельную теплоемкость смеси при
постоянном объеме сv
найдем из следующих рассуждений. Теплоту,
необходи­мую для нагревания смеси на
T,
выразим двумя соотношениями:

Q=сv(m1+m2)T
(1)

где сv
— удельная
теплоемкость смеси; m1
— масса
неона; m2
— масса
водорода, и

Q=(сv1m1+
сv2m2)T (2)

где сv1
и сv2
удельные
теплоемкости неона и водорода
соответст­венно.

Приравняв правые
части выражений
(1) и
(2) и разделив
обе части полученного равенства на
T,
найдем

сv(m1+m2)=
сv1m1+
сv2m2,

откуда

Отношения
1=m1/(m1+m2)
и 1=m2/(m1+m2)
выражают мас­совые доли соответственно
неона и водорода. С учетом этих обозна­чений
последняя формула, примет вид

сvv11+
сv22.

Подставив в эту
формулу числовые значения величин,
найдем

сv=2,58
кДж/(кгК).

Рассуждая
таким
же
образок, получим формулу для вычисления
удельной теплоёмкости смеси при
постоянном давлении:

cpp11+
сp22

Произведя вычисления
по этой формуле, найдем

cp=3,73
кДж/(кгК).

Пример
3.
Определить
количество теплоты, поглощаемой
водоро­дом массой m=0,2
кг при нагревании его от температуры
t1=0°С
до температуры t2=100
°С при постоянном давлении. Найти также
изменение внутренней энергии газа и
совершаемую им работу.

Решение.
Количество теплоты Q,
поглощаемое газом при изобарном
нагревании, определяется по формуле

Q=mcpT,
(1)

где m
масса
нагреваемого газа; cp
его
удельная теплоемкость при постоянном
давлении; T
— изменение температуры газа.

Как известно,
.
Подставив это выражение cp
в формулу
(1), получим

Произведя вычисления
по этой формуле, найдем

Q=291
кДж.

Внутренняя энергия
выражается формулой
,
сле­довательно, изменение внутренней
энергии

.

После подстановки
в эту формулу числовых значений величин
и вычислений получим U=208
кДж.

Работу расширения газа
определим по формуле, выражающей первое
начало термодинамики: Q=U+A,
откуда

A=Q — U.

Подставив значения
Q и U,
найдем

А
=83 кДж.

Пример
4.
Кислород
занимает объем V1=1
м3
и находится под давлением р1=200
кПа. Газ нагрели сначала при по­стоянном
давлении до объема V2=3
м2,
a
затем при постоянном объеме до давления
Рис
11.1 р2=500
кПа. Построить график процесса и найти:
1) изменение
U
внутренней энер­гии газа; 2)
совершенную им работу A;
3) количество
теплоты
Q,
переданное
газу.

Решение.
Построим график процесса (рис.
11.1). На
графике точками
1, 2, 3
обозначены состояния газа, характеризуемые
пара­метрами (р1,
V1,
T1),
(р1,
V2,
T2),
(р2,
V2,
T3).

1.
Изменение внутренней энергии газа при
переходе его из со­стояния
1 в состояние
3 выражается
формулой

U=cvmT,

где cv
удельная
теплоемкость газа при постоянном объеме;
m
масса
газа; T
— разность
температур, соответствующих конечному
3 и
начальному 1 состояниям, т. е. T=T3
T
1.
Так как

;

где М
молярная
масса газа, то

.
(1)

Температуры T1
и T3
выразим из уравнения Менделеева
— Кла­пейрона
():

С учетом этого
равенство
(1) перепишем
в виде

U=(i/2)(p2V2p1V1).

Подставим сюда
значения величин (учтем, что для кислорода,
как двухатомного газа, i=5)
и произведем вычисления:

U=3,25
МДж.

2.
Полная работа, совершаемая газом, равна
A=A1+A2,
где A1
работа
на участке
1—2; A2
— работа
на участке
2—3,

На участке
1—2 давление
постоянно (p=const).
Работа в этом случае выражается формулой
A1=p1V=p1(V2—V1).
На участке 2—3
объем газа не изменяется и, следовательно,
работа газа на этом участке равна нулю
(A2=0).
Таким образом,

A=A1=p1(V2—V1).

Подставив в эту
формулу значения физических величин,
произ­ведем вычисления:

A=0,4
МДж

3.
Согласно первому началу термодинамики,
количество теплоты Q,
переданное газу, равно сумме ра­боты
A,
совершенной газом, и изме­нению U
внутренней энергии:

Q=A+U,
или
Q=3,65 МДж.

Пример
5.
Идеальный
двухатом­ный газ, содержащий количество
ве­щества v=l
моль, находится под дав­лением p1=250кПа
и занимает объем V1==10
л. Сначала газ изохорно на­гревают до
температуры T2=400
К. Далее, изотермически расширяя, до­водят
его до первоначального давле­ния.
После этого путем изобарного сжатия
возвращают газ в начальное состояние.
Определить термический КПД 
цикла.

Решение.
Для наглядности построим сначала график
цикла, который состоит из изохоры,
изотермы и изобары. В координатах р,
Vэтот
цикл имеет вид. представленный на рис.
11.2. Характерные
точки цикла обозначим
1, 2, 3.

Термический КПД
любого цикла определяется выражением

=(Q1
– Q2)/Q1,
или =l
– Q2/Q1,
(1) где
Q1

количество теплоты, полученное газом
за цикл от нагре­вателя; Q2
— количество теплоты, отданное газом
за цикл охлади­телю.

Заметим, что разность
количеств теплоты Q1
– Q2
равна работе A,
совершаемой газом за цикл.
Эта
работа на графике в координа­тах р,
V (рис.
11.2)
изображается площадью цикла (площадь
цикла заштрихована).

Рабочее вещество
(газ) получает количество теплоты
Q1
на двух участках: Q1-2
на участке
1—2 (изохорный
процесс) и Q2-3
на участке
2—3
(изотермический процесс). Таким образом,

Q1=Q1-2+Q2-3.

Количество теплоты,
полученное газом при изохорном процессе,
равно

Q1-2=Cvv(T2

T1),

где Cv
— молярная
теплоемкость газа при постоянном объеме;
v
— количестве вещества. Температуру T1
начального состояния газа найдем,
воспользовавшись уравнением Клапейрона
— Менде­леева:

T1=p1V1/(vR).

Подставив числовые
значения и произведя вычисления, получим

Количество теплоты,
полученное газом при изотермическом
про­цессе, равно

Q2-3=vRT2ln(V2/V1),

где V2

объем, занимаемый газом при температуре
T2
и давлении p1
(точка
3 на графике).

На участке
3—1 газ
отдает количество теплоты Q2,
равное

Q2=Q3-1=Cpv(T2
T1),
где Cp
молярная
теплоемкость газа при изобарном процессе.

Подставим найденные
значения
Q1
и Q2
в формулу
(1):

В полученном
выражении заменим отношение объемов
V2/V1,
со­гласно закону Гей-Люссака, отношением
температур (V2/V1=T2/T1)
и выразим Cv
и Cp
через число степеней свободы молекулы
[Cv=iR/2,
Cp=(i+2)R/2].
Тогда после сокращения на
v
и R/2
получим

.

Подставив значения
i,
T1,
T2
и R
и произведя вычисления, най­дем

Пример 6.
В цилиндре под поршнем находится водород
массой m=0,02
кг при температуре T1=300K.
Водород начал расширяться адиабатно,
увеличив свой объем в пять раз, а затем
был сжат изо­термически, причем объем
газа уменьшился в пять раз. Найти
тем­пературу Т2,
в конце адиабатного расширения и работу
А,
совершен­ную газом. Изобразить процесс
графически.

Решение.
Температуры и объемы газа, совершающего
адиа­батный процесс, связаны между
собой соотношением

,

где —
показатель адиабаты (для водорода как
двухатомного газа =1,4).

Отсюда получаем
выражение для конечной температуры T2:

.

Подставляя числовые
значения заданных величин, находим

.

Прологарифмируем
обе части полученного выражения:

lgT2=lg300+0,4(lgl
— lg5)=2,477+0,4( -0,699)=2,477—0,280=2,197.

Зная lgT2,
по таблицам антилогарифмов находим
искомое зна­чение T2:

T2=157
К.

Работа A1
газа при адиабатном расширении
определяется по формуле

.

Подставив сюда
числовые значения величин, после
вычисления получим

Работа A2
газа при изотермическом сжатии выражается
форму­лой

A2=RT2(m/M)ln(V2/V1).

Произведя вычисления
по этой формуле, найдем

A2=
-21 кДж.

Знак минус показывает,
что при сжатии газа работа совершена
внешними силами.

Общая работа,
совершенная газом при рассмотренных
процессах, А=A1+A2=29,8кДж
+ (-21 кДж)=8,8 кДж.

График процесса
приведен на рис.
11.3.

Пример
7. Нагреватель
тепловой машины, работающей по обра­тимому
циклу Карно, имеет температуру
t1==200°С.
Определить температуру Т2,
охладителя, если при получении от
нагревателя количества теплоты Q1=
1 Дж машина
совершает работу A=0,4
Дж? Потери на трение и теплоотдачу не
учитывать.

Решение.Температуру охладителя найдем, использовав
выражение для термического КПД ма­шины,
работающей по циклу Карно,=(T1
T2)/T1.
Отсюда

T2=
T1(1-).

(1)

Термический КПД
тепловой машины выражает отношение
количества тепло­ты, которое превращено
в механичес­кою работу A,
к количеству теплоты Q1,
которое получено рабочим телом тепло­вой
машины из внешней среды (от нагре­вателя),
т. е. =A/Q1.
Подставив это выражение в формулу
(1), найдем

T2=
T
1(1-A/Q).
(2)

Учтя, что T1=473
К, после вычисления по формуле
(2) получим
T2=284
К.

Пример
8.
Найти
изменение S
энтропии при нагревании воды массой
m=100
г от температуры t1=0°C
до температуры
t2=100
°С и последующем превращении воды в пар
той же температуры.

Решение.
Найдем отдельно изменение энтропии S’
при нагревании воды и изменение энтропии
S»
при превращении ее в пар. Полное изменение
энтропии выразится суммой S’
и S».

Как известно,
изменение энтропии выражается общей
формулой

(1)

При бесконечно
малом изменении dT
температуры нагреваемого тела
затрачивается количество теплоты
dQ=mcdT,
где m
масса
тела; с
— его
удельная теплоемкость. Подставив
выражение dQ
в равенство
(1), найдем
формулу для вычисления изменения
энтро­пии при нагревании воды:

.

Вынесем за знак
интеграла постоянные величины и
произведем интегрирование, тогда получим

S’=mcln(T2/T1).

После вычислений
найдем S’=132
Дж/К.

При вычислении по
формуле
(1) изменения
энтропии во время превращения воды в
пар той же температуры постоянная
температуpa
T
‘выносится
за знак интеграла. Вычислив интеграл,
найдем

(2)

где Q

количество теплоты, переданное при
превращении нагре­той воды в пар той
же температуры.

Подставив в равенство
(2) выражение
количества теплоты Q=m,
где 
удельная
теплота парообразования, получим


(3)

Произведя вычисления
по формуле
(3), найдем

S»=605
Дж/К.

Полное изменение
энтропии при нагревании воды и последую­щем
превращении ее в пар S=S’+S»=737
Дж/К.

Пример
9.
Определить
изменение S
энтропии при изотермиче­ском расширении
кислорода массой m=10
г от объема V1=25
л до объема V2=100
л.

Решение.
Так как процесс изотермический, то в
общем выражении энтропии

температуру выносят за знак интеграла.
Выполнив это, получим

(1)

Количество теплоты
Q, полученное
газом, найдем по первому началу
термодинамики: Q=U+A.
Для изотермического процесса U=0,
следовательно,

Q=A,
(2) а
работа А для этого процесса определяется
по формуле

A=(m/M)RT
ln(V2/V1).

(3)

С учетом
(2) и
(3) равенство
(1) примет
вид

S=(m/M)R
ln(V2/V1).
(4)

Подставив в
(4) числовые
значения и произведя вычисления, по­лучим

S=(1010-3/(3210-3))
8,31
ln(10010-3/(2510-3))
Дж/К=3,60
Дж/К.

Вы познакомились с понятиями количества теплоты и удельной теплоемкости. В уроке «Расчет количества теплоты, необходимого для нагревании тела или выделяемого им при охлаждении» вы познакомились с основной формулой, которую мы будем использовать и в этом уроке:

$Q = cm(t_2 — t_1)$

В данном уроке мы рассмотрим задачи на нахождение различных величин, связанных с нагреванием и охлаждением тел. При их решении вам может понадобиться таблица значений удельной теплоемкости различных веществ из прошлого урока.

Задача №1 на расчет количества теплоты

Рассчитайте количество теплоты, необходимое для нагрева $15 space кг$ меди на $80 degree C$.

Дано:
$m = 15 space кг$
$c = 400 frac{Дж}{кг cdot degree C}$
$Delta t = 80 degree C$

$Q — ?$

Показать решение и ответ

Скрыть

Решение:

Для решения этой задачи мы будем использовать формулу для расчета количества теплоты, необходимого для нагревания тела:
$Q = cm(t_2 — t_1)$.

В данном случае нам не известны начальная и конечная температуры тела ($t_2$ и $t_1$). Нам известно изменение этой температуры: $Delta t = t_2 — t_1$. Тогда формула для расчета количества теплоты примет вид:
$Q = cm Delta t$.

Подставим значения всех величин и рассчитаем количество теплоты:
$Q = 400 frac{Дж}{кг cdot degree C} cdot 15 space кг cdot 80 degree C = 480 space 000 space Дж = 480 space кДж$.

Ответ: $Q = 480 space кДж$.

Задача №2 на расчет количества теплоты

Рассчитайте количество теплоты, необходимое, чтобы нагреть бассейн объемом $300 space м^3$ на $10 degree C$.

В задаче идет речь о бассейне, а значит, о пресной воде. Она имеет плотность, равную $1000 frac{кг}{м^3}$. Запишем условия задачи и решим ее.

Дано:
$V = 300 space м^3$
$Delta t = 10 degree C$
$c = 4200 frac{Дж}{кг cdot degree C}$
$rho = 1000 frac{кг}{м^3}$
$c = 4200 frac{Дж}{кг cdot degree C}$

$Q — ?$

Показать решение и ответ

Скрыть

Решение:

Формула для расчета количества теплоты, необходимого для нагревания тела:
$Q = cm(t_2 — t_1)$.

Нам неизвестна масса воды в бассейне, но известен ее объем и плотность. Плотность по определению:
$rho = frac{m}{V}$.

Тогда масса будет равна:
$m = rho V$.

Также нам неизвестны начальная и конечная температуры тела ($t_2$ и $t_1$). Нам известно изменение этой температуры: $Delta t = t_2 — t_1$. Тогда формула для расчета количества теплоты примет вид:
$Q = c rho V Delta t$.

Рассчитаем количество теплоты:
$Q = 4200 frac{Дж}{кг cdot degree C} cdot 1000 frac{кг}{м^3} cdot 300 space м^3 cdot 10 degree C = 12.6 cdot 10^9 space Дж = 12.6 space ГДж$.

Ответ: $Q = 12.6 space ГДж$.

Задача №3 на расчет массы

Найдите массу глицерина, если при нагревании от $10 degree C$ до $15 degree C$ он поглотил $12 space кДж$ теплоты. Удельная теплоемкость глицерина равна $2430 frac{Дж}{кг cdot degree C}$.

Дано:
$Q = 12 space кДж$
$t_1 = 10 degree C$
$t_2 = 15 degree C$
$c = 2430 frac{Дж}{кг cdot degree C}$

СИ:
$Q = 12 cdot 10^3 space Дж$

$m — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Формула для расчета количества теплоты, необходимого для нагревания тела:
$Q = cm(t_2 — t_1)$.

Выразим отсюда массу глицерина:
$m = frac{Q}{c(t_2 — t_1)}$.

Рассчитаем:
$m = frac{12 cdot 10^3 space Дж}{2430 frac{Дж}{кг cdot degree C} cdot (15 degree C — 10 degree C)} approx 1 space кг$.

Ответ: $m approx 1 space кг$.

Задача №4 на расчет плотности

Определите плотность машинного масла объемом $1 space л$, если известно, что для увеличения температуры на $30 degree C$ ему требуется передать $45 space кДж$ теплоты. Удельная теплоемкость масла равна $1.67 frac{кДж}{кг cdot degree C}$.

Дано:
$V = 1 space л$
$Q = 45 space кДж$
$c = 1.67 frac{кДж}{кг cdot degree C}$
$Delta t = 30 degree C$

СИ:
$V = 10^{-3} space м^3$
$Q = 45 cdot 10^3 space Дж$
$c = 1.67 cdot 10^3 frac{Дж}{кг cdot degree C}$

$rho — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Формула для расчета количества теплоты, необходимого для нагревания тела:
$Q = cm(t_2 — t_1)$.

Нам известны изменение температуры ($Delta t = t_2 — t_1$), количество теплоты и удельная теплоемкость машинного масла. Выразим массу и рассчитаем ее:
$m = frac{Q}{c Delta t} = frac{45 cdot 10^3 space Дж}{1.67 cdot 10^3 frac{Дж}{кг cdot degree C} cdot 30 degree C} approx 0.9 space кг$.

По определению плотности:
$rho = frac{m}{V}$.

Рассчитаем плотность машинного масла:
$rho = frac{0.9 space кг}{10^{-3} space м^3} = 0.9 cdot 10^3 frac{кг}{м^3} = 900 frac{кг}{м^3}$.

Ответ: $rho = 900 frac{кг}{м^3}$.

Задача №5 на расчет удельной теплоемкости

В калориметр было налито $450 space г$ воды, температура которой $20 degree C$. Когда в эту воду погрузили $200 space г$ железных опилок, нагретых до $100 degree C$, температура воды стала равна $24 degree C$. Определите удельную теплоемкость опилок.

Записывая условия задачи, используем индекс “в” для обозначения величин, связанных с водой, и индекс “ж” для обозначения величин, связанных с железными опилками.

Дано:
$m_в = 450 space г$
$m_ж = 200 space г$
$t_{в1} = 20 degree C$
$t_{в2} = 24 degree C$
$c_в = 4200 frac{Дж}{кг cdot degree C}$
$t_{ж1} = 100 degree C$

СИ:
$m_в = 0.45 space кг$
$m_ж = 0.2 space кг$

$с_ж — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Формула для расчета количества теплоты, необходимого для нагревания тела и выделяемого при его охлаждении:
$Q = cm(t_2 — t_1)$.

Запишем эту формулу для воды:
$Q_в = c_в m_в (t_{в2} — t_{в1})$.

Запишем формулу количества теплоты для железных опилок:
$Q_ж = c_ж m_ж (t_{ж2} — t_{ж1})$.

Нагретые железные опилки помещают в воду для их охлаждения. Значит, вода будет нагреваться и поглотит некоторое количество теплоты, а опилки будут охлаждаться и выделят некоторое количество теплоты. Т.е., между этими телами будет происходить теплообмен, для которого действует уже известное вам правило:

Если между телами происходит теплообмен, то внутренняя энергия всех нагревающихся тел увеличивается на столько, на сколько уменьшается внутренняя энергия остывающих тел.

Это значит, что количество теплоты $Q_в$, полученное водой, будет равно количеству теплоту $Q_ж$, которое выделится при охлаждении железных опилок, но с обратным знаком: $Q_в = — Q_ж$.

Подставим выражения, которые дает формула для расчета количества теплоты:
$c_в m_в (t_{в2} — t_{в1}) = — c_ж m_ж (t_{ж2} — t_{ж1})$.

После завершения теплообмена температура воды и температура железных опилок будут равны друг другу: $t_в2 = t_ж2 = t_2$.

Подставим в наше равенство и выразим $c_ж$:
$c_ж = — frac{c_в m_в (t_2 — t_{в1})}{m_ж (t_2 — t_{ж1})}$.

Рассчитаем удельную теплоемкость железных опилок:
$c_ж = — frac{4200 frac{Дж}{кг cdot degree C} cdot 0.45 space кг cdot (24 degree C — 20 degree C)}{0.2 space кг cdot (24 degree C — 100 degree C)} = — frac{7560 space Дж}{- 15.2 space кг cdot degree C} approx 497 frac{Дж}{кг cdot degree C} approx 0.5 frac{кДж}{кг cdot degree C}$.

Ответ: $c_ж approx 0.5 frac{кДж}{кг cdot degree C}$.

Задача №6 на использование графика

Используя график зависимости температуры керосина от сообщенного ему количества теплоты (рисунок 1), определите массу керосина.

Рисунок 1. График зависимости температуры керосина от сообщаемого количества теплоты

Для начала нам нужно записать условия задачи. Из графика мы видим, что начальная температура керосина $t_1$ была равна $0 degree C$. Теперь выберем удобную нам точку на графике. Например, когда керосину сообщили количество теплоты $Q$, равное $2 space кДж$, его температура $t_2$ стала равной $10 degree C$. Теперь мы можем записать условия задачи и решить ее. Удельная теплоемкость керосина известна нам из таблицы.

Дано:
$Q = 2 space кДж$
$t_1 = 0 degree C$
$t_2 = 10 degree C$
$c = 2100 frac{Дж}{кг cdot degree C}$

СИ:
$Q = 2 cdot 10^3 space Дж$

$m — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Формула для расчета количества теплоты, необходимого для нагревания тела:
$Q = cm(t_2 — t_1)$.

Выразим отсюда массу:
$m = frac{Q}{c (t_2 — t_1)}$.

Рассчитаем ее:
$m = frac{2 cdot 10^3 space Дж}{2100 frac{Дж}{кг cdot degree C} cdot (10 degree C — 0 degree C)} approx 0.095 space кг approx 100 space г$.

Ответ: $m approx 100 space г$.

Задача №7 на расчет температуры нагрева

Стальной резец массой $2 space кг$ был нагрет до температуры $800 degree C$ и затем опущен в сосуд, содержащий $15 space л$ воды при температуре $10 degree C$. До какой температуры нагреется вода в сосуде?

Записывая условия задачи, используем индекс “в” для обозначения величин, связанных с водой, и индекс “р” для обозначения величин, связанных со стальным резцом.

Дано:
$V_в = 15 space л$
$m_р = 2 space кг$
$t_{р1} = 800 degree C$
$c_р = 500 frac{Дж}{кг cdot degree C}$
$rho_в = 1000 frac{кг}{м^3}$
$c_в = 4200 frac{Дж}{кг cdot degree C}$
$t_{в1} = 10 degree C$

СИ:
$V_в = 15 cdot 10^3 м^3$

$t_{в2} — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Когда нагретый резец опускают в холодную воду, между этими двумя телами происходит теплообмен. Резец остывает и выделяет энергию, а вода получает эту энергию и нагревается. Соответственно, количество теплоты, которое выделится при остывании стального резца, численно будет равно количеству теплоту, которое получит вода. 

Когда теплообмен завершится,температуры стального резца и воды будут одинаковы: $t_{в2} = t_{р2} = t_2$.

Запишем формулу для расчета количества теплоты, которое выделится при остывании резца:
$Q_р = с_р m_р (t_2 — t_{р1})$.

Запишем формулу для расчета количества теплоты, которое получила вода:
$Q_в = с_в m_в (t_2 — t_{в1})$.

Приравняем правые части этих уравнений, не забыв про знак “минус”, которые указывает на выделение энергии при охлаждении тела:
$с_р m_р (t_2 — t_{р1}) = — с_в m_в (t_2 — t_{в1})$.

Раскроем скобки:
$с_р m_р t_2 — с_р m_р t_{р1} = — с_в m_в t_2 + с_в m_в t_{в1}$.

Перенесем множители с $t_2$ на одну сторону уравнения и выразим эту температуру, до которой нагреется вода:
$с_р m_р t_2 + с_в m_в t_2 =  с_в m_в t_{в1} + с_р m_р t_{р1}$,
$t_2 (с_р m_р +  с_в m_в) =  с_в m_в t_{в1} + с_р m_р t_{р1}$,
$t_2 = frac{с_в m_в t_{в1} + с_р m_р t_{р1}}{с_р m_р +  с_в m_в}$.

Нам неизвестна масса воды, но известны ее плотность и объем. Выразим и рассчитаем массу через эти величины:
$m_в = rho_в V_в = 1000 frac{кг}{м^3} cdot 15 cdot 10^3 м^3 = 15 space кг$.

Теперь мы можем рассчитать температуру $t_2$:
$t_2 = frac{4200 frac{Дж}{кг cdot degree C} cdot 15 space кг cdot 10 degree C + 500 frac{Дж}{кг cdot degree C} cdot 2 space кг cdot 800 degree C}{500 frac{Дж}{кг cdot degree C} cdot 2 space кг + 4200 frac{Дж}{кг cdot degree C} cdot 15 space кг} = frac{630 cdot 10^3 space Дж + 800 cdot 10^3 space Дж}{1 cdot 10^3 frac{Дж}{degree C} + 63 cdot 10^3 frac{Дж}{degree C}} = frac{1430 cdot 10^3 space Дж}{64 cdot 10^3 frac{Дж}{degree C}} approx 22.3 degree C$.

Ответ: $t_2 approx 22.3 degree C$.

Какой температуры получится вода, если смешать $0.02 space кг$ воды при $15 degree C$, $0.03 space кг$ воды при $25 degree C$ и $0.01 space кг$ воды при $60 degree C$?

Дано:
$m_1 = 0.02 space кг$
$t_1 = 15 degree C$
$m_2 = 0.03 space кг$
$t_2 = 25 degree C$
$m_3 = 0.01 space кг$
$t_3 = 60 degree C$

$t — ?$

Посмотреть решение и ответ

Скрыть

Решение:

При смешивании жидкостей разных температур, мы знаем, что внутренняя энергия всех нагревающихся тел увеличивается на столько, на сколько уменьшается внутренняя энергия остывающих тел.

Для смешивания двух жидкостей мы можем записать, что $Q_1 = — Q_2$ или $Q_1 + Q_2 = 0$.

Сначала рассмотрим смешивание первых двух порций воды. Первая порция с температурой $15 degree C$ будет нагреваться (получать энергию), а вторая порция с температурой $25 degree C$ будет охлаждаться (выделять энергию). Эти энергии будут численно равны друг другу, но противоположны по знаку:
$cm_1(t_{1+2} — t_1) = — cm_2(t_{1+2} — t_2)$.

Найдем конечную температуру этой смеси:
$m_1(t_{1+2} — t_1) = — m_2 (t_{1+2} — t_2)$,
$m_1 t_{1+2} — m_1 t_1 = -m_2 t_{1+2} + m_2 t_2$,
$t_{1+2} (m_1 + m_2) = m_1 t_1 + m_2 t_2$,

$t_{1+2} = frac{m_1 t_1 + m_2 t_2}{m_1 + m_2} = frac{0.02 space кг cdot 15 degree C + 0.03 space кг cdot 25 degree }{0.02 space кг + 0.03 space кг} = frac{0.3 space кг cdot degree + 0.75 space кг cdot degree C}{0.05 space кг} = 21 degree C$.

Так мы получили смесь первой и второй порций воды массой $m_{1+2} = 0.05 space кг$ и температурой $t_{1+2} = 21 degree C$.

Теперь добавим третью порцию воды  в полученную смесь. Смесь будет нагреваться (получать энергию), а третья порция воды будет охлаждаться (выделять энергию):
$Q_{1+2} = — Q_3$.
$cm_{1+2} (t — t_{1+2}) = — cm_3 (t — t_3)$,
$m_{1+2} (t — t_{1+2}) = — m_3 (t — t_3)$.

Выразим отсюда конечную температуру смеси из трех порций воды $t$:
$m_{1+2} t — m_{1+2} t_{1+2} = -m_3 t + m_3 t_3$,
$t (m_{1+2} + m_3) = m_{1+2} t_{1+2} + m_3 t_3$,
$t = frac{m_{1+2} t_{1+2} + m_3 t_3}{m_{1+2} + m_3}$.

Рассчитаем ее:
$t = frac{0.05 space кг cdot 21 degree C + 0.01 space кг cdot 60 degree}{0.05 space кг + 0.01 space кг} = frac{1.05 space кг cdot degree C + 0.6 space кг cdot degree C}{0.06 space кг} = 27.5 degree C$.

Ответ: $t = 27.5 degree C$.

Задача №9 на расчет количества теплоты, рассеиваемого в окружающую среду

Электрочайник с водой нагревается от температуры $70 degree C$ до температуры $80 degree C$ за $3 space мин$, а остывает от температуры $80 degree C$ до температуры $70 degree C$ за $9 space мин$. Какая часть количества теплоты, выделяемой  спиралью чайника при нагревании воды, рассеивается в окружающую среду? Тепловые потери считать постоянными.

Внесем необходимые пояснения. Спираль чайника передает воде определенное количество теплоты $Q_2$. Часть ее ($Q_1$) рассеивается в окружающую среду. Т.е., количество теплоты $Q_2$, выделяемое спиралью, больше количества теплоты $Q$, необходимого для нагрева воды.

Дано:
$t_1 = 70 degree C$
$t_2 = 80 degree C$
$T_1 = 3 space мин$
$T_2 = 9 space мин$

$frac{Q_1}{Q_2} — ?$

Показать решение и ответ

Скрыть 

Решение:

Сначала рассчитаем количество теплоты, которое необходимо сообщить воде в чайнике, чтобы ее температура увеличилась с $70 degree C$ до $80 degree C$:
$Q = cm(t_2 — t_1)$.

Масса воды в чайнике нам неизвестна, поэтому примем ее, равной $1 space кг$. Тогда,
$Q = 4200 frac{Дж}{кг cdot degree C} cdot 1 space кг cdot (80 degree C — 70 degree C) = 42 space 000 space Дж = 42 space кДж$.

Когда вода в чайнике остывает с температуры $80 degree C$ до температуры $70 degree C$, она выделяет в окружающую среду точно такое же количество энергии $Q$. Остывание происходит за $9 space мин$. Значит, количество теплоты, которое выделяется в окружающую среду за $1 space мин$ будет равно:
$Q_0 = frac{42 space кДж}{9 space мин} approx 4.7 frac{кДж}{мин}$.

В условиях задачи сказано, что тепловые потери постоянны. Это означает, что вода массой $1 space кг$ отдает $4.7 space кДж$ каждую минуту, в том числе, и при ее нагревании.

Нагревается вода за 3 минуты. За это время она отдает в окружающую среду следующее количество теплоты:
$Q_1 = 4.7 space кДж cdot 3 = 14.1 space кДж$.

Тем не менее, чайник нагрел воду до нужной температуры. Значит, он сообщил воде количество энергии, равное $Q_2 = Q + Q_1$.
$Q_2 = 42 space кДж + 14.1 space кДж = 56.1 space кДж$.

Теперь мы можем рассчитать отношение $frac{Q_1}{Q_2}$, и узнать какая часть теплоты, выделяемая спиралью чайника, рассеивается в окружающую среду:
$frac{Q_1}{Q_2} = frac{14.1 space кДж}{56.1 space кДж} approx 0.25$.

Т.е., в окружающую среду рассеивается $frac{1}{4}$ часть энергии, сообщаемая воде в чайнике.

Можно доказать, что это соотношение останется постоянным для воды любой массы в этой задаче. Чем больше будет масса воды, тем больше энергии ей будет нужно, чтобы нагреться до определенной температуры. Больше будут и тепловые потери. Искомое соотношение же останется неизменным.

Ответ: $frac{Q_1}{Q_2} approx 0.25$.

Понравилась статья? Поделить с друзьями:
  • Как найти проекцию скорости на координатную ось
  • The smart card is not responding to a reset код ошибки 80100066 как исправить
  • Как составить предложение на эсперанто
  • Как найти папку с песнями
  • Как составить ментальную карту для рассказа