Как найти температуру смоченного термометра

  • Главная
  • »

  • Статьи и обзоры
  • »

  • Что такое температура мокрого (влажного) термометра?

Что такое температура мокрого (влажного) термометра?

Температура мокрого термометра имеет решающее значение для конструкции и размеров градирни. Градирня охлаждает воду путем испарения до температур, которые ниже температуры окружающей среды и приближаются к температуре мокрого термометра. Но что же такое температура мокрого термометра и как она рассчитывается?

Температура мокрого термометра — это минимально возможная температура, до которой может быть охлаждена вода за счет испарения при постоянном давлении. При этом воздух становится насыщенным (абсолютная влажность повышается).

Для испарения воды требуется тепло. Если это испарение является адиабатическим (т.е. без притока теплоты), то тепло извлекается из окружающей среды — из воды и воздуха. В результате чего воздух становится более влажным. То же самое происходит, когда мы выходим из душа или бассейна. Вода на нашем теле испаряется, извлекает тепло из нашего тела, и мы можем простудиться.

Как измеряется температура мокрого термометра?

Температура мокрого термометра может быть измерена с помощью обычного ртутного или спиртового термометра, колба которого обернута влажной тканью или марлей. Марля соединяется хлопковой нитью с емкостью с водой за счет чего поддерживается мокрой. Термометр размещается в воздушном потоке, вода испаряется, а измеряемая температура снижается. Вода продолжает испаряться, до тех пор, пока воздух не станет насыщенным, т.е. относительная влажность вырастет до 100%. Система приходит в равновесие, а достигнутая температура и есть температура мокрого термометра. Сухой воздух позволяет испарить больше воды, а значит температура мокрого термометра будет ниже. Чем больше разница между температурой сухого мокрого термометров, тем суше воздух и тем больше воды может испариться.

Какая разница между температурой мокрого термометра и точки росы?

Температура мокрого термометра не совпадает с температурой точки росы. Точка росы — это температура, при которой водяной пар начинает конденсироваться из-за охлаждения воздуха (более низкая энтальпия), без добавления или удаления влаги (абсолютная влажность остается постоянной). Точка росы ниже температуры мокрого термометра, которая, в свою очередь, ниже температуры сухого термометра (если относительная влажность менее 100%).

Как рассчитывается температура мокрого термометра?

Таким образом, мы можем заключить, что существует связь между температурой сухого и мокрого термометра, точкой росы и влажностью. Это отношение может быть показано с помощью i-d диаграммы влажного воздуха.

Горизонтальные красные линии — температура сухого термометра (° C)

Вертикальные черные линии — абсолютная влажность или влагосодержание (г / кг)

Косые черные линии — это линии постоянной энтальпии (кДж / кг)

Синие кривые — относительная влажность (%)

Чтобы определить температуру мокрого термометра, мы должны найти пересечение между горизонтальной линией температуры сухого термометра и кривой относительной влажности. Оттуда необходимо провести линию параллельно с наклонными линиями постоянной энтальпии. На пересечении с кривой 100% относительной влажности и будет точка температуры мокрого термометра.

Точка росы определяется путем проведения вертикальной линии от пересечения горизонтальной линии температуры сухого термометра и кривой относительной влажности. На пересечении с кривой 100% относительной влажности Вы получите температуру точки росы.

Пример: при температуре окружающей среды 30 ° C и относительной влажности 40% температура мокрого термометра составляет 20 ° C, а точка росы 15 ° C.

Как применяется температура мокрого термометра при расчете градирен?

Охлаждение воды в градирне очень в маленькой степени осуществляется за счет охлаждения воды воздухом. В основном охлаждение достигается за счет испарения части оборотной воды. Тепло (энергия), необходимое для испарения, отбирается от охлаждаемой воды (адиабатическое испарение). Пары воды насыщают воздух, проходящий через градирню, и увеличивает относительную влажность воздуха. Испарение позволяет воде охлаждаться до температур ниже температуры окружающей среды и приближаться к температуре мокрого термометра. Поэтому эта температура крайне важна при проектировании градирни.

Размер градирни зависит, с одной стороны, от тепловой мощности (функция разности температур и расхода), а также от разницы температур между выходящей охлажденной водой и температурой мокрого термометра – приближение. Чем меньше приближение, тем больше градирня при той же мощности. Таким образом, при температуре мокрого термометра 22°С и графике работы градирни 36/26°С (приближение 4°С) градирня мощностью 500 кВт будет больше градирни 500 кВт с приближением 6°С (график работы 38/28°С).

Оценить климатическую обстановку нам поможет простейший прибор — обычный стеклянный капиллярный термометр. Поместим термометр в баню с температурой 40°С. Показание термометра составит, естественно, 40°С. Примем, что этот термометр имитирует тело человека. 

Теперь смочим резервуар термометра водой с температурой 40°С. Казалось бы, ничего не должно случиться. Но к нашему удивлению показания термометра начнут снижаться. Значит и мокрое тело человека должно охлаждаться. Действительно, если вы разденетесь в натопленной жилой комнате, то холода вы не почувствуете. Но стоит только смочить кожу водой (даже тёплой), вы наверняка тотчас отчётливо почувствуете охлаждение смоченного участка тела. Этот факт является определяющим для правильного понимания климатических особенностей бань — в банях должно быть тепло не только с сухой, но и с мокрой кожей.

Таким образом, смачивая резервуар капиллярного термометра водой и снимая его показания, мы можем получить сведения о характере ощущений при смачивании кожи человека водой. Показания же сухого термометра характеризуют ощущения сухого человека.

Рис. 18. Принцип устройства психрометра
Рис. 18. Принцип устройства психрометра. 1 — капиллярный термометр (сухой), 2 — капиллярный термометр (влажный), 3 — резервуар термометра, 4 — фитиль из батиста, 5 — сосуд с водой, 6 — экраны для защиты от лучистого нагрева.

Термометр со смоченным резервуаром уже давно с успехом используется в метеорологии и называется влажным (смоченным) термометром. Он конструктивно представляет собой обычный термометр, резервуар которого обмотан ватным тампоном (хлопчатобумажным фитилём), смоченным водой (рис. 18). Влажный термометр показывает, к какой температуре будет стремиться мокрое (влажное, смоченное, вспотевшее) тело человека в бане. Сухой термометр показывает истинную температуру воздуха в бане.

Рис. 19. Зависимость показаний влажного (смоченного) термометра от относительной влажности воздуха (психрометрическая кривая) при температуре Тс = 40°С.
Рис. 19. Зависимость показаний влажного (смоченного) термометра от относительной влажности воздуха (психрометрическая кривая) при температуре Тс = 40°С.

На рисунке 19 приведена широко известная в метеорологии так называемая психрометрическая кривая, рассчитанная для температуры воздуха 40°С по сухому термометру. Видно, что чем ниже относительная влажность воздуха (измеряемая гигрометром), тем ниже показания влажного термометра, тем более прохладно чувствует себя человек при одной и той же температуре воздуха.

Причина этого давно известна. Если на поверхности любого (живого или неживого) тела имеется вода (влага), то она, испаряясь, приводит к охлаждению предмета. Это охлаждение вызвано тем, что испарение воды требует больших затрат тепла 539 кал/г (2250 кДж/кг), называемых скрытой теплотой испарения. Но если испарение воды с поверхности предмета невозможно (например, если воды на предмете вообще нет или эта вода находится под слоем жира (масла, сала) или если относительная влажность изотермического с предметом воздуха равна 100%, и воздух просто физически не может больше принять в себя воду), то и охлаждение предмета не происходит. То есть человек своими органами чувств (кожными терморецепторами) способен правильно оценить температуру воздуха лишь тогда, когда его кожа сухая и/или засалена и/или когда воздух не способен принять испаряющийся пот (влагу), и в силу этого испарение невозможно. Так и термометр показывает истинную температуру воздуха лишь в двух случаях: либо если он сухой, либо если воздух до предела насыщен водой и имеет поэтому относительную влажность 100% (рис. 19).

О чём говорит любителю бани психрометрическая кривая? Предположим, вы входите сухим в турецкую баню, нагретую до температуры 40°С. При этом под турецкой баней будем понимать замкнутый сосуд (каменный, деревянный, металлический, пластиковый), дно, стенки и крышка которого всюду нагреты до одной и той же температуры, в данном случае до 40°С. Воздух, естественно, тоже нагрет до 40°С. Поскольку у вас кожа сухая, вы начинаете нагреваться до 40°С (как и сухой термометр). Становится жарко. Протираете себя мокрой, нагретой до 40°С тряпкой и неожиданно отчётливо чувствуете, что баня, только что бывшая тёплой, становится неимоверно холодной. Смотрите на гигрометр — он показывает относительную влажность 50%. Ну что ж, ясно, ведь согласно психрометрической кривой ваше мокрое (смоченное, влажное) тело стремится к температуре 30°С. Значит надо повышать температуру, чтобы не закоченеть. Но есть и другой путь. Плеснём воду на пол турецкой бани. Вода начинает испаряться, влажность воздуха повышается и при достижении относительной влажности воздуха 94% ваше влажное тело нагревается до 39°С, а при достижении относительной влажности воздуха 100% — до 40°С. Вновь становится жарко, хотя температура по показаниям сухого термометра как была равна 40°С, так и осталась.

Так что же, достаточна ли температура 40°С для бани? Почему то жарко, то холодно? Ответ ясен — говорить о температуре бани без указания влажности воздуха бессмысленно точно так же, как в обычной метеорологии. Если вы приземляетесь в Гаване, и вам говорят, что температура воздуха за бортом 40°С при влажности 90%, то значит вам придётся выходить в душное пекло. Но если вы приземляетесь в Ашхабаде, и вам говорят, что за бортом 40°С при влажности 10%, то вы можете даже не снимать пиджак, а на ветерке в тени даже почувствовать «прохладу». Важным фактором является состояние кожи — с сухой кожей вам в сухом горячем воздухе может стать жарко, а вот с мокрой кожей может стать даже холодно. Отметим, что в дальнейшем, говоря о мокрой коже, мы будем иметь в виду специально (искусственно) намоченную водой кожу. Так что для правильных заключений о банной метеообстановке человек должен быть обязательно в неразгорячённом состоянии и должен сопоставить свои ощущения как при сухой, так и при специально намоченной водой (а не просто потной) коже. Это объясняется тем, что пот обычно хуже испаряется (чем обычная вода на коже), поскольку при малых содержаниях пот находится в порах кожи, а при больших содержаниях (в виде капель на коже) пот может быть покрыт маслянистой плёнкой, и, кроме того, содержать много солей, повышающих температуру кипения воды. К тому же потный человек неминуемо находится в разгорячённом состоянии, при котором субъективные оценки тепла и холода условны.

Рис. 20. термодинамическая I — d — диаграмма влажного воздуха, рассчитанная для нормального барометрического давления р=1 атм.
Рис. 20. термодинамическая I — d — диаграмма влажного воздуха, рассчитанная для нормального барометрического давления р=1 атм. По вертикальной оси температура воздуха Тс (в градусах Цельсия по сухому термометру). По горизональной оси — абсолютная влажность воздуха d (количество водяных паров в килограммах на один кубический метр воздуха). Кривые — зависимости d от Тс для разных значений относительной влажности воздуха ф в процентах. Прямые — линии постоянства энтальпии (теплосодержания) влажного воздуха I = const для значений 40, 80 и 120кДж/кг. Порядок определения показания влажного термометра Тв: из точки с определёнными Тс и d проводим наклонную стрелу вдоль линии I = const до пересечения с кривой, соответствующей φ = 100%; считываем показание Тв, соответствующее точке пересечения. Порядок определения точки росы Тр: из точки с определёнными Тс и d проводим вертикальную стрелу вдоль линии d = const до пересечения с кривой, соответствующей φ =100%; считываем показание Тр, соответствующее точке пересечения.

В метеорологии понятие влажного термометра считается основополагающим. Совокупность показаний сухого и влажного термометров, составляющих психрометр (рис. 18), однозначно определяет относительную влажность. Относительная влажность может быть измерена независимо прибором гигрометром, а затем по показаниям сухого термометра и гигрометра может быть рассчитано значение показания влажного термометра. Для специалистов напомним для справки универсальную диаграмму влажного воздуха (рис. 20), детальный вид которой можно найти в любой книге по климатологии. Из этой диаграммы, зная любые два значения из шести показателей (температура сухого термометра Тс, температура влажного термометра Тв, температура точки росы Тр, относительная влажность φ, абсолютная влажность d, энтальпия воздуха I), можно определить и остальные.

Рис. 21. Диаграммы для определения эквивалентно-эффективной (кажущейся) температуры воздуха Тэ по показаниям сухого Тс и влажного Тв термометров при различных скоростях движения воздуха V
Рис. 21. Диаграммы для определения эквивалентно-эффективной (кажущейся) температуры воздуха Тэ по показаниям сухого Тс и влажного Тв термометров при различных скоростях движения воздуха V: а — для одетого человека, б — для раздетого человека. Для определения Тэ находим на осях значения показаний сухого и влажного термометров, соединяем их прямой, на пересечении прямой с кривой, соответствующей действующему значению скорости ветра, считываем значение Тэ. Зона комфорта Тэ = 17-22°С. А — внедомовая зона, Б — бытовая зона, В — банная зона.

Совершенно ясно, что не только относительная влажность воздуха влияет на показания влажного термометра. Например, если обдувать сухим воздухом влажный термометр, то скорость испарения увеличится, и показания термометра ещё более снизятся. Поэтому в климатологии (являющейся теоретической базой физиотерапии в медицине и кондиционирования воздуха в строительстве) учитываются факторы движения воздуха. На рис. 21 приведены зависимости кажущейся («эквивалентно-эффективной») температуры воздуха от влажности и скорости движения воздуха (А.В. Яковенко, Вопросы курортологии, № 4, 1969 г., стр. 356-363). Отметим, что эти зависимости объясняют инверсию ощущений человека при низких температурах в зоне А, когда сухой воздух ощущается как более «тёплый». Нас же интересует высокотемпературная зона В, отвечающая банным условиям, и также имеющая инверсию, о которой и пойдёт речь в следующих разделах.

Рис. 22. Значения радиационно-эффективной температуры ТRэ при различных температурах неподвижного воздуха Тс и различных средних значениях температуры поверхности сложным образом
Рис. 22. Значения радиационно-эффективной температуры ТRэ при различных температурах неподвижного воздуха Тс и различных средних значениях температуры поверхности сложным образом, то есть и нагревом термометра лучистым потоком, и охлаждением его за счёт испарения воды с поверхности резервуара, в том числе и с учётом движения воздуха.

Также ясно, что если термометр находится в зоне лучистых потоков, то его показания увеличиваются. Всем известно, что показания термометра «на солнце» выше, чем в «тени». В быту поэтому говорят, что температура воздуха «на солнце» больше, чем в «тени». Это, конечно, не правильно. Температура воздуха «на солнце» не может заметно отличаться от температуры воздуха в «тени» вследствие наличия движения воздушных масс (под действием конвекции, ветра). За счёт лучистых потоков нагревается не воздух, а корпус термометра, в том числе и резервуар расширяющейся жидкости. Так что, как и прежде, термометр измеряет не температуру воздуха, а температуру самого себя. При этом, чем «черней» корпус термометра, тем выше его показания, поскольку чёрные предметы сильней поглощают тепловое излучение (то есть меньше отражают), а потому и сильней нагреваются. Тепловое излучение исходит от окружающих нагретых поверхностей, интенсивность этого излучения быстро увеличивается с ростом температуры излучающих поверхностей. На рис. 22 приведена характерная качественная зависимость показаний сухого термометра (так называемой «радиационно-эффективной» температуры), используемая во многих книгах по климатологии (см., например, В.И. Полушкин и др., Отопление, вентиляция и кондиционирование, СПб.: Профессия, 2001 г.). Таким образом, банные климатические условия в принципе могут быть получены при низких температурах воздуха, но высоких температурах стен. Однако и в этом случае ощущения человека с мокрой кожей характеризуются показаниями влажного термометра, которые формируются

Отметим, что в популярной литературе встречаются ошибочные мнения, что увлажнение воздуха в банях приводит к существенному повышению теплоёмкости и теплопроводности воздуха, и именно поэтому тепловой поток на тело человека при поддачах в бане возрастает. На самом деле теплоёмкости и теплопроводности воздуха и водяных паров (как газов без учёта явлений конденсации пара) близки:

Численные значения для 100°С и 1 атм Воздух сухой Водяной пар
Коэффициент теплопроводности, Вт/м•сек 0,032 0,024
Удельная теплоёмкость, кДж/м³ град 1,3 1,5
Вязкость кинематическая, м²/сек 2,3•10⁻⁵ 1,9•10⁻⁵
Вязкость динамическая, кг/м•сек 2,2•10⁻⁵ 1,1•10⁻⁵
Плотность, кг/м³ 0,95 0,58

Ясно, что при удельном массовом содержании водяных паров в воздухе на уровне 5% (эта цифра отвечает хомотермальной влажности воздуха 0,05 кг/м³), свойства влажного воздуха будут практически неотличимы от свойств сухого. Так что, главным фактором в тепловом балансе человека в бане являются потери на испарение воды с кожи. В то же время неверны и «медицинские» заключения, что на испарение воды с кожи человек тратит так много тепла, что «теряет калории» и худеет, «сжигая» жировые запасы. В действительности же, мокрый человек, как и мокрый термометр, вовсе не «сжигает» жир и не тратит калорий. Это вода на коже испаряется и вследствие чего охлаждается, а охлаждённая вода охлаждает и кожу. Так что человек может терять вес лишь за счёт выделения пота, причём сам процесс выделения пота практически не требует затрат калорий. Действительно, сколько ни смачивай кожу водой, жировые запасы в организме не снизятся (разве что человеку станет холодно и он ознобом начнёт тратить калории на судорожные сокращения мышц).

Источник: Теория бань. Хошев Ю.М. 2006

Температура мокрого термометра или по-другому температура адиабатного насыщения может быть описана следующим определением:
Это минимальная температура, до которой воздух может быть охлаждён испарением в нём воды без использования искусственного тепла или холода.
Или более строго:

Это температура, которую принимает ненасыщенный влажный воздух с начальными параметрами в результате адиабатного тепло- и массообмена с водой в жидком или твёрдом состоянии, имеющей постоянную температуру после достижения им насыщенного состояния.

Примерную температуру мокрого термометра можно определить обернув обычный термометр мокрой тканью и создав поток скоростью около 4 м/с (например используя вентилятор), при этом не допуская нагревания термометра от солнца.

При известных параметрах воздуха в начальном ненасыщенном ($varphi<100%$) состоянии температуру мокрого термометра можно определить по формулам:

$$h_{0}=1.006cdot t_{1}+2501cdot d_{1}+(4.186cdot d_{0}-2.381cdot d_{1})cdot t_{1}$$

$$d_{0}=frac{(2501-2.381cdot t_{1})cdot d_{1}-1.006cdot(t_{0}-t_{1})}{2501+1.805cdot t_{0}-4.186cdot t_{1}}$$

$h_{0}$ энтальпия воздуха в начальном ненасыщенном состоянии, кДж/кг

$d_{0}$ влагосодержание воздуха в начальном ненасыщенном состоянии, кг/кг
$t_{0}$ температура воздуха в начальном ненасыщенном состоянии, °C
$t_{1}$ температура воздуха в конечном состоянии (при $varphi=100%$) — температура мокрого термомера, °C
$d_{1}$ влагосодержание воздуха в конечном состоянии (при $varphi=100%$), то есть при температуре мокрого термометра, кг/кг

В формулах по два неизвестных $t_{1}$ и $d_{1}$. Чтобы решить уравнения нужно задать какое-то значение $t_{1}$, определить $d_{1}$ при $varphi=100%$ используя формулу влагосодержания по относительной влажности и давления насыщенного пара и добиться схождения уравнений изменяя температуру мокрого термометра $t_{1}$. Температура $t_{1}$, при которой уравнения сойдутся и будет искомой величиной. Сводная формула, по которой можно найти влагосодержание $d$, зная температуру $t$ и относительную влажность $varphi$ (100% в данном случае):

$$d=frac{0.6221cdot0.6112cdot e^{frac{alphacdot t}{betacdot t}}cdotvarphi}{10132.5-0.6112cdot0.6112cdot e^{frac{alphacdot t}{betacdot t}}cdotvarphi}$$

$eapprox2.72$ натуральный логарифм
$alpha=17.504$ постоянная для воды, °C
$beta=241.2$ постоянная для воды, °C

Источники

[1] ISBN 5-89565-005-8 

С.И.Бурцев, Ю.Н.Цветков — Влажный воздух. Состав и свойства (формула 4.13)

[2] ISBN 978-1-936504-31-2

Donald P.Gatley — Understanding psychrometrics. Third edition

[3] ISBN 5-98267-003-0

АВОК Справочное пособие 1-2004. Влажный воздух (формулы 4.22, 4.23)

Температура мокрого термометра

Процессы
тепло — и массообмена между открытой
поверхностью воды и потоком влажного
воздуха распространены в природе и
технике. С этими процессами приходится
иметь дело в системах охлаждения
электростанций, системах кондиционирования
воздуха, системах жизнеобеспечения
космических летательных аппаратов, а
также в сушильных и вентиляционных
установках.

В
общем случае температура поверхности
воды может быть как ниже, так и выше
температуры окружающего влажного
воздуха. Однако рассмотрим процесс
испарения жидкости при условии, что в
начале процесса температура воды равна
температуре окружающего влажного
воздуха, а слой жидкости достаточно
тонкий (т.е. температура жидкости
одинакова по толщине слоя). Количество
же воздуха неограниченно. Из опыта
известно, что парциальное давление пара
в тонком слое, прилегающем к поверхности
жидкости. Если при этом во влажном
воздухе, окружающем поверхность воды,
парциальное давление пара pп
окажется меньше давления насыщенного
пара pн , вода начнёт испаряться.

По
мере испарения воды температура
поверхности жидкости понижается, в то
же время как разность температур
окружающего воздуха и поверхности
жидкости, а также количество теплоты,
поступающее от воздуха к жидкости,
возрастают. Понижение температуры воды
прекратиться только тогда, когда
количество внутренней энергии, расходуемое
жидкостью от окружающего воздуха.

Температура поверхности
жидкости, достигнутая в результате
рассматриваемого процесса установления
равновесия, называется
температурой мокрого термометра (
tм).
Эта температура
измеряется термометром, чувствительный
элемент которого обернут влажной тканью.

Температура
мокрого термометра зависит от соотношения
коэффициентами, характеризующими
интенсивность процессов тепло – и
массообмена, протекающих между
поверхностью воды и влажным воздухом.
Следует подчеркнуть, что для условий,
в которых обычно протекают процессы во
влажном воздухе, она близка к температуре
адиабатного насыщения воздуха. Последняя
устанавливается при насыщении
ограниченного количества воздуха,
находящегося в контакте с водой, если
испарение воды происходит только за
счёт количества теплоты, передаваемого
состояния воздуха.

Уравнение
теплового баланса влажного воздуха,
находящегося в контакте с водой, можно
представить в форме

h2-h1=cжtм(d2-d1),
(12.28)

где
индекс 1 соответствует начальным
значениям энтальпии и влагосодержания,
а индекс 2 – конечным. Правая часть
этого уравнения определяется также
изменение энтальпии испарившейся воды,
приходящейся на 1 кг сухого воздуха,
содержащегося во влажном воздухе. В
пределах воздух в конечном состоянии
будет насыщенным. Учитывая значение
теплоёмкости воды и принимая начальное
влагосодержание равным нулю, получим

h1=h2-4,19tмd2
(12.29)

где
tм – температура мокрого термометра.

Определение влажности воздуха по температурам мокрого и сухого воздуха

Относительная
влажность воздуха является одним из
основных его параметров, используемых
в различных технических расчётах
(например, выбор режима вентиляции и
др.).

Применяют
четыре способа определения относительной
влажности воздуха: химический, точки
росы, волосяного гигрометра и
психрометрический. Наиболее распространённым
способом является психрометрический.

Психрометр
состоит из двух одинаковых термометров.
Один из них называется
сухим
термометром
, а его показания –
температурой воздуха по сухому термометру.
Второй термометр обернут мокрой лентой,
обеспечивающей непрерывный подвод воды
к ртутному шарику, для того чтобы его
поверхность была всегда влажной. Этот
термометр называют
мокрым термометром.
Испарение влаги с поверхности шарика
приводит к его охлаждению, поэтому
мокрый термометр всегда показывает
более низкую температуру, чем сухой.

Разность
показаний термометров называется
психрометрической разностью. Однако
температура tм, показываемая
мокрым термометром, вследствие
теплопередачи к термометру извне не
равна истинной температуре мокрого
термометра обдувается воздухом,
движущимся с достаточной скоростью.
Это уменьшает влияние возможного
излучения окружающих предметов на
термометр. В современных психрометрах
оба термометра заключены в заградительные
кожухи, поверхности которых полированы.
Воздух через кожухи продувается
специальным вентилятором, имеющим
механический или электрический привод.

Показания
психрометра дают возможность по dh –
диаграмме определить относительную
влажность и влагосодержание влажного
воздуха. Для этого необходимо определить
точку 1 пересечения изотермы tм
(мокрого термометра) с изотермой tс
(сухого термометра). Эта точка на dh –
диаграмме и определит состояние влажного
воздуха в помещении.

Если
имеются показания психрометра, то
определить относительную влажность

и
влагосодержание d можно
также по специальным психрометрическим
таблицам.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Расчёт параметров влажного воздуха

Значения по умолчанию: t = 20 °С, P = 101 325 Па, относительная влажность RH = 60%.

Методика применима только для положительных значений температур!

Температура мокрого термометра, температура точки росы, влагосодержание и другие свойства влажного воздуха.

Атмосферное давление, Па

Температура окружающей среды, °С

Относительная влажность, %

Температура мокрого термометра, °С

Температура точки росы, °С

Влагосодержание, г на кг сухого воздуха

Плотность влажного воздуха, кг/м3

Энтальпия влажного воздуха, кДж/(кг сухого воздуха)

Энтальпия влажного воздуха, кДж/(кг влажного воздуха)

Парциальное давление пара, Па

Парциальное давление сухого воздуха, Па

Давление насыщенного водяного пара от температуры P=f(t), температура насыщенного пара от давления t=f(P).

Методика расчёта

Значения температуры и давления насыщения пара вычисляются по формулам IAPWS-IF 97.

Температура точки росы соответствует температуре насыщения пара при давлении [относительная влажность]*[давление насыщения пара при температуре окружающей среды].

Плотность влажного воздуха ro_wa = ro_da+ro_v, где ro_da — плотность сухого воздуха, ro_v — плотность пара;
ro_v = P_v/(t+273,15)/R_v, где P_v — парциальное давление пара, t — температура окружающей среды (в градусах Цельсия), R_v = 461,495 Дж/кг/К — газовая постоянная пара;
P_v = P_vsat * RH, где P_vsat — давление насыщения пара при температуре окружающей среды t, RH — относительная влажность воздуха;

ro_da = P_da/(t+273,15)/R_da, где P_da — парциальное давление сухого воздуха, R_da=287,058 Дж/кг/К — газовая постоянная сухого воздуха;
P_da = P — P_v, где P — атмосферное давление.
Влагосодержание воздуха в г/(кг сухого воздуха) d = ro_v/ro_da*1000.

Температура мокрого термометра

Температура мокрого термометра — минимальная температура до которой возможно охладить воздух с помощью адиабатического охлаждения (охлаждение воздуха путём распыления в объёме воздуха воды с её последующим испарением за счёт теплоты воздуха).

Адиабатическое охлаждение воздуха достигается за счёт использования тепловой энергии воздуха для испарения воды, при котором явная теплота воздуха переходит в скрытую теплоту парообразования водяного пара. Так как тепловая энергия, переданная от воздуха к воде и затраченная на её испарение, снова возвращается в воздух в виде скрытой теплоты парообразования, энтальпия влажного воздуха в этом процессе остаётся неизменной. При этом количество влажного воздуха увеличивается за счёт поступающего в него водяного пара. Таким образом удельная энтальпия влажного воздуха уменьшается, неизменной остаётся энтальпия отнесённая на килограмм сухого воздуха.

Относительная влажность воздуха RH = p_пар/p_нас, где p_пар — парциальное давление водяного пара в воздухе, p_нас — давление насыщенного водяного пара.
При уменьшении температуры влажного воздуха давление насыщенного водяного пара так же уменьшается, что приводит к увеличению относительной влажности.
При поступлении в воздух дополнительного количества водяного пара парциальное давление водяного пара увеличивается, что приводит к увеличению относительной влажности воздуха. Таким образом, при испарении воды относительная влажность воздуха увеличивается как по причине снижения его температуры так и из-за поступления в него дополнительного количества водяного пара. Процесс испарения воды останавливается после достижения величины относительной влажности воздуха значения 100%.

При определении температуры мокрого термометра по температуре сухого термометра и его относительной влажности предполагается, что температура вступающей в контакт с воздухом воды равна температуре мокрого термометра, т.е. температура воды в процессе адиабатического охлаждения воздуха не изменяется, вся теплота передаваемая от воздуха воде идёт на парообразование.

Для определения значения температуры мокрого термометра сначала нужно найти h — значение энтальпии на кг сухого воздуха при заданных параметрах окружающей среды (атмосферное давление, температура сухого термометра, относительная влажность). Температура мокрого термометра t_w – это температура, при которой воздух с относительной влажностью 100% будет иметь значение h.

Формула для определения энтальпии воздуха в кДж/(кг сухого воздуха): h = (1,006 кДж/кг/C) t + d [(1,84 кДж/кг/C) t + (2501 кДж/кг)], где 1,006 кДж/кг/C — теплоёмкость сухого воздуха; d — влагосодержание, кг/(кг сухого воздуха); 1,84 кДж/кг/C — теплоёмкость пара; 2501 кДж/кг — скрытая теплота парообразования.
Первое приближение значения мокрого термометра можно притять t_w=0,75*t. Для t_w находим h_w, если h_w больше h, то значение t_w нужно уменьшить, если меньше — увеличить. Продолжаем подбор t_w до того момента как h_w приблизется к h с заданной точностью.

Точность расчёта значения температуры мокрого термометра в данном случае зависит от точности использованной формулы расчёта значения энтальпии влажного воздуха на кг сухого воздуха.


Инженерные расчёты на Python, С.В. Медведев, 2020-2023
Использование Python и Jupyter Notebook для инженерных расчётов, С.В. Медведев, 2020-2023

Понравилась статья? Поделить с друзьями:
  • Молитва как найти ребенка
  • Как найти кислотность желудочного сока
  • Как найти площадь в задачах на давление
  • Как найти музей дали
  • Как надо мелодию найти