Как найти температуру совершенную работу

Первый закон термодинамики

  • Темы кодификатора ЕГЭ: работа в термодинамике, первый закон термодинамики, адиабатный процесс.

  • Работа газа в изобарном процессе

  • Работа газа в произвольном процессе

  • Работа, совершаемая над газом

  • Применение первого закона термодинамики к изопроцессам

  • Адиабатный процесс

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: работа в термодинамике, первый закон термодинамики, адиабатный процесс.

Начнём с обсуждения работы газа.

Газ, находящийся в сосуде под поршнем, действует на поршень с силой F=pS, где p — давление газа, S — площадь поршня. Если при этом поршень перемещается, то газ совершает работу.

При расширении газа эта работа будет положительной (сила давления газа и перемещение поршня направлены в одну сторону). При сжатии работа газа отрицательна (сила давления газа и перемещение поршня направлены в противоположные стороны).

к оглавлению ▴

Работа газа в изобарном процессе

Предположим, что газ расширяется при постоянном давлении p. Тогда сила F, с которой газ действует на поршень, также постоянна. Пусть поршень переместился на расстояние Delta x (рис. 1).

Рис. 1. A = p Delta V

Работа газа равна:

A = F Delta x=pS Delta x.

Но S Delta x= Delta V — изменение объёма газа. Поэтому для работы газа при изобарном расширении мы получаем формулу:

A = p Delta V. (1)

Если V_1 и V_2 — начальный и конечный объём газа, то для работы газа имеем: A = p(V2-V1). Изобразив данный процесс на pV-диаграмме, мы видим, что работа газа равна площади прямоугольника под графиком нашего процесса (рис. 2).

Рис. 2. Работа газа как площадь

Пусть теперь газ изобарно сжимается от объёма V_1 до объёма V_2. С помощью аналогичных рассуждений приходим к формуле:

A = -p(V_1 -V_2).

Но  -(V_1-V_2) = V_2 -V_1 = Delta V, и снова получается формула (1).

Работа газа опять-таки будет равна площади под графиком процесса на pV-диаграмме, но теперь со знаком минус.

Итак, формула A=p Delta V выражает работу газа при постоянном давлении — как в процессе расширения газа, так и в процессе сжатия.

к оглавлению ▴

Работа газа в произвольном процессе

Геометрическая интерпретация работы газа (как площади под графиком процесса на pV-диаграмме) сохраняется и в общем случае неизобарного процесса.

Действительно, рассмотрим малое изменение dV объёма газа — настолько малое, что давление p будет оставаться приблизительно постоянным. Газ совершит малую работу dA=p  dV. Тогда работа A газа во всём процессе найдётся суммированием этих малых работ:

A=int_{V_1}^{V_2}p  dV.

Но данный интеграл как раз и является площадью криволинейной трапеции (рис. 3):

Рис. 3. Работа газа как площадь

к оглавлению ▴

Работа, совершаемая над газом

Наряду с работой A, которую совершает газ по передвижению поршня, рассматривают также работу {A}, которую поршень совершает над газом.

Если газ действует на поршень с силой vec{F}, то по третьему закону Ньютона поршень действует на газ с силой {vec{F}}, равной силе vec{F} по модулю и противоположной по направлению: {vec{F}} (рис. 4).

Рис. 4. Внешняя сила {vec{F}}, действующая на газ

Следовательно, работа поршня {A} равна по модулю и противоположна по знаку работе газа:

{A}

Так, в процессе расширения газ совершает положительную работу left ( A> 0 right ); при этом работа, совершаемая над газом, отрицательна left ( {A}. Наоборот, при сжатии работа газа отрицательна left ( A < 0 right ), а работа, совершаемая поршнем над газом, положительна 0 right )’ class=’tex’ alt=’left ( {A}’ > 0 right )’ />.

Будьте внимательны: если в задаче просят найти работу, совершённую над газом, то имеется в виду работа {A}.

Как мы знаем, существует лишь два способа изменения внутренней энергии тела: теплопередача и совершение работы.

Опыт показывает, что эти способы независимы — в том смысле, что их результаты складываются. Если телу в процессе теплообмена передано количество теплоты Q, и если в то же время над телом совершена работа {A}, то изменение внутренней энергии тела будет равно:

Delta U = Q + {A} (2)

Нас больше всего интересует случай, когда тело является газом. Тогда {A} (где A, как всегда, есть работа самого газа). Формула (2) принимает вид: Delta U = Q-A, или

Q = Delta U + A. (3)

Соотношение (3) называется первым законом термодинамики. Смысл его прост: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа и на совершение газом работы.

Напомним, что величина Q может быть и отрицательной: в таком случае тепло отводится от газа. Но первый закон термодинамики остаётся справедливым в любом случае. Он является одним из фундаментальных физических законов и находит подтверждение в многочисленных явлениях и экспериментах.

к оглавлению ▴

Применение первого закона термодинамики к изопроцессам

Напомним, что в изопроцессе остаётся неизменным значение некоторой величины, характеризующей состояние газа — температуры, объёма или давления. Для каждого вида изопроцессов запись первого закона термодинамики упрощается.

1. Изотермический процесс, T = const.
Внутренняя энергия идеального газа зависит только от его температуры. Если температура газа не меняется, то не меняется и внутренняя энергия: Delta U = 0. Тогда формула (3) даёт:

Q = A.

Всё подведённое к газу тепло идёт на совершение газом работы.

2. Изохорный процесс, V = const.
Если объём газа остаётся постоянным, то поршень не перемещается, и потому работа газа равна нулю: A = 0. Тогда первый закон термодинамики даёт:

Q = Delta U.

Всё тепло, переданное газу, идёт на изменение его внутренней энергии.

3. Изобарный процесс, p = const.
Подведённое к газу тепло идёт как на изменение внутренней энергии, так и на совершение работы (для которой справедлива формула (1)). Имеем:

Q = Delta U + p Delta V.

к оглавлению ▴

Адиабатный процесс

Процесс называется адиабатным, если он идёт без теплообмена с окружающими телами.

Адиабатный процесс совершается газом, находящимся в теплоизолированном сосуде. Такой сосуд препятствует всем видам теплопередачи: теплопроводности, конвекции, излучению. Пример теплоизолированного сосуда — термос.

Приблизительно адиабатным будет всякий процесс, протекающий достаточно быстро: в течение процесса теплообмен просто не успевает произойти.

При адиабатном процессе Q=0. Из первого закона термодинамики получаем: A+ Delta U = 0, или A = - Delta U.

В процессе адиабатного расширения газ совершает положительную работу, поэтому Delta U < 0 (работа совершается за счёт убыли внутренней энергии). Следовательно, газ охлаждается. Если заставить газ совершить достаточно большую работу, охладить его можно весьма сильно. Именно на этом основаны методы сжижения газов.

Наоборот, в процессе адиабатного сжатия будет A < 0, поэтому Delta U > 0: газ нагревается. Адиабатное нагревание воздуха используется в дизельных двигателях для воспламенения топлива.

Кривая, изображающая ход адиабатного процесса, называется адиабатой. Интересно сравнить ход адиабаты и изотермы на pV-диаграмме (рис. 5).

Рис. 5. Сравнительный ход изотермы и адиабаты

В обоих процессах давление убывает с увеличением объёма, но в адиабатном процессе убывание идёт быстрее. Почему?

При изотермическом расширении давление падает потому, что уменьшается концентрация частиц газа, в результате чего удары частиц по стенкам сосуда становятся реже. Однако интенсивность этих ударов остаётся прежней: ведь температура газа не меняется — значит, не меняется и средняя кинетическая энергия его частиц.

А при адиабатном расширении, наряду с уменьшением концентрации частиц, падает также и температура газа. Удары частиц становятся не только более редкими, но и более слабыми. Вот почему адиабата убывает быстрее изотермы.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Первый закон термодинамики» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Содержание:

Работа в термодинамике:

В 9 классе вы узнали, что работа силы (механическая работа) связана с превращением одного вида энергии в другой, например, механической энергии во внутреннюю. Работу силы рассматривают как меру изменения энергии физической системы. А как определить работу в термодинамике? Как может быть выражена эта работа через макроскопические параметры — давление и об1

Рассмотрим газ, находящийся в цилиндрическом сосуде с площадью основания S, закрытом подвижным поршнем (рис. 52).

Работа в термодинамике в физике - формулы и определение с примерами

Взаимодействие газа с поршнем, а также со стенками сосуда можно характеризовать давлением р, которое газ оказывает на них. Допустим, что в результате изобарного расширения газа поршень переместился из положения 1 в положение 2 на расстояние Работа в термодинамике в физике - формулы и определение с примерами

Модуль силы давления газа, действующей на поршень, F = pS. Эта сила совершает работу по перемещению поршня

Работа в термодинамике в физике - формулы и определение с примерами (10.1)

где а — угол между направлениями силы и перемещения. В рассматриваемом примере а = 0, тогда

Работа в термодинамике в физике - формулы и определение с примерами

Произведение Работа в термодинамике в физике - формулы и определение с примерамиопределяет приращение объёма Работа в термодинамике в физике - формулы и определение с примерами (см. рис. 52), поэтому работа газа при его изобарном расширении

Работа в термодинамике в физике - формулы и определение с примерами  (10.2)

где Работа в термодинамике в физике - формулы и определение с примерами— начальный объём газа, Работа в термодинамике в физике - формулы и определение с примерами — объём газа в конечном состоянии.

Так как давление р газа всегда величина положительная, из формулы (10.2) следует, что, если газ расширяется Работа в термодинамике в физике - формулы и определение с примерами, работа, совершённая силой давления газа, положительная (Работа в термодинамике в физике - формулы и определение с примерами), а в случае сжатия (Работа в термодинамике в физике - формулы и определение с примерами) работа отрицательная (Работа в термодинамике в физике - формулы и определение с примерами).

Процесс медленного изобарного сжатия газа из состояния 2 с начальным объёмом Работа в термодинамике в физике - формулы и определение с примерамив состояние 1 с конечным объёмом Работа в термодинамике в физике - формулы и определение с примерами можно характеризовать работой Работа в термодинамике в физике - формулы и определение с примерамивнешних сил над газом:
Работа в термодинамике в физике - формулы и определение с примерами (10.З)

Из сравнения равенств (10.2) и (10.3) вытекает соотношение между работой Работа в термодинамике в физике - формулы и определение с примерамиу совершённой внешними силами, и работой Работа в термодинамике в физике - формулы и определение с примерами совершённой силой давления газа:Работа в термодинамике в физике - формулы и определение с примерамиЭто соотношение согласуется с третьим законом Ньютона (внешняя сила Работа в термодинамике в физике - формулы и определение с примерамидействующая на газ со стороны поршня, имеет
направление, противоположное силе давления Работа в термодинамике в физике - формулы и определение с примерами действующей на поршень со стороны газа). Из формулы (10.3) видно, что работа, совершённая внешними силами, положительная Работа в термодинамике в физике - формулы и определение с примерами если происходит сжатие газа Работа в термодинамике в физике - формулы и определение с примерами
Если газ расширяется Работа в термодинамике в физике - формулы и определение с примерами), то работа, совершённая внешними силами отрицательная Работа в термодинамике в физике - формулы и определение с примерами

Геометрическое толкование работы

Построим график зависимости давления газа от его объёма при р = const. Как видно из рисунка 53, при изобарном расширении газа работа, совершённая силой давления газа, численно равна площади прямоугольника Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Если процесс перехода газа из начального состояния в конечное не является изобарным, то работа, совершённая силой давления газа при изменении его объёма от Работа в термодинамике в физике - формулы и определение с примерамичисленно равна площади фигуры, ограниченной графиком процесса (кривая 1—2), осью OV и прямыми, соответствующими значениям объёмов Работа в термодинамике в физике - формулы и определение с примерами (рис. 54).

Работа в термодинамике в физике - формулы и определение с примерами

Процесс, при котором термодинамическая система, прошедшая некоторую последовательность состояний, снова возвращается в исходное состояние, называют циклическим процессом или циклом (рис. 55). Работа, совершаемая системой при циклическом процессе, или работа цикла, равна площади фигуры, ограниченной линиями, которые изображают цикл:Работа в термодинамике в физике - формулы и определение с примерами

гдеРабота в термодинамике в физике - формулы и определение с примерами на рисунке 55, а и Работа в термодинамике в физике - формулы и определение с примерами на рисунке 55, б.

Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Если «кривая расширения» (изобараРабота в термодинамике в физике - формулы и определение с примерами) (см. рис. 55, а) расположена выше «кривой сжатия» (изотерма Работа в термодинамике в физике - формулы и определение с примерами), то полная работа, совершённая системой за цикл (работа цикла), положительная. Если же, как изображено на рисунке 55, б, «кривая сжатия» (изобара Работа в термодинамике в физике - формулы и определение с примерами) расположена выше «кривой расширения» (изотермаРабота в термодинамике в физике - формулы и определение с примерами), то работа цикла отрицательная.

Из рисунка 56 видно, что численное значение работы цикла определяется не только начальным и конечным состояниями системы, но и видом процесса. Например, газ из состояния 1 можно перевести в состояние 3 либо в результате изотермического расширения, либо сначала изохорно понизив его давление до значения Работа в термодинамике в физике - формулы и определение с примерамиа затем изобарно увеличив его объём от значения Работа в термодинамике в физике - формулы и определение с примерамидо значения Работа в термодинамике в физике - формулы и определение с примерами

Как видно из рисунка 56, в первом случае работа, совершённая силами давления газа, больше, чем во втором. Следовательно, работа, совершаемая при переходе термодинамической системы из одного состояния в другое, зависит не только от начального и конечного состояний системы, но и от вида процесса.

Количество теплоты и удельная теплоёмкость

Итак, существуют два способа передачи энергии от одного тела к другому. Первый характеризуется передачей энергии в процессе механического взаимодействия тел — механическая энергия одного тела переходит в энергию хаотического движения частиц вещества другого тела или, наоборот, убыль энергии хаотического движения частиц вещества одного тела сказывается на увеличении механической энергии другого тела. Такую форму передачи энергии в термодинамике (как и в механике) называют работой. Так, например, в рассмотренной нами ранее термодинамической системе (газ в цилиндрическом сосуде под поршнем) расширение газа приводит к перемещению поршня. При этом убыль внутренней энергии газа равна работе, совершённой силой давления газа, под действием которой поршень переместился.

Второй способ передачи энергии осуществляется при непосредственном обмене энергией между хаотически движущимися частицами взаимодействующих тел. За счёт переданной при этом энергии увеличивается внутренняя энергия одного тела и уменьшается внутренняя энергия другого. Если, например, привести в соприкосновение два тела с разными температурами, то частицы более нагретого тела будут передавать часть своей энергии частицам более холодного тела. В результате внутренняя энергия первого тела уменьшается, а второго тела увеличивается. Процесс передачи энергии от одного тела к другому без совершения работы называют теплопередачей. Как вы уже знаете, существуют три вида теплопередачи: теплопроводность, конвекция и излучение.

Количественной мерой энергии, переданной телу в процессе теплопередачи, является количество теплоты Q. В СИ единицей количества теплоты является джоуль (Дж). Иногда для измерения количества теплоты используют внесистемную единицу — калорию (1 кал = 4,19Дж).

Если процесс теплопередачи не сопровождается изменением агрегатного состояния вещества, то
Работа в термодинамике в физике - формулы и определение с примерами (10,4)
где m — масса тела, Работа в термодинамике в физике - формулы и определение с примерами — разность температур в конце и в начале процесса теплопередачи, с — удельная теплоёмкость вещества — физическая величина, численно равная количеству теплоты, которое получает или отдаёт вещество массой 1 кг при изменении его температуры на 1 К. Удельную
теплоемкость измеряют в джоулях, деленных на килограмм, кельвинРабота в термодинамике в физике - формулы и определение с примерами
Физическая величина, равная произведению массы тела на удельную теплоёмкость вещества, носит название теплоёмкости тела. Обозначают теплоёмкость тела С и измеряют в джоулях на кельвинРабота в термодинамике в физике - формулы и определение с примерамиТеплоёмкость, в отличие от удельной теплоёмкости, является тепловой характеристикой тела, а не вещества.
 

Удельная теплота плавления

Физическую величину, численно равную количеству теплоты, необходимому для превращения кристаллического вещества массой 1 кг, взятого при температуре плавления, в жидкость той же температуры, называют удельной теплотой плавления Работа в термодинамике в физике - формулы и определение с примерамиДля плавления тела массой m, предварительно нагретого до температуры плавления, ему необходимо сообщить количество теплоты Работа в термодинамике в физике - формулы и определение с примерамиПри кристаллизации тела выделяется количество теплоты Работа в термодинамике в физике - формулы и определение с примерами

Удельная теплота парообразования

Физическую величину, численно равную количеству теплоты, которое необходимо передать жидкости массой 1 кг, находящейся при температуре кипения, для превращения её при постоянной температуре в пар, называют удельной теплотой парообразования L. Количество теплоты, необходимое для превращения жидкости массой m, предварительно нагретой до температуры кипения, в пар, определяют по формулеРабота в термодинамике в физике - формулы и определение с примерамиКонденсация пара сопровождается выделением количества теплоты Работа в термодинамике в физике - формулы и определение с примерами

Удельная теплота сгорания топлива

Физическую величину, численно равную количеству теплоты, выделяющемуся при полном сгорании топлива массой 1 кг, называют удельной теплотой сгорания топлива q. Количество теплоты, выделившееся при полном сгорании некоторой массы m топлива, определяют по формулеРабота в термодинамике в физике - формулы и определение с примерамиОно передаётся телам, образующим термодинамическую систему, и по отношению к ним является положительной величиной.

Отметим, что в результате теплопередачи могут изменяться как обе составляющие внутренней энергии тела, так и одна из них. При нагревании (охлаждении) изменяются кинетическая энергия хаотического движения частиц, которые составляют тело, и потенциальная энергия их взаимодействия. При плавлении (кристаллизации), кипении (конденсации) изменяется только потенциальная энергия взаимодействия частиц вещества.

При совершении работы также может изменяться как кинетическая, так и потенциальная энергия частиц вещества. Следовательно, как при теплопередаче, так и при совершении работы происходит изменение кинетической и потенциальной энергий частиц вещества, что приводит к изменению внутренней энергии тела.

1. Работу газа при изобарном процессе выражают через макроскопические параметры термодинамической системы:

Работа в термодинамике в физике - формулы и определение с примерами

2.    Работа газа численно равна площади фигуры, ограниченной графиком зависимости давления от объёма, осью OV и прямыми, соответствующими значениям объёмов Работа в термодинамике в физике - формулы и определение с примерами

3.    Работа, совершаемая при переходе системы из одного состояния в другое, зависит не только от начального и конечного состояний, но и от вида процесса.

4.    Процесс передачи энергии от одного тела к другому без совершения работы называют теплопередачей.

Пример №1

Определите работу, совершаемую силой давления идеального газа определённой массы при изобарном повышении его температуры от Работа в термодинамике в физике - формулы и определение с примерами= 12 °С до Работа в термодинамике в физике - формулы и определение с примерами= 87 °С, если давление газа и его начальный объём соответственно p=190кПа и Работа в термодинамике в физике - формулы и определение с примерами = 6,Одм’5.

Дано:

Пример №2

Состояние идеального газа, взятого в количестве v=l,0 моль при температуре Работа в термодинамике в физике - формулы и определение с примерамиизменяется так, как показано на рисунке 57. Определите работу газа в ходе всего процесса, если на изохоре Работа в термодинамике в физике - формулы и определение с примерами его давление уменьшается в три раза, а точки 1 и 3 лежат на одной изотерме.

Работа в термодинамике в физике - формулы и определение с примерами

Дано:

v = 1,0 моль

Работа в термодинамике в физике - формулы и определение с примерами = 300 к

Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

А — ?

Решение. Работа Л газа в ходе всего процесса равна сумме работ на участках Работа в термодинамике в физике - формулы и определение с примерами Так как при переходе из состояния 1 в состояние 2 объём газа не меняется (процесс изохорный Работа в термодинамике в физике - формулы и определение с примерами), то работа газа Работа в термодинамике в физике - формулы и определение с примерами. Давление газа при переходе из состояния 2 в состояние 3 остаётся постоянным (Работа в термодинамике в физике - формулы и определение с примерами)следовательно, работа газа Работа в термодинамике в физике - формулы и определение с примерами Тогда Работа в термодинамике в физике - формулы и определение с примерами
Так как по условию Работа в термодинамике в физике - формулы и определение с примерами то воспользуемся уравнением Клапейрона (5.2):

Работа в термодинамике в физике - формулы и определение с примерамиоткуда Работа в термодинамике в физике - формулы и определение с примерами Следовательно, Работа в термодинамике в физике - формулы и определение с примерами
Работа в термодинамике в физике - формулы и определение с примерамиСогласно уравнению Клапейрона—Менделеева Работа в термодинамике в физике - формулы и определение с примерами

Тогда Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Ответ: А = 1,7 кДж.

Работа в термодинамике

В 9-м классе вы узнали, что передача энергии путём совершения работы происходит в процессе силового взаимодействия тел. То есть работа, совершённая над рассматриваемым телом, есть не что иное, как работа сил, приложенных к этому телу со стороны всех остальных (внешних) тел, с которыми оно взаимодействует. Работа, совершённая над телом, может непосредственно изменить любой вид энергии этого тела, например внутреннюю энергию, поэтому работу силы рассматривают как меру изменения энергии физической системы.

Одним из способов изменения внутренней энергии термодинамической системы является совершение работы. Этот способ характеризуется передачей энергии в процессе механического взаимодействия тел. При этом механическая энергия одного тела переходит во внутреннюю энергию другого тела или, наоборот, убыль внутренней энергии одного тела сказывается на увеличении механической энергии другого тела.

Таким образом, при совершении работы происходит превращение энергии из одной формы в другую.

Поскольку для описания термодинамических систем используют макропараметры (давление, объём, температура), то работу в термодинамике необходимо выражать, применяя эти параметры.

Работа в термодинамике в физике - формулы и определение с примерами

Рассмотрим газ в цилиндре, закрытом поршнем, площадь которого S (рис. 66). Давление газа в цилиндре Работа в термодинамике в физике - формулы и определение с примерами В результате изобарного расширения газа поршень переместился из положения 1 в положение 2 на расстояние Работа в термодинамике в физике - формулы и определение с примерами Модуль силы давления газа  на поршень Работа в термодинамике в физике - формулы и определение с примерами Эта сила совершила работу по перемещению поршня, равную    

Работа в термодинамике в физике - формулы и определение с примерами

где Работа в термодинамике в физике - формулы и определение с примерами — угол между направлениями силы Работа в термодинамике в физике - формулы и определение с примерами и перемещения поршня Работа в термодинамике в физике - формулы и определение с примерами Поскольку в рассматриваемом примере Работа в термодинамике в физике - формулы и определение с примерами и Работа в термодинамике в физике - формулы и определение с примерами то

Работа в термодинамике в физике - формулы и определение с примерами

Произведение Работа в термодинамике в физике - формулы и определение с примерами определяет изменение объёма Работа в термодинамике в физике - формулы и определение с примерами — начальный объём газа; Работа в термодинамике в физике - формулы и определение с примерами — объём газа в конечном состоянии (см. рис. 66).

Таким образом, работа силы давления газа при его изобарном расширении:

Работа в термодинамике в физике - формулы и определение с примерами

Так как давление р газа — величина положительная, то из формулы (12.1) следует, что Работа в термодинамике в физике - формулы и определение с примерами

При изобарном расширении газа из состояния 1 в состояние 2 работа силы Работа в термодинамике в физике - формулы и определение с примерами (см. рис. 66):

Работа в термодинамике в физике - формулы и определение с примерами

где Работа в термодинамике в физике - формулы и определение с примерами— модуль силы, действующей на газ со стороны поршня (внешняя сила); Работа в термодинамике в физике - формулы и определение с примерами — угол между направлениями силы Работа в термодинамике в физике - формулы и определение с примерами и перемещения Работа в термодинамике в физике - формулы и определение с примерами поршня.

Перемещение Работа в термодинамике в физике - формулы и определение с примерами поршня одно и то же, а сила давления Работа в термодинамике в физике - формулы и определение с примерами газа на поршень и сила давления Работа в термодинамике в физике - формулы и определение с примерами поршня на газ — силы, подчиняющиеся третьему закону Ньютона:

Работа в термодинамике в физике - формулы и определение с примерами

Следовательно, работы Работа в термодинамике в физике - формулы и определение с примерами отличаются только знаком Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Таким образом, можно сделать следующие выводы.

Работа в термодинамике в физике - формулы и определение с примерами
 

Геометрическое толкование работы:

Работу газа можно определить графически. Изобразим график зависимости давления газа от его объёма при Работа в термодинамике в физике - формулы и определение с примерами (рис. 68). Если процесс перехода газа из начального состояния в конечное является изобарным (АВ — изобара), то работа силы давления газа численно равна площади прямоугольника Работа в термодинамике в физике - формулы и определение с примерами

Если процесс перехода газа из начального состояния в конечное не является изобарным (рис. 69), то работа силы давления газа при изменении объёма от Работа в термодинамике в физике - формулы и определение с примерами численно равна площади фигуры, ограниченной графиком процесса (кривая 1—2), осью OV и прямыми, соответствующими значениям объёмов Работа в термодинамике в физике - формулы и определение с примерами

Работу газа определяют не только начальное и конечное состояния системы, но и вид процесса. Например, газ из состояния 1 можно перевести в состояние 3 либо в результате изотермического расширения (рис. 70), либо сначала изохорно понизив его давление до значения Работа в термодинамике в физике - формулы и определение с примерами а затем изобарно увеличив его объём до значения Работа в термодинамике в физике - формулы и определение с примерами В первом случае работа газа больше, чем во втором.
Работа в термодинамике в физике - формулы и определение с примерами

Следовательно, работа, совершаемая термодинамическом системой при переходе из одного состояния в другое, зависит не только от начального и конечного состояний системы, но и от вида процесса.

Работа в термодинамике в физике - формулы и определение с примерами

Пример №3

Определите работу, совершаемую силой давления идеального газа определённой 200 массы при переходе из состояния 1 в состояние 3 (рис. 73).   Работа в термодинамике в физике - формулы и определение с примерами

Решение. 1 способ. Работа А газа в ходе всего процесса равна сумме работ на участках Работа в термодинамике в физике - формулы и определение с примерами и Работа в термодинамике в физике - формулы и определение с примерами Поскольку при переходе газа из состояния 1 в состояние 2 его объём не изменяется (изохорный процесс Работа в термодинамике в физике - формулы и определение с примерами), то работа, совершаемая силой давления газа, Работа в термодинамике в физике - формулы и определение с примерами В процессе изобарного расширения (переход газа из состояния 2 в состояние 3) сила давления газа совершает работу

Работа в термодинамике в физике - формулы и определение с примерами

Тогда при переходе из состояния 1 в состояние 3 работа

Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

2 способ. Работа газа численно равна площади заштрихованной фигуры, ограниченной графиком зависимости давления от объёма, осью OV и прямыми, соответствующими значениям объёма Работа в термодинамике в физике - формулы и определение с примерами и Работа в термодинамике в физике - формулы и определение с примерами (закрашенная область на рисунке 74).

Работа в термодинамике в физике - формулы и определение с примерами

Ответ: Работа в термодинамике в физике - формулы и определение с примерами

Пример №4

Определите работу, совершаемую силой давления идеального газа определённой массы при изобарном повышении его температуры от Работа в термодинамике в физике - формулы и определение с примерами если давление газа Работа в термодинамике в физике - формулы и определение с примерами а его начальный объём Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами
Решение. Сила давления газа совершает положительную работу, поскольку при изобарном нагревании увеличивается его объём. Поэтому

Работа в термодинамике в физике - формулы и определение с примерами

Согласно уравнению Клапейрона—Менделеева, Работа в термодинамике в физике - формулы и определение с примерами
Работа в термодинамике в физике - формулы и определение с примерами Следовательно,

Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Ответ: Работа в термодинамике в физике - формулы и определение с примерами

Как определить работу в термодинамике

В конце XVIII в. английский физик Бенджамин Томпсон (граф Румфорд) исследовал тепло, выделяющееся при сверлении бронзовых пушек. Румфорд успевал вскипятить поставленные на пушки котлы с водой за счет тепла, которое выделялось, пока лошади приводили в движение очень тупое сверло. В данном случае энергия механического движения сверла превращалась в энергию хаотического движения молекул бронзы и воды. А можно ли сделать наоборот?

Почему при изменении объема газа изменяется его внутренняя энергия

Внутренняя энергия газа может изменяться, если действующие на него внешние силы совершают работу (положительную или отрицательную). Например, если газ сжимают (газ совершает отрицательную работу) (рис. 37.1) и он при этом не отдает энергию окружающей среде, то скорость движения молекул газа, а соответственно, и внутренняя энергия, и температура газа увеличиваются. И наоборот: если газ расширяется (то есть совершает положительную работу), то скорость движения молекул, температура и внутренняя энергия газа уменьшаются.

Работа в термодинамике в физике - формулы и определение с примерами

Рис. 37.1. При сжатии газа скорость его молекул после столкновения с поршнем увеличивается (v > Работа в термодинамике в физике - формулы и определение с примерами) — газ нагревается. (Аналогично увеличивается скорость мяча после удара волейболиста, когда его рука движется навстречу мячу.)

Как вычислить работу газа

Вычислим работу, которую совершает сила давления газа при изменении его объема от Работа в термодинамике в физике - формулы и определение с примерами По определению работы: A=Fscosα. Если газ расширяется изобарно, то сила, действующая со стороны газа на поршень, постоянна: F=pS (p — давление газа; S — площадь поршня); модуль перемещения поршня Работа в термодинамике в физике - формулы и определение с примерами (рис. 37.2, а); α = 0.

Работа в термодинамике в физике - формулы и определение с примерами

Таким образом, работа газа при его изобарном расширении равна:

Работа в термодинамике в физике - формулы и определение с примерами

Работе газа при изобарном расширении (или сжатии) можно дать простое геометрическое толкование: работа газа численно равна площади прямоугольника под графиком зависимости p(V) (рис. 37.3).

Работа в термодинамике в физике - формулы и определение с примерами

Пусть некоторый газ переходит из состояния 1 в состояние 2 (рис. 37.4). Если изменение объема газа (∆V) достаточно мало, то давление газа можно считать неизменным. Тогда работа газа численно равна площади выделенной на рисунке полосы. Полная работа при изменении объема от Работа в термодинамике в физике - формулы и определение с примерами будет равна сумме площадей всех полос, то есть площади криволинейной трапеции под графиком зависимости p (V).

Работа в термодинамике в физике - формулы и определение с примерамиРабота в термодинамике в физике - формулы и определение с примерами

Очевидно, что при изохорном процессе (V = const) площадь фигуры под графиком зависимости p (V) равна нулю (рис. 37.5), — газ работу не совершает (A = 0) . Работа газа зависит от того, каким образом происходил переход газа из начального состояния в конечное (рис. 37.6).

Работа в термодинамике в физике - формулы и определение с примерами

Рис. 37.6. три пути перехода газа из состояния 1 в состояние 2: а — газ изобарно расширяется (участок 1k), затем изохорно охла ждается (участок k2); б — газ изотермически расширяется; в — газ изохорно охлаждается (участок 1l), затем изобарно расширяется (участок l2). сравнив площади фигур под графиками, видим, что: Работа в термодинамике в физике - формулы и определение с примерами

Пример №5

На рисунке графически изображен циклический процесс, совершаемый идеальным газом. Определите работу газа за цикл.

Работа в термодинамике в физике - формулы и определение с примерами

Решение:

Полная работа за цикл равна сумме работ, совершенных газом в ходе каждого процесса цикла. Работа газа в ходе процесса 1–2 численно равна площади трапеции, основания которой равны Работа в термодинамике в физике - формулы и определение с примерами и Работа в термодинамике в физике - формулы и определение с примерами, а высота — Работа в термодинамике в физике - формулы и определение с примерами; объем газа увеличивается, поэтому работа газа положительна. Работа газа в ходе процесса 2–3 равна нулю, поскольку этот процесс изохорный. Работа газа в ходе процесса 3–1 численно равна площади прямоугольника со сторонами Работа в термодинамике в физике - формулы и определение с примерами и Работа в термодинамике в физике - формулы и определение с примерами; объем газа уменьшается, поэтому работа отрицательна. Следовательно, для определения работы за весь цикл нужно из площади трапеции вычесть площадь прямоугольника. То есть, как видно из рисунка, работа газа за цикл численно равна площади прямоугольного треугольника 1–2–3:

Работа в термодинамике в физике - формулы и определение с примерами

Работа в термодинамике в физике - формулы и определение с примерами

Выводы:

  • При отсутствии теплообмена с окружающей средой, если над газом совершают работу, внутренняя энергия газа увеличивается; если газ сам совершает работу, его внутренняя энергия уменьшается.
  • Если объем газа увеличивается, то газ совершает положительную работу. Если объем газа уменьшается, то работа газа отрицательна.
  • Работа газа численно равна площади фигуры под графиком зависимости p (V). При изобарном процессе работу газа можно определить по формуле A=p∆V, при изохорном процессе работа газа равна нулю: A = 0.
  • Первый закон термодинамики
  • Второй закон термодинамики
  • Тепловые двигатели и их КПД
  • Тепловое состояние тел
  • Термодинамика — основные понятия, формулы и определения
  • Необратимость тепловых процессов
  • Адиабатический процесс
  • Молекулярно-кинетическая теория

 Связь между
молярной (Cm)
и удельной (с) теплоемкостями газа

Cm=cM,
где М
молярная
масса газа.

 Молярные
теплоемкости*
при
постоянном объеме и постоянном давлении
соответственно равны

Cv=iR/2;
Cp=(i+2)R/2

где i
— число
степеней свободы; R
молярная
газовая постоян­ная.

 Удельные
теплоемкости при постоянной объеме и
постоянном давлении соответственно
равны

,

.

 Уравнение Майера

Cр—Сv=R.

 Показатель
адиабаты

,
или
,
или.

 Внутренняя
энергия идеального газа

U=N<>
или U=vCvT,

где <>—средняя
кинетическая энергия молекулы;
N—число
молекул газа;
v
— количество
вещества.

 Работа, связанная
с изменением объема газа, в общем случае
вычисляется по формуле

,

где V1
начальный
объем газа; V2
его
конечный объем.

Работа газа:

а) при изобарном
процессе (p=const)

A=p(V2

V1);

б) при изотермическом
процессе (T=const)

;

*
Здесь и далее
в целях упрощения записи в индексах
обозначений молярной теплоемкости при
постоянном давлении и постоянном объеме
букву «m»
будем опускать.

в) при адиабатном
процессе

,
или
,

где T1
— начальная
температура газа; T2
его
конечная темпера­тура.

 Уравнение Пуассона
(уравнение газового состояния при
адиа­батном процессе)

.

 Связь между
начальным и конечным значениями
параметров состояний газа при адиабатном
процессе:

.

 Первое начало
термодинамики в общем случае записывается
в виде

Q=U+A,

где Q
– количество теплоты, сообщённое газу;
U—изменение
его внутренней энергии; А

работа, совершаемая газом против внешних
сил.

Первое начало
термодинамики:

а) при изобарном
процессе

б) при изохорном
процессе (A=0)

;

в) при изотермическом
процессе (U=0)

,

г) при адиабатном
процессе (Q=0)

.

 Термический
коэффициент полезного действия (КПД)
цикла
в
общем случае

,

где Q1—количество
теплоты, полученное рабочим телом
(газом) от нагревателя; Q2—количество
теплоты, переданное рабочим телом
охладителю.

КПД цикла Карно

,
или

,

где T1
— температура
нагревателя; T2
— температура
охладителя.

 Изменение энтропии

где A
и B
— пределы
интегрирования, соответствующие
начально­му и конечному состояниям
системы. Так как процесс равновесный,
то
интегрирование проводится по любому
пути.

 Формула Больцмана

S=klnW,

где
S — энтропия
системы;
W

термодинамическая вероятность ее
состояния; k

постоянная Больцмана.

Примеры решения задач

Пример
1.
Вычислить
удельные теплоемкости неона и водорода
при постоянных объеме (сv)
и давлении (cp),
принимая эти газы за идеальные.

Решение.
Удельные теплоемкости идеальных газов
выра­жаются формулами

; (1)

. (2)

Для неона (одноатомный
газ) i1=3,
M1=2010
кг/моль.

Подставив в формулы
(1) и
(2) значения
i1,
M1
и R
и произведя вычисления, найдем:

сv1=
624
Дж/(кгК);
сp1=1,04
кДж/(кгК).

Для водорода
(двухатомный газ) i2=5,
M2=210-3
кг/моль.

Вычисление по
формулам
(1) и
(2) дает
следующие значения удельных теплоемкостей
водорода:

сv2=10,4
кДж/(кгK);
сp2=14,6
кДж/(кгK).

Пример
2.
Вычислить
удельные теплоемкости сv
и сp
смеси неона и водорода. Массовые доли
газов соответственно равны 1=0,8
и 2=0,2.
Значения удельных теплоемкостей газов
взять из примера
1.

Решение.
Удельную теплоемкость смеси при
постоянном объеме сv
найдем из следующих рассуждений. Теплоту,
необходи­мую для нагревания смеси на
T,
выразим двумя соотношениями:

Q=сv(m1+m2)T
(1)

где сv
— удельная
теплоемкость смеси; m1
— масса
неона; m2
— масса
водорода, и

Q=(сv1m1+
сv2m2)T (2)

где сv1
и сv2
удельные
теплоемкости неона и водорода
соответст­венно.

Приравняв правые
части выражений
(1) и
(2) и разделив
обе части полученного равенства на
T,
найдем

сv(m1+m2)=
сv1m1+
сv2m2,

откуда

Отношения
1=m1/(m1+m2)
и 1=m2/(m1+m2)
выражают мас­совые доли соответственно
неона и водорода. С учетом этих обозна­чений
последняя формула, примет вид

сvv11+
сv22.

Подставив в эту
формулу числовые значения величин,
найдем

сv=2,58
кДж/(кгК).

Рассуждая
таким
же
образок, получим формулу для вычисления
удельной теплоёмкости смеси при
постоянном давлении:

cpp11+
сp22

Произведя вычисления
по этой формуле, найдем

cp=3,73
кДж/(кгК).

Пример
3.
Определить
количество теплоты, поглощаемой
водоро­дом массой m=0,2
кг при нагревании его от температуры
t1=0°С
до температуры t2=100
°С при постоянном давлении. Найти также
изменение внутренней энергии газа и
совершаемую им работу.

Решение.
Количество теплоты Q,
поглощаемое газом при изобарном
нагревании, определяется по формуле

Q=mcpT,
(1)

где m
масса
нагреваемого газа; cp
его
удельная теплоемкость при постоянном
давлении; T
— изменение температуры газа.

Как известно,
.
Подставив это выражение cp
в формулу
(1), получим

Произведя вычисления
по этой формуле, найдем

Q=291
кДж.

Внутренняя энергия
выражается формулой
,
сле­довательно, изменение внутренней
энергии

.

После подстановки
в эту формулу числовых значений величин
и вычислений получим U=208
кДж.

Работу расширения газа
определим по формуле, выражающей первое
начало термодинамики: Q=U+A,
откуда

A=Q — U.

Подставив значения
Q и U,
найдем

А
=83 кДж.

Пример
4.
Кислород
занимает объем V1=1
м3
и находится под давлением р1=200
кПа. Газ нагрели сначала при по­стоянном
давлении до объема V2=3
м2,
a
затем при постоянном объеме до давления
Рис
11.1 р2=500
кПа. Построить график процесса и найти:
1) изменение
U
внутренней энер­гии газа; 2)
совершенную им работу A;
3) количество
теплоты
Q,
переданное
газу.

Решение.
Построим график процесса (рис.
11.1). На
графике точками
1, 2, 3
обозначены состояния газа, характеризуемые
пара­метрами (р1,
V1,
T1),
(р1,
V2,
T2),
(р2,
V2,
T3).

1.
Изменение внутренней энергии газа при
переходе его из со­стояния
1 в состояние
3 выражается
формулой

U=cvmT,

где cv
удельная
теплоемкость газа при постоянном объеме;
m
масса
газа; T
— разность
температур, соответствующих конечному
3 и
начальному 1 состояниям, т. е. T=T3
T
1.
Так как

;

где М
молярная
масса газа, то

.
(1)

Температуры T1
и T3
выразим из уравнения Менделеева
— Кла­пейрона
():

С учетом этого
равенство
(1) перепишем
в виде

U=(i/2)(p2V2p1V1).

Подставим сюда
значения величин (учтем, что для кислорода,
как двухатомного газа, i=5)
и произведем вычисления:

U=3,25
МДж.

2.
Полная работа, совершаемая газом, равна
A=A1+A2,
где A1
работа
на участке
1—2; A2
— работа
на участке
2—3,

На участке
1—2 давление
постоянно (p=const).
Работа в этом случае выражается формулой
A1=p1V=p1(V2—V1).
На участке 2—3
объем газа не изменяется и, следовательно,
работа газа на этом участке равна нулю
(A2=0).
Таким образом,

A=A1=p1(V2—V1).

Подставив в эту
формулу значения физических величин,
произ­ведем вычисления:

A=0,4
МДж

3.
Согласно первому началу термодинамики,
количество теплоты Q,
переданное газу, равно сумме ра­боты
A,
совершенной газом, и изме­нению U
внутренней энергии:

Q=A+U,
или
Q=3,65 МДж.

Пример
5.
Идеальный
двухатом­ный газ, содержащий количество
ве­щества v=l
моль, находится под дав­лением p1=250кПа
и занимает объем V1==10
л. Сначала газ изохорно на­гревают до
температуры T2=400
К. Далее, изотермически расширяя, до­водят
его до первоначального давле­ния.
После этого путем изобарного сжатия
возвращают газ в начальное состояние.
Определить термический КПД 
цикла.

Решение.
Для наглядности построим сначала график
цикла, который состоит из изохоры,
изотермы и изобары. В координатах р,
Vэтот
цикл имеет вид. представленный на рис.
11.2. Характерные
точки цикла обозначим
1, 2, 3.

Термический КПД
любого цикла определяется выражением

=(Q1
– Q2)/Q1,
или =l
– Q2/Q1,
(1) где
Q1

количество теплоты, полученное газом
за цикл от нагре­вателя; Q2
— количество теплоты, отданное газом
за цикл охлади­телю.

Заметим, что разность
количеств теплоты Q1
– Q2
равна работе A,
совершаемой газом за цикл.
Эта
работа на графике в координа­тах р,
V (рис.
11.2)
изображается площадью цикла (площадь
цикла заштрихована).

Рабочее вещество
(газ) получает количество теплоты
Q1
на двух участках: Q1-2
на участке
1—2 (изохорный
процесс) и Q2-3
на участке
2—3
(изотермический процесс). Таким образом,

Q1=Q1-2+Q2-3.

Количество теплоты,
полученное газом при изохорном процессе,
равно

Q1-2=Cvv(T2

T1),

где Cv
— молярная
теплоемкость газа при постоянном объеме;
v
— количестве вещества. Температуру T1
начального состояния газа найдем,
воспользовавшись уравнением Клапейрона
— Менде­леева:

T1=p1V1/(vR).

Подставив числовые
значения и произведя вычисления, получим

Количество теплоты,
полученное газом при изотермическом
про­цессе, равно

Q2-3=vRT2ln(V2/V1),

где V2

объем, занимаемый газом при температуре
T2
и давлении p1
(точка
3 на графике).

На участке
3—1 газ
отдает количество теплоты Q2,
равное

Q2=Q3-1=Cpv(T2
T1),
где Cp
молярная
теплоемкость газа при изобарном процессе.

Подставим найденные
значения
Q1
и Q2
в формулу
(1):

В полученном
выражении заменим отношение объемов
V2/V1,
со­гласно закону Гей-Люссака, отношением
температур (V2/V1=T2/T1)
и выразим Cv
и Cp
через число степеней свободы молекулы
[Cv=iR/2,
Cp=(i+2)R/2].
Тогда после сокращения на
v
и R/2
получим

.

Подставив значения
i,
T1,
T2
и R
и произведя вычисления, най­дем

Пример 6.
В цилиндре под поршнем находится водород
массой m=0,02
кг при температуре T1=300K.
Водород начал расширяться адиабатно,
увеличив свой объем в пять раз, а затем
был сжат изо­термически, причем объем
газа уменьшился в пять раз. Найти
тем­пературу Т2,
в конце адиабатного расширения и работу
А,
совершен­ную газом. Изобразить процесс
графически.

Решение.
Температуры и объемы газа, совершающего
адиа­батный процесс, связаны между
собой соотношением

,

где —
показатель адиабаты (для водорода как
двухатомного газа =1,4).

Отсюда получаем
выражение для конечной температуры T2:

.

Подставляя числовые
значения заданных величин, находим

.

Прологарифмируем
обе части полученного выражения:

lgT2=lg300+0,4(lgl
— lg5)=2,477+0,4( -0,699)=2,477—0,280=2,197.

Зная lgT2,
по таблицам антилогарифмов находим
искомое зна­чение T2:

T2=157
К.

Работа A1
газа при адиабатном расширении
определяется по формуле

.

Подставив сюда
числовые значения величин, после
вычисления получим

Работа A2
газа при изотермическом сжатии выражается
форму­лой

A2=RT2(m/M)ln(V2/V1).

Произведя вычисления
по этой формуле, найдем

A2=
-21 кДж.

Знак минус показывает,
что при сжатии газа работа совершена
внешними силами.

Общая работа,
совершенная газом при рассмотренных
процессах, А=A1+A2=29,8кДж
+ (-21 кДж)=8,8 кДж.

График процесса
приведен на рис.
11.3.

Пример
7. Нагреватель
тепловой машины, работающей по обра­тимому
циклу Карно, имеет температуру
t1==200°С.
Определить температуру Т2,
охладителя, если при получении от
нагревателя количества теплоты Q1=
1 Дж машина
совершает работу A=0,4
Дж? Потери на трение и теплоотдачу не
учитывать.

Решение.Температуру охладителя найдем, использовав
выражение для термического КПД ма­шины,
работающей по циклу Карно,=(T1
T2)/T1.
Отсюда

T2=
T1(1-).

(1)

Термический КПД
тепловой машины выражает отношение
количества тепло­ты, которое превращено
в механичес­кою работу A,
к количеству теплоты Q1,
которое получено рабочим телом тепло­вой
машины из внешней среды (от нагре­вателя),
т. е. =A/Q1.
Подставив это выражение в формулу
(1), найдем

T2=
T
1(1-A/Q).
(2)

Учтя, что T1=473
К, после вычисления по формуле
(2) получим
T2=284
К.

Пример
8.
Найти
изменение S
энтропии при нагревании воды массой
m=100
г от температуры t1=0°C
до температуры
t2=100
°С и последующем превращении воды в пар
той же температуры.

Решение.
Найдем отдельно изменение энтропии S’
при нагревании воды и изменение энтропии
S»
при превращении ее в пар. Полное изменение
энтропии выразится суммой S’
и S».

Как известно,
изменение энтропии выражается общей
формулой

(1)

При бесконечно
малом изменении dT
температуры нагреваемого тела
затрачивается количество теплоты
dQ=mcdT,
где m
масса
тела; с
— его
удельная теплоемкость. Подставив
выражение dQ
в равенство
(1), найдем
формулу для вычисления изменения
энтро­пии при нагревании воды:

.

Вынесем за знак
интеграла постоянные величины и
произведем интегрирование, тогда получим

S’=mcln(T2/T1).

После вычислений
найдем S’=132
Дж/К.

При вычислении по
формуле
(1) изменения
энтропии во время превращения воды в
пар той же температуры постоянная
температуpa
T
‘выносится
за знак интеграла. Вычислив интеграл,
найдем

(2)

где Q

количество теплоты, переданное при
превращении нагре­той воды в пар той
же температуры.

Подставив в равенство
(2) выражение
количества теплоты Q=m,
где 
удельная
теплота парообразования, получим


(3)

Произведя вычисления
по формуле
(3), найдем

S»=605
Дж/К.

Полное изменение
энтропии при нагревании воды и последую­щем
превращении ее в пар S=S’+S»=737
Дж/К.

Пример
9.
Определить
изменение S
энтропии при изотермиче­ском расширении
кислорода массой m=10
г от объема V1=25
л до объема V2=100
л.

Решение.
Так как процесс изотермический, то в
общем выражении энтропии

температуру выносят за знак интеграла.
Выполнив это, получим

(1)

Количество теплоты
Q, полученное
газом, найдем по первому началу
термодинамики: Q=U+A.
Для изотермического процесса U=0,
следовательно,

Q=A,
(2) а
работа А для этого процесса определяется
по формуле

A=(m/M)RT
ln(V2/V1).

(3)

С учетом
(2) и
(3) равенство
(1) примет
вид

S=(m/M)R
ln(V2/V1).
(4)

Подставив в
(4) числовые
значения и произведя вычисления, по­лучим

S=(1010-3/(3210-3))
8,31
ln(10010-3/(2510-3))
Дж/К=3,60
Дж/К.

2010-03-24 22:39

В предыдущем параграфе мы установили, что при работе против сил трения трущиеся тела нагреваются. Было сделано много различных опытов с целью точно измерить то изменение температуры, которое получается ври совершении определенной работы. Такие опыты в середине XIX века одним из первых осуществил Джоуль. Его прибор изображен на рис. 365. Разрез прибора показан в упрощенном виде на рис. 366. В сосуде с водой вращаются лопасти 1, приводимые в движение с помощью груза массы

, который подвешен на шнуре, перекинутом через блок 2. При опускании груза лопасти вращаются, проходя при этом сквозь отверстия в перегородках 3, и, увлекая воду, вызывают трение одних слоев воды о другие. При трении вода и сосуд нагреваются; никаких других изменений ни вода, ни другие части прибора не испытывают. При опускании груза с высоты

 действующая на него сила тяжести

 совершает работу, равную

. В начале и в конце опыта все части прибора — груз, лопасти, вода — находятся в покое, так что в результате опускания груза кинетическая энергия всех этих тел не изменяется.


Рис. 365. Прибор Джоуля


Рис. 366. Разрез прибора Джоуля

Таким образом, вся совершенная работа вызывает только нагревание воды, лопастей и других частей прибора. Это дает возможность подсчитать, какую работу нужно затратить, чтобы повысить температуру единицы массы воды на один кельвин. При этом Джоуль учел, что кроме воды нагреваются также и лопасти и сосуд. Как учитывается это нагревание, мы рассмотрим далее.

Опыты Джоуля повторялись неоднократно, причем условия опыта подвергались разнообразным изменениям. Менялось количество наливавшейся воды, масса грузов и высота их поднятия, моменты действующих сил и т. д. При всех этих измерениях всегда получался один и тот же результат: для нагревания одного килограмма воды на один кельвин надо произвести работу, равную 4,18 килоджоуля.

Кроме описанного опыта, и самим Джоулем и другими исследователями было выполнено много других опытов, также имевших целью установить связь между изменением температуры и совершенной работой. Наблюдалось нагревание газа, возникающее за счет работы, совершенной при сжатии; определялось разогревание трущихся друг о друга металлических дисков при одновременном определении работы, совершенной при преодолении трения, и т. д. Сравнение результатов этих опытов представляет некоторую трудность, так как в разных опытах нагреванию подвергались весьма различные тела.

Мы увидим дальше (§209), каким образом можно каждый раз свести полученное нагревание к нагреванию одного и того же вещества, например воды. Если произвести такое сравнение, то из всех описанных и многих аналогичных опытов можно вывести крайне важное заключение: если при исчезновении механической энергии не происходит никаких изменений в состоянии тел (например, плавления, испарения и т. д.), кроме изменения температуры, то за счет энергии 4,18 килоджоуля температура одного килограмма воды повышается всегда на один кельвин.

Таким образом, опыты Джоуля дают подтверждение закона сохранения энергии в расширенном смысле. При всех движениях, как происходящих без трения, так и сопровождающихся трением, сумма кинетической, потенциальной и внутренней энергий всех участвующих тел не изменяется. Эту сумму мы будем называть полной энергией тел или просто их энергией.

Рассмотрим пример. Пусть над свинцовой пластинкой висит на некоторой высоте свинцовый шарик. Энергия этой системы состоит из: а) потенциальной энергии шарика; б) внутренней энергии шарика и пластинки. Пусть теперь шарик упадет на пластинку и своим ударом вызовет нагревание. Потенциальная энергия шарика уменьшится, зато увеличится внутренняя энергия пластинки и шарика. Полная энергия остается неизменной.

203.1.
В приборе Джоуля, как это видно на рис. 365 и 366, скорость опускающихся грузов во много раз меньше скорости лопаток. Какая цель преследовалась таким устройством?

Примеры решения задач

Рис.
Рис. 73

Пример 1. Определите работу, совершаемую силой давления идеального газа определённой массы при переходе из состояния 1 в состояние (рис. 73).

Решение. I способ. Работа А газа в ходе всего процесса равна сумме работ на участках 1rightwards arrow2 и 2rightwards arrow3. Поскольку при переходе газа из состояния 1 в состояние 2 его объём не изменяется (изохорный процесс V2 = V1), то работа, совершаемая силой давления газа, А12 = 0. В процессе изобарного расширения (переход газа из состояния 2 в состояние 3) сила давления газа совершает работу

A23 = p2ΔV = p2(V3V1).

Тогда при переходе из состояния 1 в состояние 3 работа

А = А12 + А23 = p2(V3V1).

А = 2,00 · 105 Па · (2,00 · 10–2 м3 – 1,00 · 10–2 м3) = 2,00 · 103 Дж = 2,00 кДж.

Рис. 74
Рис. 74

II способ. Работа газа численно равна площади заштрихованной фигуры, ограниченной графиком зависимости давления от объёма, осью ОV и прямыми, соответствующими значениям объёма V1 = 10,0 · 10–3 м3 и V2 = 20,0 · 10–3 м3 (закрашенная область на рисунке 74).

А = 2,00 · 105 Па · (2,00 · 10–2 м3 – 1,00 · 10–2 м3) = 2,00 · 103 Дж = 2,00 кДж.

Ответ: А = 2,00 кДж.

Пример 2. Определите работу, совершаемую силой давления идеального газа определённой массы при изобарном повышении его температуры от t1 = 12 °С до t2 = 87 °С, если давление газа p = 190 кПа, а его начальный объём V1 = 6,0 дм3.

Дано:
Т1 = 285 К
Т2 = 360 К
p = 190 кПа = 1,90 · 105 Па
V1 = 6,0 дм3 = 6,0 · 10–3 м3

А — ?

Решение: Сила давления газа совершает положительную работу, поскольку при изобарном нагревании увеличивается его объём. Поэтому

A space equals space p left parenthesis V subscript 2 space – space V subscript 1 right parenthesis space equals space p V subscript 2 space – space p V subscript 1.

Согласно уравнению Клапейрона–Менделеева, p V subscript 1 space equals space nu R T subscript 1 и p V subscript 2 space equals space nu R T subscript 2. Следовательно,

A space equals space v R left parenthesis T subscript 2 space minus space T subscript 1 right parenthesis space equals space v R T subscript 1 open parentheses T subscript 2 over T subscript 1 minus 1 close parentheses space equals space p V subscript 1 open parentheses T subscript 2 over T subscript 1 minus 1 close parentheses.

A space equals space 1 comma 90 times 10 to the power of 5 space Па space times 6 comma 0 times 10 to the power of negative 3 end exponent space space straight м cubed times open parentheses fraction numerator 360 space straight К over denominator 285 space straight К end fraction minus 1 close parentheses space equals space 3 comma 0 times 10 squared space Дж space equals space 0 comma 30 space кДж.

Ответ: A space equals space 0 comma 30 space кДж.

Рис.
Рис. 74.1

Материал повышенного уровня

Пример 3. На рисунке 74.1 изображен процесс изменения состояния идеального газа определённой массы. На каком участке сила давления газа совершила наименьшую положительную работу? На каком участке внешняя сила совершила наибольшую положительную работу?

Решение. Работе силы давления газа соответствует площадь под графиком процесса. При расширении газа сила давления совершает положительную работу, а внешняя сила — отрицательную. При сжатии газа наоборот: сила давления совершает отрицательную работу, а внешняя сила — положительную. Анализ графика позволяет сделать вывод, что в процессе перехода из состояния 4 в состояние 1 сила давления газа совершила минимальную положительную работу (газ расширялся, а площадь под графиком минимальна). Максимальную же положительную работу внешняя сила совершает при сжатии, когда площадь под графиком максимальна (это процесс перехода из состояния 3 в состояние 4).

Пример 4. Состояние идеального газа, взятого в количестве ν = 1,0 моль при абсолютной температуре Т1 = 300 К, изменяется так, как изображено на рисунке 74.2. Определите работу газа в ходе всего процесса, если на изохоре 1rightwards arrow2 его давление уменьшается в три раза, а точки 1 и 3 лежат на одной изотерме.

Дано:
ν = 1,0 моль
Т1 = 300 К
p1 = 3p2
Т1 = Т3

A – ?

Решение: Работа А газа в ходе всего процесса равна сумме значений работы на участках 1rightwards arrow2 и 2rightwards arrow3 (рис. 74.2). Так как при переходе из состояния 1 в состояние 2 объём газа не меняется (процесс изохорный V2 = V1), то работа газа А12 = 0. Давление газа при переходе из состояния 2 в состояние 3 остаётся постоянным (р2 = р3), следовательно, работа газа А23 = p2(V3 − V1). Тогда А = А12 + А23 = p2(V3 − V1). Так как по условию Т1 = Т3, то воспользуемся уравнением Клапейрона: fraction numerator p subscript 1 V subscript 1 over denominator T subscript 1 end fraction equals fraction numerator p subscript 2 V subscript 3 over denominator T subscript 3 end fraction, откуда V subscript 3 equals p subscript 1 over p subscript 2 V subscript 1 equals 3 V subscript 1. Следовательно, A equals p subscript 2 open parentheses 3 V subscript 1 minus V subscript 1 close parentheses equals 2 p subscript 2 V subscript 1 equals fraction numerator 2 p subscript 1 V subscript 1 over denominator 3 end fraction.

Рис.

Рис. 74.2

Согласно уравнению Клапейрона‒Менделеева, p1V1 = νRT1. Тогда A equals 2 over 3 nu R T subscript 1.

A equals fraction numerator 2 times 1 comma 0 space моль times 8 comma 31 space begin display style fraction numerator Дж over denominator straight К times моль end fraction end style times 300 space straight К over denominator 3 end fraction equals 1662 space Дж equals 1 comma 7 space кДж.

Ответ: А = 1,7 кДж.

Понравилась статья? Поделить с друзьями:
  • Как найти строку баланса 1110
  • Как найти скачанные файлы или загрузки
  • Как найти человека если не знаешь имени
  • Как найти ортогональный базис векторов онлайн
  • Как найти инвестора или кредитора