Как найти температуру в физике термодинамика

Автор статьи

Наталья Николаевна Пушкина

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Определение 1

Термодинамическая температура — единственная функция состояния термодинамической системы, характеризующая направление самопроизвольного теплообмена между материальными телами.

Понятие термодинамики. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Понятие термодинамики. Автор24 — интернет-биржа студенческих работ

Термодинамическая температура в физике всегда обозначается буквой T, измеряется в кельвинах (обозначается K) и отсчитывается исключительно по абсолютной термодинамической шкале под названием шкал Кельвина. Абсолютная температура в термодинамике является основной шкалой в физике и в термодинамических уравнениях.

Молекулярно-кинетическая гипотеза, со своей стороны, непосредственно соединяет абсолютную температуру со средним коэффициентом кинетической энергией прямолинейного движения молекул идеального газа в условиях постоянного равновесия.

История измерения температуры

Измерение температуры в термодинамики прошло достаточно долгий и трудный путь в своём развитии. Так как температура невозможно измерить непосредственно, то для её измерения ученые применяли свойства термометрических веществ, находившиеся в функциональной зависимости от коэффициента температуры. На этой основе в итоге были созданы различные температурные шкалы, получившие название эмпирических, а измеренная посредством их температура носит название эмпирической.

Замечание 1

Весомыми недостатками эмпирических шкал считается наличие несовпадения и непостоянства значений температур для различных термометрических тел: как между реперными материальными точками, так и за их границами.

«Температура в термодинамике» 👇

Такое явление связано с отсутствием в природе универсального вещества, способного сохранять свои свойства в диапазоне всевозможных температур. В 1848 году Томсон решил с помощью экспериментов выбрать наиболее подходящий градус температурной среды таким образом, чтобы в её пределах эффективность тепловой машины была при любых условиях одинаковой.

В дальнейшем, в марте 1854 года, исследователи использовали обратную функцию Карно для создания новой шкалы в термодинамике, не зависящей от свойств, активно действующих в системе термометрических тел. Однако, практическое внедрение этой идеи оказалась невозможной. В начале XIX столетия в поисках «абсолютного» устройства для измерения температуры наука вновь вернулась к теории идеального газового термометра, базирующейся на законах веществ Гей-Люссака и Шарля.

Газовый термометр в течение длительного периода времени был единственным методом воспроизведения и закрепления абсолютной температуры. Новые направления в разработке идеальной температурной шкалы основаны на реализации уравнений Стефана ─ Больцмана в бесконтактной термометрии и формулы Гарри (Харри) Найквиста ─ в контактной.

Температура как интенсивное свойство

Термодинамическая температура. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Термодинамическая температура. Автор24 — интернет-биржа студенческих работ

Чтобы определить температуру, как интенсивное свойство любой системы, необходимо наполнить бочку холодной водой из других ведер. Сумма объемов жидкости в ведрах равна объему бочки. Однако сколько бы холодной воды ни поместить в бочку, горячей воды при этом невозможно получить. Такое рассуждение не смешно и не наивно, как может показаться с первого раза, ведь опыт не очевиден сам собой. Это один из важнейших законов природы, к которому люди просто привыкли.

Определение 2

Физика — великое торжество человеческого разума, но она практически всегда развивалась в связи с исследованием кажущихся тривиальностей.

Например, из нескольких коротких палок возможно быстро составить одну длинную, если соединить их встык между собой. Объем и длина – основные свойства системы. Но теперь желательно добавить к ним площадь и массу, которые выступают в качестве примеров экстенсивных свойств. Такие величины постепенно складываются, а на основе закона сложения базируется и метод их дальнейшего измерения.

Замечание 2

Определение экстенсивной величины — это сравнение ее с однородной в отношении концепции величиной.

Измерять температуру необходимо так, как измеряют площадь, длину, объем, массу, нельзя: температуры никогда не складываются. Единица температуры, которой можно сразу измерять любую температурную шкалу, просто невозможна. Температура – яркий пример интенсивных свойств концепции, поэтому к ней закон сложения неприменим.

Пример 1

Например, если разделить железный стержень на несколько частей, температура каждой из них останется прежней, а вот длина, соответственно, изменится.

Непосредственно установить конкретное числовое соотношение между различными температурами бессмысленно и нереально. Поэтому цель ученых измерить температуру без использования метода, пригодным для экстенсивных величин оказалась невыполнимой.

Основы построения термодинамической шкалы температур

Абсолютная температура в термодинамике. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Абсолютная температура в термодинамике. Автор24 — интернет-биржа студенческих работ

Шкала температур в термодинамике может быть построена принципиально на основании гипотезы Карно, которая предполагает:

  • независимость показателя полезного действия теплового идеального двигателя от самой природы материального тела;
  • самостоятельность от конструкции мотора;
  • зависимость от температур холодильника и нагревателя.

Такое соотношение возможно использовать для построения абсолютной термодинамической температуры. Если изометрическое явление цикла Карно осуществлять при температуре тройной точки воды, то коэффициент объема движущихся веществ изменится. Установленная таким образом шкала называется в физике термодинамической шкалой Кельвина. К сожалению, точность и надежность измерения количества теплоты низкая, что не позволяет реализовать вышеуказанный метод на практике.

Абсолютная температурная шкала может быть представлена в качестве некого термометрического элемента идеального газа. Если измерять давление этого вещества, близкого по свойствам к идеальному, расположенного в герметичном сосуде постоянного объёма, то таким способом ученые определяют температурную шкалу, которая называется идеально-газовой. Преимуществом этой шкалы считается тот факт, что давление идеального газа изменяется линейно с температурой.

В различных тематических изданиях по термодинамике приводятся доказательства того, что измеренная по идеально-газовой шкале температура полностью совпадает с термодинамической температурой. Однако между этими сетками есть принципиальная разница с качественной точки зрения.

Замечание 3

Только термодинамическая шкала является абсолютно самостоятельной и не зависит от свойств термометрического тела.

Как уже было ранее сказано, точное воспроизведение термодинамической шкалы всегда сопряжено с серьезными трудностями. Поэтому изначально необходимо тщательно измерять количество получаемой теплоты в изотермических процессах теплового двигателя.

Дальнейшее воспроизведение термодинамической температурной сетки в диапазоне от 10 до 1337 K возможно посредством газового термометра. При более высоких температурах возникает диффузия реального газа в стенках резервуара, а при температурах в несколько тысяч градусов элементы распадаются на атомы. Для измерения температурных показателей за пределами возможностей газовых термометров в силу вступают специальные методы измерения.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Температура
является чисто термодинамической
величиной, не имеющей аналога в механике.
Температура определяется как некоторая
феноменологическая величина, позволяющая
численно описывать тепловое равновесие
между телами. Если два тела (или части
одного тела) имеют температуры Т1
и Т2,
то соотношение

Т1
= Т2
(2.4.1)

является
эмпирическим условием теплового
равновесия

условием отсутствия потоков тепла.
Условие теплового термодинамического
равновесия можно также записать как
постоянство температуры в каждой точке
системы:

T(r)
= const.
(2.4.1)

Условие (2.4.1) открыто
экспериментально Дж. Блеком еще в XVIII
веке, до появления термодинамики как
науки, и часто называется нулевым
законом термодинамики
.

Также чисто
эмпирически было установлено, что тепло
(тепловая энер­гия), всегда переходит
от тел с более высокой температурой к
телам с более низкой
.
Это утверждение – одна из формулировок
второго
закона термодинамики
.
Интересно, что второй закон термодинамики
был понят раньше первого (С. Карно, 1824
г.);
впервые этот закон был ясно математически
сформулирован Р. Клаузиусом (1850
г.),
которому мы обязаны и введением понятия
энтропии – важнейшей термодинамической
функции. Лорд Кельвин также открыл
второй закон термодинамики в 1851 г.,
независимо от Клаузиуса.

Температуру
измеряют, наблюдая за каким-либо
физическим свойством вещества: объемом
жидкости, давлением газа, электоросопротивлением
и др. Так определяется эмпирическая
температура.

Температура
исчисляется в градусах.
Абсолютная
шкала
температуры,
которая используется в физике в настоящее
время, была предложена лордом Кельвином
(Вильямом Томсоном) в 1848 г. и поэтому
называется также шкалой
Кельвина
.

Вначале
калибровка температурной шкалы Кельвина
производилась по двум фиксированным
точкам: точке плавления льда Т0

и точке кипения Т0
+
100° чистой воды при давлении в одну
атмо­сферу.
Учитывая то обстоятельство, что зна­чение
тройной точки чистой воды очень близко
к 0,0098 °С, десятая Генеральная конференция
мер и весов в 1954 г. постановила считать
тройную точку воды фиксированной точкой,
которой соответствует температура
273,16 К. Эта конференция также следующим
образом определила термо­дина­ми­ческую
температурную шкалу Цельсия:

t°С
= Т
К
273,15
°С,

где
Т
К
значение
абсолютной температуры, уста­новленное
конференцией. Нуль новой термодинамической
температуры Цельсия отличается от точки
плавления льда примерно на 0,0001°. Для
обычных целей различием между новым и
старым определе­нием шкалы можно
полностью пренебречь.

2.5. Уравнение состояния

В
классической термодинамике, изучающей
механические и химические явления,
внутренняя энергия зависит от четырех

и
только четырех
первичных,
простейших физических параметров, или
факторов:

1)
температуры T,
которая характеризует энергию
поступательного, вращательного и
колебательного движения молекул;

2)
давления p,
от которого зависит расстояние между
частицами и, следовательно, энергия
межмолекулярного взаимодействия;

3)
объема V
системы, от
которого, также как и от давления, зависит
расстояние между частицами;

4)
количества n
образующих
систему веществ, определяющих энергию
как внутри-, так и межмолекулярного
взаимодействия.

Однако из
перечисленных четырех факторов
независимыми являются только три из
них. Связано это с тем, что для любого
тела, любой системы всегда существует
феноменологическое
уравнение
связи
между ними, называемое уравнением
состояния.
Например,
для идеального газа, состоящего из
частиц нескольких сортов (молекулярных
форм), уравнение состояния (другие
названия: объединенное уравнение
газового состояния; уравнение Менделеева
– Клапейрона) имеет вид:

pV
=
RTni
,

(2.5.1)

где
ni
– количество
вещества сорта i
в молях, R
коэффициент пропорциональности,
выравнивающий размерности правой и
левой части (2.5.1). Он называется газовой
постоянной
,
ибо он одинаков для всех идеальных
газов.

Поскольку уравнение
состояния как уравнение связи существует
всегда, то величины p,T,V,n,
называемые обычно термодинамическими
переменными
,
являются также и термодинамическими
функциями
друг
от друга. Поскольку уравнение состояния
единственно, то каждой триаде значений
термодинамических переменных, описывающей
произвольное состояние системы,
соответствует единственное значение
четвертой величины как функции
состояния
.

При достаточно
высоких темпера­турах и низких
давлениях уравнение (2.5.1) является
хорошим приближением для любого газа.
Для реальных
тел (реальных газов, жидкостей, твердых
тел) уравнения состояния значительно
сложнее. В каждом конкретном случае и
вид уравнения состояния, и его параметры
устанавливаются экспериментально.

Уравнение состояния
можно иллюстрировать графи­чески
различными способами. Если в уравнение
входят только три переменных и оно
записывается в виде f(p,
Т, V)
=
0,
то любые два
из них, скажем p
и V,
можно выбрать
в качестве осей декартовой системы
коор­динат. Тогда, при любом фиксированном
зна­чении третьей переменной Т,
уравнение
состояния определяет на этой плоскости
некоторую кривую, называемую изотермой.

В слу­чае
идеального газа (теоретической модели),
как это видно из уравнения (2.5.1), изотермы
на плоскости pV
при любой температуре представляют
собой равно­сторонние гиперболы (см.
верхнюю кривую на рис. 2.5.1). В действительности
для всех реальных газов существует
некоторая критическая
температура,
выше
и ниже которой газ обладает принципиально
разными свойствами. Поэтому
реальные
газы при низких температурах и высоких
давлениях имеют изотермы более сложного
вида.

Если подвергнуть
изотермическому сжатию газ, нахо­дящийся
при температуре, меньше некоторой ТС
, называемой
критической температурой
,
то давление будет сначала воз­растать
(нижняя кривая до точки D
на рис. 2.5.1). Но, при некотором объеме Vs
наступит
насыщение: газ начинает конденсироваться
в жидкость. При дальнейшем сжатии, пока
весь газ не превратится в жидкость (при
объеме Vb,),
давление остается постоянным (прямая
D).
При дальнейшем
сжатии (теперь жидкости) изотерма снова
пойдет вверх, но более круто (верхняя
кривая после точки А
рис. 2.5.1), поскольку коэффициент сжимаемости
у жидкостей мал.

Рис. 2.5.1.

Изотермы
реаль­ных газов.

«Купол»
показывает границу двухфазной области

До насыщения, т.
е. при V
> Vs,
экспериментальные
данные можно достаточно точно описывать
уравнением состояния, представляемым
в виде ряда по обратным степеням V:

,

в
котором вириальные
коэффициенты
Bi
зависят
от температуры. Эту форму записи уравнения
состояния ввел Камерлинг-Онесс в 1902 г.
Отметим, что в последствии такое
разложение по степеням плотности было
обосновано Дж. Майером (1937 г.) с теоретической
точки зрения. Вириальные коэффициенты
были
им непосред­ственно связаны с
межмолекулярными силами.

Уравнение
Ван-дер-Ваальса.
При
температурах выше критической изотермы
представляют собой гладкие монотонные
кривые. В области же насыщения между
точками с абс­циссами Vb
и Vs
(см. рис.
2.5.1) участки изотерм становятся прямыми:
p = const,
а производные дp/дV
в
этих точках
терпят разрыв. Описать все возможные
состояния равнове­сия реального газа
с помощью одного уравнения предста­вляется
невозможным. Однако Ван-дер-Ваальсу в
его диссертации «О непрерывности
газообразного и жидкого состояний»
(1873 г.) удалось в известном смысле решить
эту задачу. Исходя из весьма простых
молекуляр­ных соображений, он предложил
следующее уравнение состояния:

.
(2.5.2)

Здесь
коэффициент а
учитывает
взаимное притяжение молекул газа,
коэффициент b

их конечные размеры. Это уравнение
сохранило свое значение до настоящего
времени и часто используется даже для
описания состояния жидкостей.

Уравнение (2.5.2)
дает изотермы, ниже определенной
температуры имеющие S-образный
участок (А-В-С-D
на рис. 2.5.1). Это свойство уравнения
Ван-дер-Ваальса особенно привлекательно
тем, что оно приближенно описывает и
неравновесные состояния: перегретую
жидкость (заштрихованный участок над
кривой А-В)
и переохлажденный пар (участок под
кривой CD).
Прямая AD
соответствует равновесной области
насыщенного пара.

С повышением
температуры изотермы поднимаются вверх,
точки А-D
и В-С сближаются
(см. «купол» на рис. 2.5.1). При некоторой
температуре Тс
максимум и
минимум на кривой изотермы сливаются
в точку, являющейся точкой
перегиба
на
изотерме:

Эта
температура и является критической.
Точка перегиба на изотерме называется
критической
точкой,
а
соответствующие ей температура, давление
и объем называются критическими
параметрами
.
При температурах выше критической
реальный газ не переходит в жидкость
ни при каких давлениях. С дальнейшим
повышением температуры изотермы все
более прибли­жаются к гиперболам (см.
рис. 2.5.1), отвечающим идеальному газу.

Соседние файлы в папке Samost_rabota

  • #

    22.08.2013280 б21.listing

  • #
  • #
  • #
  • #

Содержание:

Температура:

Перед тем как, например, пойти на пляж, многие интересуются прогнозом погоды. И если ожидается температура воздуха 10 °С, то, скорее всего, планы будут изменены. А стоит ли отказываться от прогулки, если прогнозируется температура 300 К (кельвинов)? И что на самом деле вкладывают физики в понятие «температура»?

Температура в физике - основные понятия, формулы и определение с примерами

Что такое температура

Эксперименты показывают, что макроскопическая система может переходить из одного состояния в другое. Например, если в морозный день занести в комнату шарик, наполненный гелием, то гелий в шарике будет нагреваться и при этом будут изменяться давление, объем и некоторые другие параметры газа. После того как шарик пробудет в комнате некоторое время, изменения прекратятся. Один из постулатов молекулярной физики и термодинамики — его еще называют нулевое начало термодинамики — гласит: любое макроскопическое тело или система тел при неизменных внешних условиях самопроизвольно переходит в термодинамическое равновесное состояние (состояние теплового равновесия), после достижения которого все части системы имеют одинаковую температуру. Нулевое начало термодинамики фактически вводит и определяет понятие температуры.

Температура — физическая величина, характеризующая состояние теплового равновесия макроскопической системы.

Состояние теплового равновесия — это такое состояние макроскопической системы, при котором все макроскопические параметры системы остаются неизменными сколь угодно долго.

В состоянии теплового равновесия все части системы имеют одинаковую температуру; другие макроскопические параметры неизменны, но могут быть разными. Вспомните пример с шариком: после того как установится тепловое равновесие, температура окружающего воздуха и температура гелия в шарике будут одинаковыми, а давление, плотность и объем — разными.

Как работают термометры

Температура — это физическая величина, и ее можно измерять. Для этого нужно установить шкалу температур. Самые распространенные температурные шкалы — шкалы Цельсия, Кельвина, Фаренгейта (рис. 29.1).

Температура в физике - основные понятия, формулы и определение с примерами

Построение шкалы температур начинается с выбора реперных (опорных) точек, которые должны быть однозначно связаны с какими-либо физическими процессами, которые легко воспроизвести. Например, за нулевую точку температурной шкалы Цельсия принята температура таяния льда при нормальном атмосферном давлении ( t = 0 °С). Температуре кипения воды при нормальном атмосферном давлении приписывают значение t =100 °С. Единица температуры по шкале Цельсия — градус Цельсия: Температура в физике - основные понятия, формулы и определение с примерами.

Температура в физике - основные понятия, формулы и определение с примерами

Рис. 29.2. различные виды термометров: а — жидкостный (принцип действия: изменение объема жидкости при изменении температуры); б — термометр сопротивления (изменение электрического сопротивления проводника при изменении температуры); в — биметаллический деформационный (изменение длин двух разных металлических пластин при изменении температуры)

Приборы для измерения температуры — термометры (рис. 29.2). Основные части любого термометра — термометрическое тело (ртуть или спирт в жидкостном термометре, биметаллическая пластина в металлическом деформационном термометре и т. д.) и шкала. Если термометрическое тело привести в контакт с телом, температуру которого нужно измерить, система придет в неравновесное состояние. При переходе в равновесное состояние будут изменяться некоторые параметры термометрического тела (объем, сопротивление и т. п.). Зная, как эти параметры зависят от температуры, определяют температуру тела.

Обратите внимание!

  • Термометр фиксирует собственную температуру, равную температуре тела, с которым термометр находится в термодинамическом равновесии.
  • Термометрическое тело не должно быть массивным, иначе оно существенно изменит температуру тела, с которым контактирует.

Температура и средняя кинетическая энергия молекул

То, что температура тела должна быть связана с кинетической энергией его молекул, следует из простых соображений. Например, с увеличением температуры увеличивается скорость движения броуновских частиц, ускоряется диффузия, повышается давление газа, а это значит, что молекулы движутся быстрее и их кинетическая энергия становится больше. Можно предположить: если газы находятся в состоянии теплового равновесия, средние кинетические энергии молекул этих газов одинаковы. Но как это доказать, ведь непосредственно измерить эти энергии невозможно?

Обратимся к основному уравнению МКТ идеального газа: Температура в физике - основные понятия, формулы и определение с примерами. По определению Температура в физике - основные понятия, формулы и определение с примерами, поэтому Температура в физике - основные понятия, формулы и определение с примерами. После преобразований получим: Температура в физике - основные понятия, формулы и определение с примерами.

Таким образом, чтобы экспериментально убедиться в равенстве средних кинетических энергий молекул различных газов при одинаковой температуре, нужно измерить объемы (V), давления (p) и массы (m) газов и, зная их молярную массу (M), найти число молекул каждого газа (N) по формуле Температура в физике - основные понятия, формулы и определение с примерами.

Чтобы обеспечить одинаковую температуру, можно, например, погрузить баллоны с различными газами в сосуд с водой и дождаться состояния теплового равновесия (рис. 29.3).

Температура в физике - основные понятия, формулы и определение с примерами

Рис. 29.3. опыт, позволяющий установить связь между температурой и средней кинетической энергией поступательного движения молекул газа. Газы в сосудах находятся в состоянии теплового равновесия со средой, а следовательно, и друг с другом

Эксперименты показывают, что для всех газов в состоянии теплового равновесия отношение Температура в физике - основные понятия, формулы и определение с примерами одинаково, а следовательно, одинаковыми являются и средние кинетические энергии молекул газов. (Отношение Температура в физике - основные понятия, формулы и определение с примерами часто обозначают символом θ (тета).)

Например, при температуре 0 °С (сосуды с газами погрузили в тающий лед) Температура в физике - основные понятия, формулы и определение с примерами, Дж, то естьТемпература в физике - основные понятия, формулы и определение с примерами Дж; при температуре 100 °С (сосуды погрузили в кипящую воду) Температура в физике - основные понятия, формулы и определение с примерамиТемпература в физике - основные понятия, формулы и определение с примерамиДж. Так как в состоянии теплового равновесия значение θ для любых газов одинаково, то температуру можно измерять в джоулях.

Абсолютная шкала температур

Понятно, что в джоулях представлять температуру неудобно (прежде всего потому, что значения θ очень малы), к тому же неудобно полностью отказываться от шкалы Цельсия. В 1848 г. английский физик Уильям Томсон (лорд Кельвин) (1824–1907) предложил абсолютную шкалу температур (сейчас ее называют шкалой Кельвина).

Температуру Т, измеренную по шкале кельвина, называют абсолютной температурой.

Единица абсолютной температуры — кельвин — основная единица СИ: [T] = 1 К (К).

Шкала Кельвина построена следующим образом:

  • изменение температуры по шкале Кельвина равно изменению температуры по шкале Цельсия: ∆ = T t ∆ , то есть цена деления шкалы Кельвина равна цене деления шкалы Цельсия: 1 °С = 1 К; температуры, измеренные по шкалам Кельвина и Цельсия, связаны соотношениями: Температура в физике - основные понятия, формулы и определение с примерами
  • температура по шкале Кельвина связана с величиной Температура в физике - основные понятия, формулы и определение с примерами соотношением θ = kT, где k — постоянная Больцмана — коэффициент пропорциональности, не зависящий ни от температуры, ни от состава и количества газа: Температура в физике - основные понятия, формулы и определение с примерами
  • абсолютная температура имеет глубокий физический смысл: средняя кинетическая энергия поступательного движения молекул идеального газа прямо пропорциональна абсолютной температуре: Температура в физике - основные понятия, формулы и определение с примерами (1) То есть, если газ охладить до температуры T= 0 К, движение его молекул должно прекратиться (Температура в физике - основные понятия, формулы и определение с примерами). Таким образом, нулевая точка шкалы Кельвина — это самая низкая теоретически возможная температура. На самом деле движение молекул не прекращается никогда, поэтому достичь температуры 0 К (–273 °С) невозможно.

Абсолютный нижний предел температуры, при котором движение молекул и атомов должно прекратиться, называют абсолютным нулем температуры. Давление p газа полностью определяется его абсолютной температурой T и концентрацией n молекул газа: p=nkT (2).

Выводы:

  • Физическая величина, характеризующая состояние теплового равновесия макроскопической системы, называется температурой. Абсолютный нижний предел температуры, при котором движение молекул и атомов должно прекратиться, называют абсолютным нулем температуры. Шкала, за нулевую точку которой взят абсолютный нуль температуры, называется абсолютной шкалой температур (шкалой Кельвина). Единица абсолютной температуры — кельвин (К) — основная единица СИ. Температуры по шкале Кельвина и Цельсия связаны соотношением: T=t + 273; t=T – 273.
  • Средняя кинетическая энергия поступательного движения молекул идеального газа прямо пропорциональна абсолютной температуре, а давление газа определяется абсолютной температурой и концентрацией молекул газа:Температура в физике - основные понятия, формулы и определение с примерами— постоянная Больцмана.
  • Парообразование и конденсация 
  • Тепловое равновесие в физике
  • Изопроцессы в физике
  • Твердые тела и их свойства в физике
  • Механизмы, работающие на основе правила моментов 
  • Идеальный газ в физике
  • Уравнение МКТ идеального газа
  • Уравнение состояния идеального газа

Физическая дисциплина «Термодинамика», имеющая дословный перевод с греческого как θέρμη — «тепло», δύναμις — «сила», занимается изучением общих характеристик макросистем и обращения энергии внутри них. Эту науку относят к феноменологическому типу, хотя опирается она на факты, полученные опытным путем.

Термодинамическая система, рассматриваемая в данном ракурсе, имеет конкретные характеристики, не применимые к единичным атомам и молекулам. К ним относят температуру, энергию, объем, концентрацию растворов, давление.

Определение таких параметров происходит по формулам термодинамики.

Основные формулы

Источник: en.ppt-online.org

Основные формулы термодинамики

Особенностью термодинамики является то, что ее постулаты не касаются взаимодействия отдельных единиц (атомов, молекул), как в молекулярной физике. Предметом изучения предстают общие взаимопревращения энергии, образование теплоты, теплопередача и совершение работы.

Исходя из этого, выделяют основные формулы термодинамики, к которым относятся:

  1. Уравнение Менделеева-Клайперона: (PV=(m/M)*RT). Его смысл — в изменениях трех входящих величин, которые направлены на характеристику состояния идеального газа.
  2. Количество вещества, обозначаемое буквой (ν). (nu=N/NA=m/mu)

    Величина, выражающая, сколько одинаковых структурных компонентов (единиц) находится в веществе.

  3. Закон Дальтона: давление смеси газов на стенку сосуда равно сумме давлений каждого входящего в смесь элемента: (p=p1+p2+…pn.)
  4. Главное уравнение МКТ (молекулярно-кинетической теории): (p=2n/3<varepsilon>n=N/V). Выражает математическое соотношение таких параметров, как давление газа и микропараметров: массы молекул, их скорости движения, концентрации.
  5. Средняя кинетическая энергия поступательного движения молекулы газа. Для обозначения применяется (E_k),  выражается через формулу: (E_k=E_{моля}/NA=3/2ast RT/NA). Ее мерой является абсолютная температура идеального газа, поскольку потенциальная энергия (вследствие взаимодействия молекул друг с другом) равна нулю. Зная, что R/NA=k, получается формула: (E_k=3/2ast kT).
  6. Давление идеального газа прямо пропорционально концентрации и его температуре: (P=nkT.)
  7. Скорость молекул определяется по формулам:
    (V=surd(2kT/m_o)=surd(2RT/mu)) — наиболее вероятная;
    (<V>=surd(8kT/pi m_o)=surd(8RT/pimu)) — среднеарифметическая;
    (<Vкв>surd(3kT/m_o)=surd(3RT/mu)) — средняя квадратичная.
  8. Сумма кинетических энергий всех молекул определяет внутреннюю энергию всего идеального газа. Математически выражение выглядит так: (U=i/2ast(m/mu)ast RT.)
  9. Формула для определения работы, которую совершает идеальный газ при расширении:( A=P(V_2-V_1).)
  10. Формула первого закона термодинамики: (Q=Delta U+A.)
  11. Для определения удельной теплоемкости вещества применяется математическое выражение: (С=Delta Q/mdT.)
  12. Кроме удельной теплоемкости, существует понятие молярной теплоемкости. Для ее определения применяется формула: (C=cmu). Для изохорного процесса правильная формула принимает вид: (C_v=1/2ast R), для изобарного: (C_p=((i+2)/2)ast R).

Первое начало термодинамики

Согласно первому закону термодинамики, (Q) (количество внутренней теплоты), которое получил газ извне, расходуется на совершение работы (А) и изменение внутренней энергии (U). Формула закона: (Q=Delta U+A).

Первый закон термодинамики

Источник: obrazovaka.ru

На практике газ может быть нагрет либо охлажден. Однако в данном случае рассматривается изотермический процесс, в котором один из характеризующих параметров остается неизменным.

Если процесс изотермичен, в химии включается закон Бойля-Мариота. В нем говорится, что давление газа соотносится к изначальному объему, при стабильной температуре, обратно пропорционально.

(Q=A)

Когда процесс происходит при неизменном объеме, говорят об изохорности. Здесь вступает в действие закон Шарля. В обозначенных условиях то тепло, которое поступило к газу, расходуется на изменение внутренней энергии. Другими словами, (P) пропорционально (T).

(Q=Delta U)

Протекание процессов в идеальном газе при неизменном давлении носит характер изобарного. Здесь действует закон Гей-Люссака, который выражается уравнением:

(Q=Delta U=pDelta V)

Полная формулировка закона гласит: полученное тепло при изобарном процессе расходуется на совершение работы газом, а также изменяет его внутреннюю энергию.

Часть процессов происходят изолированно от внешней среды. Газ не получает дополнительной энергии. Такая ситуация носит название адиабатной и математически записывается: (Q=0). Работа (А) в таком случае выражается: (A=-Delta U.)

Уравнение идеального газа в термодинамике

Молекулы идеального газа постоянно движутся. От того насколько велика скорость их движения, зависит общее состояние газа, а также величина его воздействия, например, на стенки сосуда. Поэтому одним из основных уравнений термодинамики является Клайперона-Менделеева:

(PV=(m/M)ast RT)

В уравнении (m) — единица массы газа, (M) — его молекулярная масса, (R) — универсальная величина, называемая газовой постоянной. Ее значение = 8,3144598. Измеряется в Дж/(моль*кг).

В основе термодинамики лежат и другие газовые постоянные, например, число Авогадро, постоянная Больцмана. Таким образом, (R=kNA.)

Из уравнения Клайперона-Менделеева можно также вычислить массу. Она будет равна произведению плотности на объем: (m=rho V).

Основное уравнение молекулярно-кинетической теории (МКТ)

Решение части задач зависит от знания особенностей взаимосвязи между давлением газа и характеристикой кинетической энергии его молекул. Математическое выражение такой зависимости носит название основного уравнения МКТ:

(p=2/3ast nE)

В данном выражении кинетическая энергия обозначена буквой (Е), а концентрация молекул — (n). Каждую из этих величин физики можно найти исходя из соответствующих формул, после чего уравнение для молекулярно-кинетической теории (МКТ) приобретает вид:

(p=nkT)

Куб

Источник: encrypted-tbn0.gstatic.com

Формула теплоемкости и главная формула КПД в термодинамике

Когда теплообмен проявляется передачей телу определенного количества теплоты, его энергия, как и температура, меняются.

То количество теплоты, обозначаемое (Q), которое понадобится для того, чтобы 1 кг определенного вещества нагреется на 1 К, носит определение теплоемкости вещества и обозначается с.

Математическое выражение относительно переданного количества теплоты выглядит формулой:

(Q=cm(t_2-t_1)=cmDelta t)

Измеряется величина в Дж/(кг∙К).

При t2⟩t1, количество теплоты со знаком плюс, следовательно, вещество нагревается. Если наоборот, то Q — со знаком минус, и вещество остывает.

В физике, характеризуя свойства вещества, говорят о его теплоемкости. Это имеет значение, например, при выборе стройматериалов или сырья для изготовления нагревательных приборов. Теплоемкость равна произведению массы на удельную теплоемкость данного тела:

(C=cm)

Учитывая, что в величине теплоемкости уже отражена масса, то сокращенная формула для определения (Q) выглядит так:

 (Q=C(t_2-t_1))

С другой стороны, то количество теплоты, которое отдает источник, можно высчитать по формуле: 

(Q=Pt.)

В выражении буквой (P) обозначается мощность нагревателя, а (t) — время их контакта.

Конструкция, состоящая из нагревателя, тела-реципиента теплоты и охладителя, носит название тепловой машины. В качестве примера рассматривается двигатель внутреннего сгорания. Как и любой механизм, она имеет такую характеристику, как КПД — коэффициент полезного действия. Для его расчета применяется формула:

(eta=(Q_н-Q_x)/Q_н)

Внутренняя энергия одноатомного и двухатомного идеального газа

Характерной особенностью идеального газа является отсутствие у его составляющих частей потенциальной энергии. Вся внутренняя энергия — это сумма кинетических энергий всех молекул. Она является величиной, прямо пропорциональной температуре идеального газа:

(mw2/2=alpha T)

В этом уравнении:

(alpha T=3Rmu/2Nmu)

Исходя из приведенных формул, величина кинетической энергии поступательного движения идеального газа должна определяться исходя из выражения:

(mv2/2=(3Rmu/2Nmu)ast T)

Поступательное движение характеризуется тремя степенями свободы. На каждую из них приходится одна треть общей кинетической энергии.

Внутренняя энергия газа

Источник: cf.ppt-online.org

Двух- и более атомные молекулы газа характеризуются степенями свободы, касающимися вращательного движения.

Если обозначить число молекул в одном киломоле за (Nμ), то внутренняя энергия идеального газа будет измеряться по формуле:

(Umu=1/2(Rmu Ti))

В формуле (i) — число степеней свобод.

Если газ одноатомный, (i=3), двуатомный — 5, трех- и более — 6.

Внутренняя энергия газа 2

Источник: uslide.ru

Задачи на термодинамику характеризуют распространенные физические процессы, поэтому часть включаются в программы экзаменов. Если для их решения не хватает времени, можно обратиться за помощью в Феникс.Хелп. На профильном сайте вам помогут справиться с любой, даже запутанной задачей, экономя ваши время и силы.

Температура

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: тепловое равновесие, абсолютная температура.

Мы часто используем слово «температура» в повседневной речи. А что такое температура? В данной статье мы объясним физический смысл этого понятия.

В молекулярной физике и термодинамике рассматриваются макроскопические тела, т. е. тела, состоящие из огромного числа частиц. Например, в стакане воды содержится порядка 10^{25} молекул. Такое грандиозное число с трудом поддаётся осмыслению.

Термодинамическая система

Термодинамической системой называется макроскопическое тело или система тел, которые могут взаимодействовать друг с другом и с окружающими телами. Стакан с водой — пример термодинамической системы.

Термодинамическая система состоит из столь большого числа частиц, что совершенно невозможно описывать её поведение путём рассмотрения движения каждой молекулы в отдельности. Однако именно грандиозность числа молекул делает ненужным такое описание.

Оказывается, что состояние термодинамической системы можно характеризовать небольшим числом макроскопических параметров — величин, относящимся к системе в целом, а не к отдельным атомам или молекулам. Такими макроскопическими параметрами являются давление, объём, температура, плотность, теплоёмкость, удельное сопротивление и др.

Состояние термодинамической системы, при котором все макроскопические параметры остаются неизменными с течением времени, называется тепловым равновесием. В состоянии теплового равновесия прекращаются все макроскопические процессы: диффузия, теплопередача, фазовые переходы химические реакции и т. д.(Следует отметить, что тепловое равновесие является динамическим равновесием. Так, при тепловом равновесии жидкости и её насыщенного пара весьма интенсивно идут взаимные превращения жидкости и пара. Но это — процессы молекулярного масштаба, они происходят с одинаковыми скоростями и компенсируют друг друга. На макроскопическом уровне количество жидкости и пара со временем не меняется).

Термодинамическая система называется изолированной, если она не может обмениваться энергией с окружающими телами. Чай в термосе — типичный пример изолированной системы.

Тепловое равновесие

Фундаментальный постулат, вытекающий из многочисленных опытных данных, гласит: каково бы ни было начальное состояние тел изолированной системы, со временем в ней устанавливается тепловое равновесие. Таким образом, тепловое равновесие — это состояние, в которое любая система, изолированная от окружающей среды, самопроизвольно переходит через достаточно большой промежуток времени.

Температура как раз и является величиной, характеризующей состояние теплового равновесия термодинамической системы.

Температура — это макроскопический параметр, значения которого одинаковы для всех частей термодинамической системы, находящейся в состоянии теплового равновесия. Попросту говоря, температура — это то, что является одинаковым для любых двух тел, которые находятся в тепловом равновесии друг с другом. При тепловом контакте тел с одинаковыми температурами между ними не будет происходить обмен энергией (теплообмен).

В общем же случае при установлении между телами теплового контакта теплообмен начнётся. Говорят, что тело, которое отдаёт энергию, имеет более высокую температуру, а тело, которое получает энергию — более низкую температуру. Температура, таким образом, указывает направление теплообмена между телами. В процессе теплообмена температура первого тела начнёт уменьшаться, температура второго тела — увеличиваться; при выравнивании температур теплообмен прекратится — наступит тепловое равновесие.

Особенность температуры заключается в том, что она не аддитивна: температура тела не равна сумме температур его частей. Этим температура отличается от таких физических величин, как масса, длина или объём. И по этой причине температуру нельзя измерить путём сравнения с эталоном.

Измеряют температуру с помощью термометра.

Для создания термометра выбирают какое-либо вещество (термометрическое вещество), какую-либо характеристику этого вещества (термометрическую величину), и используют зависимость термометрической величины от температуры. При этом выбор термометрического вещества и термометрической величины может быть весьма произвольным.

Так, в бытовых жидкостных термометрах термометрическим веществом является ртуть (или спирт), а термометрической величиной — длина столбика жидкости. Здесь используется линейная зависимость объёма жидкости от температуры.

В идеально-газовых термометрах используется линейная зависимость давления разреженного газа (близкого по своим свойствам к идеальному) от температуры.

Действие электрических термометров (термометров сопротивления) основано на температурной зависимости сопротивления чистых металлов, сплавов и полупроводников.

В процессе измерения температуры термометр приводится в тепловой контакт(В области температур выше rm 1000^{circ}C (раскалённые газы, расплавленные металлы) используются бесконтактные высокотемпературные термометры — пирометры. Их действие основано на измерении интенсивности теплового излучения в оптическом диапазоне.) с телом, температура которого определяется. Показания термометра после наступления теплового равновесия — это и есть температура тела. При этом термометр показывает свою температуру!

Температурная шкала. Абсолютная температура

При установлении единицы температуры чаще всего поступают следующим образом. Берут две температуры (так называемые реперные точки) — температуру таяния льда и температуру кипения воды при нормальном атмосферном давлении. Первой температуре приписывают значение 0, второй — значение 100, а интервал между ними делят на 100 равных частей. Каждую из частей называют градусом (обозначают rm vphantom{1}^{circ}C), а полученную таким образом температурную шкалу — шкалой Цельсия.

При измерениях по шкале Цельсия с помощью жидкостных термометров возникает одна трудность: разные жидкости при изменении температуры изменяют свой объём по-разному. Поэтому два термометра с различными жидкостями, приведённые в тепловой контакт с одним и тем же телом, могут показать разные температуры. От данного недостатка свободны идеально-газовые термометры — зависимость давления разреженного газа от температуры не зависит от вещества самого газа.

Кроме того, для температурной шкалы идеально-газового термометра существует естественное начало отсчёта (исчезает произвол выбора реперной точки!): это та предельно низкая температура, при которой давление идеального газа постоянного объёма обращается в нуль. Эта температура называется абсолютным нулём температур.

Температурная шкала, началом отсчёта которой является абсолютный нуль, а единицей температуры — градус Цельсия, называется абсолютной температурной шкалой.

Температура, измеряемая по абсолютной шкале, называется абсолютной температурой и обозначается буквой T. Единица абсолютной температуры называется кельвином (rm K).

Абсолютному нулю (T=0) соответствует температура t=-273,15^{circ}C. Поэтому связь абсолютной температуры и температуры по шкале Цельсия даётся формулой:

T=t+273,15.

В задачах достаточно использовать формулу T=t+273.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Температура» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Понравилась статья? Поделить с друзьями:
  • Как найти проекцию вектора на осях
  • Синквейн персонажа как составить
  • Как найти местоположение золота
  • Как найти снятое видео на телефоне
  • Как найти клиентов для презентации