Как найти температуру в кельвинах формула менделеева

Калькулятор ниже предназначен для решения задач на использование уравнения Клапейрона-Менделеева, или уравнение состояния идеального газа. Некоторая теория изложена под калькулятором, ну а чтобы было понятно, о чем идет речь — пара примеров задач:

Примеры задач на уравнение Менделеева-Клапейрона

  1. В колбе объемом 2,6 литра находится кислород при давлении 2,3 атмосфер и температуре 26 градусов Цельсия .
    Вопрос: сколько молей кислорода содержится в колбе?

  2. Некоторое количество гелия при 78 градусах Цельсия и давлении 45,6 атмосфер занимает объем 16,5 литров.
    Вопрос: Каков объем этого газа при нормальных условиях? (Напомню, что нормальными условиями для газов считается давление в 1 атмосферу и температура 0 градусов Цельсия)

В калькулятор вводим начальные условия, выбираем, что считать (число моль, новые объем, температуру или давление), заполняем при необходимости оставшиеся условия, и получаем результат.

PLANETCALC, Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Точность вычисления

Знаков после запятой: 2

Теперь немного формул.

Уравнение Клапейрона-Менделеева
PV=frac{m}{M}RT
где
P — давление газа (например, в атмосферах)
V — объем газа (в литрах);
T — температура газа (в кельвинах);
R — газовая постоянная (0,0821 л·атм/моль·K).
Если используется СИ, то газовая постоянная равна 8,314 Дж/K·моль

Так как m-масса газа в (кг) и M-молярная масса газа кг/моль, то m/M — число молей газа, и уравнение можно записать также
PV=nRT
где n — число молей газа

И как нетрудно заметить, соотношение
frac{PV}{T}=nR
есть величина постоянная для одного и того же количества моль газа.

И эту закономерность опытным путем установили еще до вывода уравнения. Это так называемые газовые законы — законы Бойля-Мариотта, Гей-Люссака, Шарля.

Так, закон Бойля-Мариотта гласит (это два человека):
Для данной массы газа m при неизменной температуре Т произведение давления на объем есть величина постоянная.

Закон Гей-Люссака (а вот это один человек):
Для данной массы m при постоянном давлении P объем газа линейно зависит от температуры

Закон Шарля:
Для данной массы m при постоянном объеме V давление газа линейно зависит от температуры

Посмотрев на уравнение, нетрудно убедиться в справедливости этих законов.

Уравнение Менделеева-Клапейрона, также как и опытные законы Бойля-Мариотта, Гей-Люссака и Шарля справедливы для широкого интервала давлений, объемов и температур. То есть во многих случаях эти законы удобны для практического применения. Однако не стоит забывать, что когда давления превышают атмосферное в 300-400 раз, или температуры очень высоки, наблюдаются отклонения от этих законов.
Собственно, идеальный газ потому и называют идеальным, что по определению это и есть газ, для которого не существует отклонений от этих законов.

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Калькулятор ниже предназначен для решения задач на использование уравнения Клапейрона-Менделеева, или уравнение состояния идеального газа. Некоторая теория изложена под калькулятором, ну а чтобы было понятно, о чем идет речь — пара примеров задач:

Примеры задач на уравнение Менделеева-Клапейрона

В колбе объемом 2,6 литра находится кислород при давлении 2,3 атмосфер и температуре 26 градусов Цельсия .
Вопрос: сколько молей кислорода содержится в колбе?

  • Некоторое количество гелия при 78 градусах Цельсия и давлении 45,6 атмосфер занимает объем 16,5 литров.
    Вопрос: Каков объем этого газа при нормальных условиях? (Напомню, что нормальными условиями для газов считается давление в 1 атмосферу и температура 0 градусов Цельсия)
  • В калькулятор вводим начальные условия, выбираем, что считать (число моль, новые объем, температуру или давление), заполняем при необходимости оставшиеся условия, и получаем результат.

    Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

    Теперь немного формул.

    где
    P — давление газа (например, в атмосферах)
    V — объем газа (в литрах);
    T — температура газа (в кельвинах);
    R — газовая постоянная (0,0821 л·атм/моль·K).
    Если используется СИ, то газовая постоянная равна 8,314 Дж/K·моль

    Так как m-масса газа в (кг) и M-молярная масса газа кг/моль, то m/M — число молей газа, и уравнение можно записать также

    где n — число молей газа

    И как нетрудно заметить, соотношение

    есть величина постоянная для одного и того же количества моль газа.

    И эту закономерность опытным путем установили еще до вывода уравнения. Это так называемые газовые законы — законы Бойля-Мариотта, Гей-Люссака, Шарля.

    Так, закон Бойля-Мариотта гласит (это два человека):
    Для данной массы газа m при неизменной температуре Т произведение давления на объем есть величина постоянная.

    Закон Гей-Люссака (а вот это один человек):
    Для данной массы m при постоянном давлении P объем газа линейно зависит от температуры

    Закон Шарля:
    Для данной массы m при постоянном объеме V давление газа линейно зависит от температуры

    Посмотрев на уравнение, нетрудно убедиться в справедливости этих законов.

    Уравнение Менделеева-Клапейрона, также как и опытные законы Бойля-Мариотта, Гей-Люссака и Шарля справедливы для широкого интервала давлений, объемов и температур. То есть во многих случаях эти законы удобны для практического применения. Однако не стоит забывать, что когда давления превышают атмосферное в 300-400 раз, или температуры очень высоки, наблюдаются отклонения от этих законов.
    Собственно, идеальный газ потому и называют идеальным, что по определению это и есть газ, для которого не существует отклонений от этих законов.

    Уравнение Клапейрона-Менделеева

    Что такое уравнение Клапейрона-Менделеева

    Идеальный газ — это газ, в котором пренебрегают взаимодействием молекул газа между собой.

    Идеальными считают разреженные газы. Особенно близкими к идеальным считают гелий и водород.

    Идеальный газ — это упрощенная математическая модель, которая широко применяется для описания свойств и поведения реальных газов при атмосферном давлении и комнатной температуре.

    Давление, объем и температура — это основные параметры состояния системы, и они связаны друг с другом. Соотношение, при котором определяется данная связь, называется уравнением состояния данного газа.

    Существует эквивалентная макроскопическая формулировка идеального газа — это такой газ, который одновременно будет подчиняться закону Бойля-Мариотта и Гей-Люссака, то есть:

    p V = c o n s t * T

    В представленном выше уравнении состоянии газа под const подразумевается количество молей.

    Свойства классического и квазиклассического идеального газа описываются уравнением состояния идеального газа, которое называется уравнением Менделеева-Клапейрона, ниже представлена формула Менделеева-Клапейрона.

    p V = m M R T = n R T , где m — масса газа, M — молярная масса газа, R = 8 , 314 Д ж / ( м о л ь * К ) — универсальная газовая постоянная, T — температура (К), n — количество молей газа.

    Таким образом давление и объем прямо пропорциональны количеству молей и температуре.

    Также уравнение Клапейрона-Менделеева можно записать в ином виде:

    p V = N k T , где N — это количество молекул газа массой m , k = 1 , 38 * 10 — 23 Д ж / К — постоянная Больцмана, которая определяет «долю» газовой постоянной, приходящуюся на одну молекулу и определяется по формуле:

    N = m N A M , где

    N A = 6 . 02 * 10 23 м о л ь — 1 ; — это постоянная Авогадро.

    Какое значение имеет универсальная газовая постоянная

    Универсальная газовая постоянная (R) — это величина, которая является константой, численно равная работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 K.

    Значение данной константы находится как произведение постоянной Больцмана ( k = 1 , 38 * 10 — 23 Д ж / К ) на число Авогадро ( N A = 6 . 02 * 10 23 м о л ь — 1 ) . Таким образом универсальная газовая постоянная принимает следующее значение: R = 8 , 314 Д ж / ( м о л ь * К ) .

    Постоянную Больцмана используют в формулах, описывающих изучаемое явление или поведение рассматриваемого объекта с микроскопической точки зрения, тогда как универсальная газовая постоянная более удобна при расчетах, касающихся макроскопических систем, когда число частиц задано в молях.

    Связь с другими законами состояния идеального газа

    С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса и один трех макропараметров (давление, температура или объем) — остаются неизменными.

    Количественные зависимости между двумя параметрами газа при фиксированном третьем параметре называют газовыми законами, которые связывают эти параметры.

    Изопроцессы — это термодинамические процессы, во время протекания которых количество вещества и один из макропараметров состояния: давление, объем, температура или энтропия — остается неизменным.

    В зависимости от того, какой параметр остается неизменным различают разные процессы, которые выражаются законами, являющимися следствием уравнения состояния газа:

    • изотермический процесс (T=const);
    • изохорный процесс (V=const);
    • изобарный процесс (p=const).

    Изотермический процесс (T=const)

    Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим.

    Для поддержания температуры газа постоянной необходимо, чтобы он мог обмениваться теплотой с большой системой — термостатом. Им может служить атмосферный воздух, если температура его заметно не меняется на протяжении всего процесса.

    Согласно уравнению Клапейрона-Менделеева, в любом состоянии с неизменной температурой произведение давления газа на объем одно и то же, то есть постоянно:

    Этот закон был открыт экспериментально английским ученым Бойлем и несколько позднее французским ученым Мариоттом. Именно поэтому он называется закон Бойля-Мариотта.

    Закон Бойля-Мариотта справедлив для любых газов, а также для смеси газов (например, для воздуха).

    Зависимость давления газа от объема при постоянной температуре изображается графической кривой — изотермой. Изотерма для различных температур представлена в координатах pV на рис.1. и представляет собой гиперболу.

    Рис.1. Изотерма в pV — координатах.

    Изохорный процесс (V=const)

    Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным.

    Из уравнения состояния следует, что отношение давлений газа данной массы при постоянно объеме равно отношению его абсолютных температур:

    p 1 p 2 = T 1 T 2

    Газовый закон был установлен экспериментально в 1787 г. французским физиком Ж. Шарлем и носит название закона Шарля: давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре.

    Так, если в качестве одного из состояний газа выбрать состояние газа при нормальных условиях, тогда

    p = p 0 T T 0 = p 0 γ T

    Коэффициент γ называют температурным коэффициентом давления газа. Он одинаков для всех газов.

    Зависимость давления газа от температуры при постоянном объеме изображается графически прямой, которая называется изохорой (Рис.2).

    Рис.2 Изображение изохоры в pT-координатах.

    Изобарный процесс (p=const)

    Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным.

    Из уравнения Клапейрона-Менделеева вытекает, что отношение объемов газа данной массы при постоянном давлении равно отношению его абсолютных температур.

    V 1 V 2 = T 1 T 2

    Если в качестве второго состояния газа выбрать состояние при нормальных условиях (нормальном атмосферном давлении, температуре таяния льда) следует:

    V = V 0 T T 0 = V 0 α T

    Этот газовый закон был установлен экспериментально в 1802 г французским ученым Гей-Люссаком.

    Закон Гей-Люссака: объем данной массы газа при постоянном давлении прямо пропорционален абсолютной температуре.

    Коэффициент α называют температурным коэффициентом объемного расширения газов.

    Зависимость объема газа от температуры при постоянном давлении изображается графической прямой, которая называется изобарой (Рис.3).

    Рис. 3. Изобара в VT-координатах.

    Использование универсального уравнения для решения задачи

    В реальности проводятся различные физико-химические процессы. Рассмотрим каким образом уравнение состояния идеального газа и законы, связанные с ним находят применение для решения физических и химических задач.

    Определить давление кислорода в баллоне объемом 1 м 3 при температуре t = 27 C o . Масса кислорода 1 кг.

    Так как в уравнении даны объем и температура — два из трех макроскопических параметров, а третий (давление) нужно определить, то мы можем использовать уравнение Клапейрона-Менделеева:

    p V = n R T = m M R T

    Не забываем перевести температуру в Кельвины:

    T = t + 273 = 27 + 273 = 300 K

    Молярная масса кислорода известна из таблицы Менделеева:

    M ( O 2 ) = 2 * 16 = 32 г / м о л ь = 32 * 10 — 3 к г / м о л ь

    Выразим из уравнения состояния давления и поставим все имеющиеся данные:

    p = n R T V = m R T M V = 1 * 8 . 31 * 300 32 * 10 — 3 * 1 = 77 . 906 П а = 78 к П а

    Ответ: p = 78 кПа.

    Каким может быть наименьший объем баллона, содержащего кислород массой 6,4 кг, если его стенки при t = 20 C o выдерживают p = 1568 Н / с м 2 ?

    Используем уравнение Менделеева-Клапейрона, из которого выражаем объем кислорода, который нужно найти:

    p = n R T V = m R T M V

    Молярная масса кислорода предполагается равной:

    M ( O 2 ) = 2 * 16 = 32 г / м 3

    Не забываем перевести температуру в Кельвины:

    T = t + 273 = 20 + 273 = 293 K

    Переводим давление: p = 15680000 Па

    Выражаем из уравнения Клапейрона-Менделеева объем и подставляем значения, данные в условиях задачи:

    V = n R T p = m R T M p = 6 . 4 * 8 . 31 * 293 15680000 * 32 * 10 — 3 = 3 . 1 * 10 — 2 м 3 = 31 л .

    Используя уравнение состояния идеального газа, доказать, что плотность любого газа равна половине плотности водорода ( ρ Н 2 ) , взятого при тех же условиях, умноженной на относительную молекулярную массу этого газа M_r, то есть ρ = ρ Н 2 * M r 2 .

    Согласно уравнению Менделеева-Клапейрона:

    p = n R T V = m R T M V

    Плотность — это величина, характеризующая массу некоторого объема и находится по формуле:

    ρ = m V и л и V = m ρ

    Тогда p m ρ = n R T = m R T M

    Откуда выражаем плотность газа:

    Для водорода эта формула запишется следующим образом:

    ρ H 2 = p M H 2 R T

    По условию задачи водород и любой другой газ находятся при одинаковых условиях, откуда следует, что:

    ρ H 2 M H 2 = p R T

    Поставим последнее выражение в выражение для плотности любого газа:

    ρ = M * ρ H 2 M H 2

    Молярная масса водорода, исходя из таблицы Менделеева равна 2 г/моль и тогда. Молекулярная масса численно равная молярной и представляет собой массу молекулы в атомных единицах, поэтому в дальнейшем мы совершили переход к молекулярной массе.

    ρ = M r * ρ H 2 2

    Вывод: плотность любого газа равна половине плотности водорода ( ρ Н 2 ) , взятого при тех же условиях, умноженной на относительную молекулярную массу этого газа M_r, то есть ρ = ρ Н 2 * M r 2 .

    Рассмотрим несколько задач на законы, связанные с уравнение Клапейрона-Менделеева, то есть на изотермические, изохорные, изобарные процессы.

    При уменьшении давления газа в 2,5 раза его объем увеличился на 12 л. Какой объем занимал газ в начальном состоянии, если температура на протяжении всего процесса оставалась постоянной?

    По условию задачи температура в ходе всего процесса оставалась постоянной, откуда следует, что у нас изотермический процесс, и мы можем воспользоваться для решения законом Бойля-Мариотта.

    p 1 V 1 = p 2 V 2 , г д е p 1 – давление газа в начальном состоянии (до расширения), V 1 — объем газа в начальном состоянии, p 2 = p 1 2 . 5 — давление газа в конечном состоянии (после расширения), V 2 = V 1 + ∆ V — объем газа в конечном состоянии.

    Откуда можем найти начальный объем:

    p 1 V 1 = p 1 2 . 5 ( V 1 + ∆ V ) = p 1 2 . 5 V 1 + p 1 2 . 5 ∆ V

    V 1 ( p 1 — p 1 2 . 5 ) = p 1 2 . 5 ∆ V

    p 1 2 . 5 V 1 ( 2 . 5 — 1 ) = p 1 2 . 5 ∆ V

    V 1 = ∆ V 1 , 5 = 8 л

    Ответ: первоначальный объем газа был равен 8 л.

    Газ находится в баллоне при температуре 400 К. До какой температуры нужно нагреть газ, чтобы его давление увеличилось в 1,5 раза?

    Так как нагревание газа по условиям данной задачи происходит при постоянном объеме, значит перед нами изохорный процесс.

    При изохорном процессе:

    p 1 T 1 = p 2 T 2

    T 2 = p 2 T 1 p 1

    p 2 p 1 = 1 . 5 T 2 = 1 . 5 * T 1 = 1 . 5 * 400 = 600 K

    При 27°C объем газа равен 600 мл. Какой объем займет газ при 57°C, если давление будет оставаться постоянным?

    Так как давление по условию остается постоянным, то можем использовать закон Гей-Люссака.

    V 1 V 2 = T 1 T 2

    V_2 – искомый объем

    Для правильного расчета необходимо перевести температуры из Цельсий в Кельвины:

    T 1 = 273 + 27 = 300 K

    T 2 = 273 + 57 = 330 K

    T 2 V 1 T 1 = V 2

    V 2 = ( 600 * 330 ) / 300 = 660 м л

    Газ в трубе плавильной печи охлаждается от температуры t 1 = 1150 ° С д о t 2 = 200 ° С . Во сколько раз увеличивается плотность газа при этом? Давление газа не меняется.

    Так как по условию задания давления газа не изменяется, значит перед нами изобарный процесс. Для решения воспользуемся законом Гей-Люссака:

    V 1 V 2 = T 1 T 2

    Перейдем к абсолютной температуре:

    T 1 = 1150 + 273 = 1423 K

    T 2 = 200 + 273 = 473 K

    Масса газа: m = ρ 1 V 1 = ρ 2 V 2

    Использование этих формул приводит к следующему:

    Уравнение состояния идеального газа

    теория по физике 🧲 молекулярная физика, МКТ, газовые законы

    Уравнение состояния идеального газа было открыто экспериментально. Оно носит название уравнения Клапейрона — Менделеева. Это уравнение устанавливает математическую зависимость между параметрами идеального газа, находящегося в одном состоянии. Математически его можно записать следующими способами:

    Уравнение состояния идеального газа

    Внимание! При решении задач важно все единицы измерения переводить в СИ.

    Пример №1. Кислород находится в сосуде вместимостью 0,4 м 3 под давлением 8,3∙10 5 Па и при температуре 320 К. Чему равна масса кислорода? Молярная масса кислорода равна 0,032 кг/моль.

    Из основного уравнения состояния идеального газа выразим массу:

    Уравнение состояния идеального газа следует использовать, если газ переходит из одного состояния в другое и при этом изменяется его масса (количество вещества, число молекул) или молярная масса. В этом случае необходимо составить уравнение Клапейрона — Менделеева отдельно для каждого состояния. Решая систему уравнений, легко найти недостающий параметр.

    Подсказки к задачам

    Важна только та масса, что осталась в сосуде. Поэтому:

    Давление возросло на 15% p2 = 1,15p1
    Объем увеличился на 2% V2 = 1,02V1
    Масса увеличилась в 3 раза m2 = 3m1
    Газ нагрелся до 25 о С T2 = 25 + 273 = 298 (К)
    Температура уменьшилась на 15 К (15 о С) T2 = T1 – 15
    Температура уменьшилась в 2 раза
    Масса уменьшилась на 20% m2 = 0,8m1
    Выпущено 0,7 начальной массы
    Какую массу следует удалить из баллона? Нужно найти разность начальной и конечной массы:
    Газ потерял половину молекул
    Молекулы двухатомного газа (например, водорода), диссоциируют на атомы
    Озон (трехатомный кислород) при нагревании превращается в кислород (двухатомный газ) M (O3) = 3Ar (O)∙10 –3 кг/моль M (O2) = 2Ar (O)∙10 –3 кг/моль
    Открытый сосуд Объем V и атмосферное давление pатм остаются постоянными
    Закрытый сосуд Масса m, молярная масса M, количество вещества ν, объем V, число N и концентрация n частиц, плотность ρ— постоянные величины
    Нормальные условия Температура T0 = 273 К Давление p0 = 10 5 Па
    Единицы измерения давления 1 атм = 10 5 Па

    Пример №2. В баллоне содержится газ под давлением 2,8 МПа при температуре 280 К. Удалив половину молекул, баллон перенесли в помещение с другой температурой. Определите конечную температуру газа, если давление уменьшилось до 1,5 МПа.

    2,8 МПа = 2,8∙10 6 Па

    1,5 МПа = 1,5∙10 6 Па

    Так как половина молекул была выпущена, m2 = 0,5m1. Объем остается постоянным, как и молярная масса. Учитывая это, запишем уравнение состояния идеального газа для начального и конечного случая:

    Преобразим уравнения и получим:

    Приравняем правые части и выразим искомую величину:

    На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

    Алгоритм решения

    Решение

    График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

    Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

    Запишем уравнение Менделеева — Клапейрона:

    Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

    ν R = p 1 V 1 T 1 . . = p 2 V 2 T 2 . .

    Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

    Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

    pазбирался: Алиса Никитина | обсудить разбор | оценить

    На высоте 200 км давление воздуха составляет примерно 10 –9 от нормального атмосферного давления, а температура воздуха Т – примерно 1200 К. Оцените плотность воздуха на этой высоте.

    источники:

    http://wika.tutoronline.ru/fizika/class/10/uravnenie-klapejronamendeleeva

    Уравнение состояния идеального газа

    Температура — термодинамическая макроскопическая характеристика, которая играет важную роль практически во всех физических процессах. В данной статье сосредоточим свое внимание на освещении вопросов, что такое абсолютная температура газа идеального и как ее можно вычислить.

    Абсолютная шкала температур

    Для начала познакомимся со шкалой, которая используется в физике для описания температуры. Она называется абсолютной или шкалой Кельвина. Впервые ее ввел в использование английский физик лорд Кельвин в 1848 году. При этом ученый основывался на завоевавшей популярность шкале Цельсия.

    Лорд Кельвин

    Абсолютная температура так называется потому, что она имеет нижний предел — 0 кельвин, при котором считается «замороженным» любой вид движения (на самом деле при 0 К существуют так называемые нулевые колебания). Верхнего предела у этой шкалы нет.

    С градусами Цельсия C абсолютная шкала T связана следующим простым равенством:

    T = C + 273,15.

    В отличие от других температурных шкал, например, от шкалы Фаренгейта, кельвин имеет точно такой же масштаб, что и градус Цельсия. Последнее означает, что для перевода в абсолютную любой температуры по Цельсию достаточно добавить к ней число 273,15. Так, по шкале Кельвина вода замерзает при 273,15 К, а кипит при 373,15 К.

    Термометр с абсолютной шкалой

    Краткое понятие о газе идеальном

    Поскольку далее будет рассмотрена формула для определения абсолютной температуры газа идеального, то будет полезным познакомиться с этим понятием поближе. Под идеальным понимают такой газ, молекулы которого практически не взаимодействуют друг с другом, обладают большой кинетической энергией по сравнению с потенциальной, и расстояния между которыми значительно превышают их собственные размеры.

    Все реальные газы проявляют поведение идеальных при небольших давлениях и высоких температурах. Примерами могут служить благородные газы, воздух, метан и другие. В то же время пар H2O даже при низких давлениях сильно отличается от идеального газа, поскольку в нем всегда присутствуют значительные водородные связи между полярными молекулами воды.

    Газы реальные и идеальные

    Температура абсолютная идеального газа

    Существует два подхода к определению температуры в газах. Рассмотрим каждый из них.

    Первый подход заключается в привлечении положений молекулярно-кинетической теории (МКТ) и физического смысла самой температуры T. Последний заключается в кинетической энергии частиц газа. Чем больше эта энергия, тем выше температура, причем зависимость является прямо пропорциональной. Используя формулу из механики для энергии кинетической и постоянную Больцмана kB можно записать следующее равенство МКТ:

    m*v2/2 = 3/2*kB*T.

    Где m — масса движущейся поступательно частицы. Выражая из этого равенства величину T, получаем формулу:

    T = m*v2/(3*kB).

    Чем меньше масса частицы и чем больше ее скорость, тем выше абсолютная температура.

    Второй подход в определении величины T заключается в использовании универсального уравнения Клапейрона-Менделеева. Это уравнение было записано в XIX веке Эмилем Клапейроном (впоследствии модифицировано Д. И. Менделеевым) как результат обобщения открытых экспериментально в XVII-XIX веках газовых законов (Шарля, Гей-Люссака, Бойля-Мариотта, Авогадро). Математически универсальное уравнение записывается так:

    P*V = n*R*T.

    Как видно, оно связывает три основных термодинамических величины системы: давление P, объем V и температуру абсолютную T. Две другие величины, присутствующие в уравнении, — это n — количество вещества и R — газовая постоянная.

    Не представляет особого труда получить формулу для температуры из Клапейрона-Менделеева закона:

    T = P*V/(n*R).

    В закрытой системе (n = const) температура газа прямо пропорциональна произведению объема на давление.

    Пример задачи

    Воздух, которым мы дышим, является смесью газов идеальных. Известно, что молярная масса воздуха составляет 29 г/моль. Необходимо определить температуру воздуха, если средняя скорость его молекул составляет 530 м/с.

    Очевидно, что решение этой задачи можно получить, если воспользоваться следующим выражением:

    T = m*v2/(3*kB).

    Массу одной молекулы m воздуха можно получить, если поделить величину M на число Авогадро NA. Произведение же числа NA на константу Больцмана kB — это не что иное, как газовая постоянная R, которая равна 8,314 Дж/(К*моль). Учитывая эти рассуждения, получаем рабочую формулу:

    T = M*v2/(3*R ) = 0,029*6002/(3*8,314) = 326,60 К.

    Пустыня Сахара

    В градусах Цельсия найденной температуре соответствует значение 53,45 oC. На нашей планете такие температуры характерны для жарких песчаных пустынь в полдень.

    Определение

    Идеальный газ — газ, удовлетворяющий трем условиям:

    • Молекулы — материальные точки.
    • Потенциальная энергия взаимодействия молекул пренебрежительно мала.
    • Столкновения между молекулами являются абсолютно упругими.

    Реальный газ с малой плотностью можно считать идеальным газом.

    Измерение температуры

    Температуру можно измерять по шкале Цельсия и шкале Кельвина. По шкале Цельсия за нуль принимается температура, при которой происходит плавление льда. По шкале Кельвина за нуль принимается абсолютный нуль — температура, при котором давление идеального газа равно нулю, и его объем тоже равен нулю.

    Обозначение температуры

    1. По шкале Цельсия — t. Единица измерения — 1 градус Цельсия (1 oC).
    2. По шкале Кельвина — T. Единица измерения — 1 Кельвин (1 К).

    Цена деления обеих шкал составляет 1 градус. Поэтому изменение температуры в градусах Цельсия равно изменению температуры в Кельвинах:

    ∆t = ∆T

    При решении задач в МКТ используют значения температуры по шкале Кельвина. Если в условиях задачи температура задается в градусах Цельсия, нужно их перевести в Кельвины. Это можно сделать по формуле:

    T = t + 273

    Если особо важна точность, следует использовать более точную формулу:

    T = t + 273,15

    Пример №1. Температура воды равна oC. Определить температуру воды в Кельвинах.

    T = t + 273 = 2 + 273 = 275 (К)

    Основное уравнение МКТ идеального газа

    Давление идеального газа обусловлено беспорядочным движением молекул, которые сталкиваются друг с другом и со стенками сосуда. Основное уравнение МКТ идеального газа связывает давление и другие макропараметры (объем, температуру и массу) с микропараметрами (массой молекул, скоростью молекул и кинетической энергией).

    Основное уравнение МКТ

    Давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.

    p=23nEk

    p — давление идеального газа, n — концентрация молекул газа, Ek — средняя кинетическая энергия поступательного движения молекул.

    Выражая физические величины друг через друга, можно получить следующие способы записи основного уравнения МКТ идеального газа:

    p=13m0nv2

    m0— масса одной молекулы газа;

    n — концентрация молекул газа;

    v2 — среднее значение квадрата скорости молекул газа.

    Среднее значение квадрата скорости не следует путать со среднеквадратичной скоростью v, которая равна корню из среднего значения квадрата скорости:

    v=v2

    p=13ρv2

    ρ — плотность газа

    p=nkT

    k — постоянная Больцмана (k = 1,38∙10–3 Дж/кг)

    T — температура газа по шкале Кельвина

    Пример №2. Во сколько раз уменьшится давление идеального одноатомного газа, если среднюю кинетическую энергию теплового движения молекул и концентрацию уменьшить в 2 раза?

    Согласно основному уравнению МКТ идеального газа, давление прямо пропорционально произведению средней кинетической энергии теплового движения молекул и концентрации его молекул. Следовательно, если каждая из этих величин уменьшится в 2 раза, то давление уменьшится в 4 раза:

    Следствия из основного уравнения МКТ идеального газа

    Через основное уравнение МКТ идеального газа можно выразить скорость движения молекул (частиц газа):

    v=3kTm0=3RTM

    R — универсальная газовая постоянная, равная произведения постоянной Авогадро на постоянную Больцмана:

    R=NAk=8,31 Дж/К·моль

    Температура — мера кинетической энергии молекул идеального газа:

    Ek=32kT

    T=2Ek3k

    Полная энергия поступательного движения молекул газа определяется формулой:

    E=NEk

    Пример №3. При уменьшении абсолютной температуры на 600 К средняя кинетическая энергия теплового движения молекул неона уменьшилась в 4 раза. Какова начальная температура газа?

    Запишем формулу, связывающую температуру со средней кинетической энергией теплового движения молекул, для обоих случаев, с учетом что:

    Следовательно:

    Составим систему уравнений:

    Отсюда:

    Задание EF19012

    На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.


    Алгоритм решения

    1.Указать, в каких координатах построен график.

    2.На основании основного уравнения МКТ идеального газа и уравнения Менделеева — Клапейрона выяснить, как меняются указанные физические величины во время процессов 1–2 и 2–3.

    Решение

    График построен в координатах (V;Ek). Процесс 1–2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

    T=2Ek3

    Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

    Запишем уравнение Менделеева — Клапейрона:

    pV=νRT

    Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

    νR=p1V1T1=p2V2T2

    Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1–2 является изобарным, давление во время него не меняется.

    Процесс 2–3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2–3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление — обратно пропорциональные величины, то давление на участке 2–3 увеличивается.

    Ответ:

     Участок 1–2 — изобарный процесс. Температура увеличивается, давление постоянно.

     Участок 2–3 — изотермический процесс. Температура постоянно, давление увеличивается.

    pазбирался: Алиса Никитина | обсудить разбор

    Задание EF17560

    Первоначальное давление газа в сосуде равнялось р1. Увеличив объём сосуда, концентрацию молекул газа уменьшили в 3 раза, и одновременно в 2 раза увеличили среднюю энергию хаотичного движения молекул газа. В результате этого давление р2 газа в сосуде стало равным

    Ответ:

    а) 13p1

    б) 2p1

    в) 23p1

    г) 43p1


    Алгоритм решения

    1.Записать исходные данные.

    2.Записать основное уравнение МКТ идеального газа.

    3.Составить уравнения для состояний 1 и 2.

    4.Выразить искомую величину.

    Решение

    Исходные данные:

     Начальное давление: p0.

     Начальная концентрация молекул: n1 = 3n.

     Конечная концентрация молекул: n2 = n.

     Начальная средняя энергия хаотичного движения молекул: Ek1 = Ek.

     Конечная средняя энергия хаотичного движения молекул: Ek2 = 2Ek.

    Основное уравнение МКТ:

    p=23nEk

    Составим уравнения для начального и конечного состояний:

    p1=23n1Ek1=233nEk=2nEk

    p2=23n2Ek2=23n2Ek=43nEk

    Отсюда:

    nEk=p12=3p24

    p2=4p16=23p1

    Ответ: в

    pазбирался: Алиса Никитина | обсудить разбор

    Задание EF18416

    Цилиндрический сосуд разделён неподвижной теплоизолирующей перегородкой. В одной части сосуда находится кислород, в другой – водород, концентрации газов одинаковы. Давление кислорода в 2 раза больше давления водорода. Чему равно отношение средней кинетической энергии молекул кислорода к средней кинетической энергии молекул водорода?


    Алгоритм решения

    1.Записать исходные данные.

    2.Записать основное уравнение МКТ идеального газа.

    3.Составить уравнения для обоих газов.

    4.Найти отношение средней кинетической энергии молекул кислорода к средней кинетической энергии молекул водорода.

    Решение

    Анализируя условия задачи, можно выделить следующие данные:

     Концентрации кислорода и водорода в сосуде равны. Следовательно, n1 = n2 = n.

     Давление кислорода вдвое выше давления водорода. Следовательно, p1 = 2p, а p2 = p.

    Запишем основное уравнение идеального газа:

    p=23nEk

    Применим его для обоих газов и получим:

    p1=23n1Ek1 или 2p=23nEk1 

    p2=23n2Ek2 или p=23nEk2 

    Выразим среднюю кинетическую энергию молекул газа из каждого уравнения:

    Ek1=3pn

    Ek2=3p2n

    Поделим уравнения друг на друга и получим:

    Ek1Ek2=3pn·2n3p=2

    Ответ: 2

    pазбирался: Алиса Никитина | обсудить разбор

    Задание EF18824

    В одном сосуде находится аргон, а в другом – неон. Средние кинетические энергии теплового движения молекул газов одинаковы. Давление аргона в 2 раза больше давления неона. Чему равно отношение концентрации молекул аргона к концентрации молекул неона?


    Алгоритм решения

    1.Записать исходные данные.

    2.Записать основное уравнение МКТ идеального газа.

    3.Составить уравнения для обоих газов.

    4.Найти отношение концентрации молекул аргона к концентрации молекул неона.

    Решение

    Анализируя условия задачи, можно выделить следующие данные:

     Средние кинетические энергии теплового движения молекул газов одинаковы. Следовательно, Ek1=Ek2=Ek.

     Давление аргона в 2 раза больше давления неона. Следовательно, p1 = 2p, а p2 = p.

    Запишем основное уравнение идеального газа:

    p=23nEk

    Применим его для обоих газов и получим:

    p1=23n1Ek1 или 2p=23n1Ek 

    p2=23n2Ek2 или p=23n2Ek 

    Выразим концентрации молекул газа из каждого уравнения:

    n1=3pEk

    n2=3p2Ek

    Поделим уравнения друг на друга и получим:

    n1n2=3pEk·2Ek3p=2

    Ответ: 2

    pазбирался: Алиса Никитина | обсудить разбор

    Алиса Никитина | Просмотров: 10.9k

    Как найти температуру газа

    Для того чтобы найти абсолютную температуру идеального газа, можно воспользоваться уравнением, которое широко известно, как уравнение Клапейрона-Менделеева. Эта формула позволяет установить зависимость между давлением, температурой газа и его молярным объемом.

    Как найти температуру газа.

    Вам понадобится

    • Лист бумаги, ручка.

    Инструкция

    Формула выглядит следующим образом: p•Vm = R•T, где p — это давление, Vm — молярный объем газа, R — это универсальная газовая постоянная, а Т — абсолютная температура идеального газа.

    Выясняем, какие данные нам доступны для того, чтобы использовать формулу, таким образом: Т = (p•Vm)/ R.

    В случае если нам не известен молярный объем газа, мы можем найти его по формуле:
    Vm = V/?. В этой формуле ? представляет собой количество вещества, Найти эту величину можно разделив массу газа на его молярную массу.

    Формула, которая носит название закон Менделеева-Клапейрона, записывается именно в таком виде: p•V = (m/М) • R•T.

    Видоизменяем эту формулу, чтобы найти температуру газа: T = (p•V • М)/(R• m).

    Находим все величины, которые требуются нам для подстановки в формулу. Выполняем расчеты и находим искомую температуру идеального газа.

    Обратите внимание

    Внимательно разберитесь в условных обозначениях, чтобы из-за неправильно распознанного символа в формуле не допустить ошибки в расчетах.

    Полезный совет

    Закон Менделеева-Клапейрона также называют объединенным газовым законом, именно из него выводятся законы Шарля и Гей-Люссака, а также Бойля-Мариотта.

    Источники:

    • Здесь вы найдете не только информацию, которая касается непосредственно поиска абсолютной температуры идеального газа, но и массу информации о свойствах газов.
    • как определить температуру газа
    • Температура газовой плиты

    Войти на сайт

    или

    Забыли пароль?
    Еще не зарегистрированы?

    This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

    Понравилась статья? Поделить с друзьями:
  • Как найти html документ
  • Как найти наибольший отрицательный корень уравнения cos
  • Как исправить зазоры на приоре
  • Астрологическая карта по дате рождения как составить
  • Как найти длину звуковой волны через частоту