Как найти температуру жидкости при давлении

«A watched pot never boils» may seem like the ultimate truism when cooking, but under the right circumstances, the pot boils even faster than expected. Whether camping or chemistry, predicting the boiling point can be challenging.

TL;DR (Too Long; Didn’t Read)

Determining boiling point based on pressure can be accomplished using equations, estimation, nomographs, on-line calculators, tables and graphs.

Understanding Boiling Point

Boiling occurs when the vapor pressure of a liquid equals the air pressure of the atmosphere above the liquid. For example, at sea level, water boils at 212°F (100°C). As elevation increases, the amount of atmosphere above the liquid decreases, so the boiling temperature of the liquid decreases. In general, the lower the atmospheric pressure, the lower the boiling temperature of any liquid. Besides atmospheric pressure, the molecular structure and attraction between the molecules of the liquid impacts the boiling point. Liquids with weak intermolecular bonds boil, in general, at lower temperatures than liquids with strong intermolecular bonds.

Calculating Boiling Point

Calculating boiling point based on pressure can be done using several different formulas. These formulas vary in complexity and accuracy. In general, units in these calculations will be in the metric or System International (SI) system, resulting in temperatures in degrees Celsius (oC). To convert to Fahrenheit (oF), use the conversion:

T(^oF)=frac{9}{5}T(^oC)+32

where T means temperature. As for atmospheric pressure, the pressure units cancel out, so which units are used, whether mmHg, bars, psi or another unit, is less important than being sure that all the pressure measurements are the same units.

One formula for calculating the boiling point of water uses the known boiling point at sea level, 100°C, the atmospheric pressure at sea level and the atmospheric pressure at the time and elevation where the boiling takes place.

    The formula:

    BP_{corr}=BP_{obs}-(P_{obs}-760text{ mmHg})times 0.045^otext{C/mmHg}

    can be used to find an unknown boiling temperature for water.

    In this formula, BPcorr means boiling point at sea level, BPobs is the unknown temperature, and Pobs means the atmospheric pressure at the location. The value 760mmHg is standard atmospheric pressure in millimeters of mercury at sea level and 0.045oC/mmHg is the approximate change in water temperature with each millimeter mercury change in pressure.

    If the atmospheric pressure equals 600 mmHg and the boiling point is unknown at that pressure, then the equation becomes

    100°text{C}=BP_{obs}-(600text{ mmHg}-760text{ mmHg})times 0.045°text{C/mmHg}

    Calculating the equation gives:

    100°text{C}=BP_{obs}-(-160text{ mmHg})times 0.045°text{C/mmHg} = BP_{obs}+7.2

    The units of mmHg cancel each other out, leaving the units as degrees Celsius. Solved for the boiling point at 600mmHg, the equation becomes:

    BP_{obs}=100°text{C}-7.2°text{C}=92.8°text{C}

    So the boiling point of water at 600mmHg, an altitude of approximately 6400 feet above sea level, will be 92.8°C, or:

    92.8timesfrac{9}{5}+32=199°text{F}

    Warnings

    • At higher elevations, the lower boiling point of water requires cooking food for longer times to ensure adequate internal temperatures. For safety, use a meat thermometer to check temperatures.

Equations for Calculating Boiling Point

The equation detailed above uses a known pressure and temperature relationship with a known change in temperature with change in pressure. Other methods for calculating boiling points of liquids based on atmospheric pressure, like the Clausius–Clapeyron equation:

ln{frac{P_1}{P_2}}=-frac{L}{R}times (frac{1}{T_1}-frac{1}{T_2})

incorporate additional factors. In the Clausius-Clapeyron equation, for example, the equation incorporates the natural log (ln) of the starting pressure divided by the ending pressure, the latent heat (L) of the material and the universal gas constant (R). Latent heat relates to the attraction between molecules, a property of the material that influences the rate of vaporization. Materials with higher latent heats require more energy to boil because the molecules have a stronger attraction to each other.

Estimating Boiling Point

In general, an approximation of the drop in boiling point for water can be made based on altitude. For every 500 feet increase in altitude, the boiling point of water drops about 0.9°F.

Determining Boiling Point Using Nomographs

A nomograph can be also be used to estimate the boiling points of liquids. Nomographs use three scales to predict boiling point. A nomograph shows a boiling point temperature scale, a boiling point temperature at sea level pressure scale and a general pressure scale.

To use the nomograph, connect two known values using a ruler and read the unknown value on the third scale. Start with one of the known values. For example, if the boiling point at sea level is known and the barometric pressure is known, connect those two points with a ruler. Extending the line from the two connected knowns shows what the boiling point temperature at that elevation should be. Conversely, if the boiling point temperature is known and the boiling point at sea level is known, use a ruler to connect the two dots, extending the line to find the barometric pressure.

Using On-Line Calculators

Several on-line calculators provide boiling point temperatures at different elevations. Many of these calculators only show the relationship between atmospheric pressure and the boiling point of water, but others show additional common compounds.

Using Graphs and Tables

Graphs and tables of boiling points of many liquids have been developed. In the case of the tables, the liquid’s boiling point is shown for different atmospheric pressures. In some cases, the table only shows one liquid and the boiling point at various pressures. In other cases, several liquids at different pressures may be shown.

Graphs show boiling point curves based on temperature and barometric pressure. The graphs, like the nomograph, use known values to create a curve or, as with the Clausius-Clapeyron equation, use the natural log of the pressure to develop a straight line. The graphed line shows the known boiling point relationships, given a set of pressure and temperature values. Knowing one value, follow the value line to the graphed pressure-temperature line, then turn to the other axis to determine the unknown value.

Зависимость температуры кипения жидкости от давления

Из приведенных
рассуждений ясно, что температура
кипения жидкости должна зависеть от
внешнего давления. Наблюдения подтверждают
это.

Чем
больше внешнее давление, тем выше
температура кипения. Так, в паровом
котле при давлении, достигающем 1,6 · 106
Па, вода не кипит и при температуре 200
°С. В медицинских учреждениях кипение
воды в герметически закрытых сосудах
— автоклавах (рис. 6.11) также происходит
при повышенном давлении. Поэтому
температура кипения значительно выше
100 °С. Автоклавы применяют для стерилизации
хирургических инструментов, перевязочного
материала и т. д.

Рис. 6.11

И
наоборот, уменьшая внешнее давление,
мы тем самым понижаем температуру
кипения. Под колоколом воздушного насоса
можно заставить воду кипеть при комнатной
температуре (рис. 6.12). При подъеме в горы
атмосферное давление уменьшается,
поэтому уменьшается температура кипения.
На высоте 7134 м (пик Ленина на Памире)
давление приближенно равно 4 · 104
Па (300 мм рт. ст.). Вода кипит там примерно
при 70 °С. Сварить, например, мясо в этих
условиях невозможно.

Рис. 6.12

На рисунке 6.13
изображена кривая зависимости температуры
кипения воды от внешнего давления. Легко
сообразить, что эта кривая является
одновременно и кривой, выражающей
зависимость давления насыщенного
водяного пара от температуры.

Рис. 6.13

Различие температур кипения жидкостей

У каждой жидкости
своя температура кипения. Различие
температур кипения жидкостей определяется
различием в давлении их насыщенных
паров при одной и той же температуре.
Например, пары эфира уже при комнатной
температуре имеют давление, большее
половины атмосферного. Поэтому, чтобы
давление паров эфира стало равным
атмосферному, нужно небольшое повышение
температуры (до 35 °С). У ртути же насыщенные
пары имеют при комнатной температуре
совсем ничтожное давление. Давление
паров ртути делается равным атмосферному
только при значительном повышении
температуры (до 357 °С). Именно при этой
температуре, если внешнее давление
равно 105 Па, и кипит ртуть.

Различие температур
кипения веществ находит большое
применение в технике, например при
разделении нефтепродуктов. При нагревании
нефти раньше всего испаряются наиболее
ценные, летучие ее части (бензин), которые
можно таким образом отделить от «тяжелых»
остатков (масел, мазута).

Жидкость закипает,
когда давление ее насыщенного пара
сравнивается с давлением внутри жидкости.

§ 6.6. Теплота парообразования

Требуется ли
энергия для превращения жидкости в пар?
Скорее всего да! Не так ли?

Мы отмечали (см. §
6.1), что испарение жидкости сопровождается
ее охлаждением. Для поддержания
температуры испаряющейся жидкости
неизменной к ней необходимо подводить
извне теплоту. Конечно, теплота и сама
может передаваться жидкости от окружающих
тел. Так, вода в стакане испаряется, но
температура воды, несколько более
низкая, чем температура окружающего
воздуха, остается неизменной. Теплота
передается от воздуха к воде до тех пор,
пока вся вода не испарится.

Чтобы поддерживать
кипение воды (или иной жидкости), к ней
тоже нужно непрерывно подводить теплоту,
например подогревать ее горелкой. При
этом температура воды и сосуда не
повышается, но каждую секунду образуется
определенное количество пара.

Таким
образом, для превращения жидкости в пар
путем испарения или путем кипения
требуется приток теплоты. Количество
теплоты, требующееся для превращения
данной массы жидкости в пар той же
температуры, называется теплотой
парообразования этой жидкости.

На что расходуется
подводимая к телу энергия? Прежде всего
на увеличение его внутренней энергии
при переходе из жидкого состояния в
газообразное: ведь при этом увеличивается
объем вещества от объема жидкости до
объема насыщенного пара. Следовательно,
увеличивается среднее расстояние между
молекулами, а значит, и их потенциальная
энергия.

Кроме того, при
увеличении объема вещества совершается
работа против сил внешнего давления.
Эта часть теплоты парообразования при
комнатной температуре составляет обычно
несколько процентов всей теплоты
парообразования.

Теплота
парообразования зависит от рода жидкости,
ее массы и температуры. Зависимость
теплоты парообразования от рода жидкости
характеризуется величиной, называемой
удельной
теплотой парообразования.

Удельной теплотой
парообразования данной жидкости
называется отношение теплоты
парообразования жидкости к ее массе:


(6.6.1)

где
r
— удельная теплота парообразования
жидкости; т

масса жидкости; Qn
— ее теплота парообразования. Единицей
удельной теплоты парообразования в СИ
является джоуль
на килограмм (Дж/кг).

Удельная
теплота парообразования воды очень
велика: 2,256·106
Дж/кг при температуре 100 °С. У других
жидкостей (спирт, эфир, ртуть, керосин
и др.) удельная теплота парообразования
меньше в 3—10 раз.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Зависимость температуры кипения от давления

Зависимость температуры кипения от давления

Температура кипения воды равна 100 °C; можно подумать, что это неотъемлемое свойство воды, что вода, где бы и в каких условиях она ни находилась, всегда будет кипеть при 100 °C.

Но это не так, и об этом прекрасно осведомлены жители высокогорных селений.

Вблизи вершины Эльбруса имеется домик для туристов и научная станция. Новички иногда удивляются, «как трудно сварить яйцо в кипятке» или «почему кипяток не обжигает». В этих случаях им указывают, что вода кипит на вершине Эльбруса уже при 82 °C.

В чем же тут дело? Какой физический фактор вмешивается в явление кипения? Какое значение имеет высота над уровнем моря?

Этим физическим фактором является давление, действующее на поверхность жидкости. Не нужно забираться на вершину горы, чтобы проверить справедливость сказанного.

Помещая подогреваемую воду под колокол и накачивая или выкачивая оттуда воздух, можно убедиться, что температура кипения растет при возрастании давления и падает при его уменьшении.

Вода кипит при 100 °C только при определенном давлении – 760 мм Hg.

Кривая температуры кипения в зависимости от давления показана на рис. 98. На вершине Эльбруса давление равно 0,5 атм, этому давлению и соответствует температура кипения 82 °C.

А вот водой, кипящей при 10–15 мм Нg, можно освежиться в жаркую погоду. При этом давлении температура кипения упадет до 10–15 °C.

Можно получить даже «кипяток», имеющий температуру замерзающей воды. Для этого придется снизить давление до 4,6 мм Hg.

Интересную картину можно наблюдать, если поместить открытый сосуд с водой под колокол и откачивать воздух. Откачка заставит воду закипеть, но кипение требует тепла. Взять его неоткуда, и воде придется отдать свою энергию. Температура кипящей воды начнет падать, но так как откачка продолжается, то падает и давление. Поэтому кипение не прекратится, вода будет продолжать охлаждаться и в конце концов замерзнет.

Такое кипение холодной воды происходит не только при откачке воздуха. Например, при вращении гребного корабельного винта давление в быстро движущемся около металлической поверхности слое воды сильно падает и вода в этом слое закипает, т.е. в ней появляются многочисленные наполненные паром пузырьки. Это явление называется кавитацией (от латинского слова cavitas – полость).

Снижая давление, мы понижаем температуру кипения. А увеличивая его? График, подобный нашему, отвечает на этот вопрос. Давление в 15 атм может задержать кипение воды, оно начнется только при 200 °C, а давление в 80 атм заставит воду закипеть лишь при 300 °C.

Итак, определенному внешнему давлению соответствует определенная температура кипения. Но это утверждение можно и «перевернуть», сказав так: каждой температуре кипения воды соответствует свое определенное давление. Это давление называется упругостью пара.

Кривая, изображающая температуру кипения в зависимости от давления, является одновременно и кривой упругости пара в зависимости от температуры.

Цифры, нанесенные на график температуры кипения (или на график упругости пара), показывают, что упругость пара меняется очень резко с изменением температуры. При 0 °C (т.е. 273 K) упругость пара равна 4,6 мм Hg, при 100 °C (373 K) она равна 760 мм, т. е, возрастает в 165 раз. При повышении температуры вдвое (от 0 °C, т.е. 273 K, до 273 °C, т.е. 546 K) упругость пара возрастает с 4,6 мм Hg почти до 60 атм, т.е. примерно в 10000 раз.

Поэтому, напротив, температура кипения меняется с давлением довольно медленно. При изменении давления вдвое – от 0,5 атм до 1 атм, температура кипения возрастает от 82 °C (т.е. 355 K) до 100 °C (т.е. 373 K) и при изменении вдвое от 1 атм до 2 атм – от 100 °C (т.е. 373 K) до 120 °C (т.е. 393 K).

Та же кривая, которую мы сейчас рассматриваем, управляет и конденсацией (сгущением) пара в воду.

Превратить пар в воду можно либо сжатием, либо охлаждением.

Как во время кипения, так и в процессе конденсации точка не сдвинется с кривой, пока превращение пара в воду или воды в пар не закончится полностью. Это можно сформулировать еще и так: в условиях нашей кривой и только при этих условиях возможно сосуществование жидкости и пара. Если при этом не подводить и не отнимать тепла, то количества пара и жидкости в закрытом сосуде будут оставаться неизменными. Про такие пар и жидкость говорят, что они находятся в равновесии, и пар, находящийся в равновесии со своей жидкостью, называют насыщенным.

Кривая кипения и конденсации имеет, как мы видим, еще один смысл – это кривая равновесия жидкости и пара. Кривая равновесия делит поле диаграммы на две части. Влево и вверх (к большим температурам и меньшим давлениям) расположена область устойчивого состояния пара. Вправо и вниз – область устойчивого состояния жидкости.

Кривая равновесия пар – жидкость, т.е. кривая зависимости температуры кипения от давления или, что то же самое, упругости пара от температуры, примерно одинакова для всех жидкостей. В одних случаях изменение может быть несколько более резким, в других – несколько более медленным, но всегда упругость пара быстро растет с увеличением температуры.

Уже много раз мы пользовались словами «газ» и «пар». Эти два слова довольно равноправны. Можно сказать: водяной газ есть пар воды, газ кислород есть пар кислородной жидкости. Все же при пользовании этими двумя словами сложилась некоторая привычка. Так как мы привыкли к определенному относительно небольшому интервалу температур, то слово «газ» мы применяем обычно к тем веществам, упругость пара которых при обычных температурах выше атмосферного давления. Напротив, о паре мы говорим тогда, когда при комнатной температуре и давлении атмосферы вещество более устойчиво в виде жидкости.

Читайте также

К квантовой теории абсолютного нуля температуры

К квантовой теории абсолютного нуля температуры

Ниже помещен перевод заметки» написанной известными физиками и опубликованной в «Natur-wissenschaften». Редакторы журнала «попались на удочку громких имен» и, не вдаваясь в существо написанного, направили полученный материал в

6. Математическая статистика и корреляционная зависимость

6. Математическая статистика и корреляционная зависимость
Математическая статистика – наука о математических методах систематизации и использования статистических данных для решения научных и практических задач. Математическая статистика тесно примыкает к теории

К квантовой теории абсолютного нуля температуры

К квантовой теории абсолютного нуля температуры

Д. Бак, Г. Бете, В. Рицлер
(Кембридж)

«К квантовой теории абсолютного нуля температуры» и заметки, переводы которых помещены ниже:
К квантовой теории абсолютного нуля температуры
Движение нижней челюсти у крупного

Изменение давления с высотой

Изменение давления с высотой
С изменением высоты давление падает. Впервые это было выяснено французом Перье по поручению Паскаля в 1648 г. Гора Пью де Дом, около которой жил Перье, была высотой 975 м. Измерения показали, что ртуть в торричеллиевой трубке падает при подъеме на

Влияние давления на температуру плавления

Влияние давления на температуру плавления
Если изменить давление, то изменится и температура плавления. С такой же закономерностью мы встречались, когда говорили о кипении. Чем больше давление, тем выше температура кипения. Как правило, это верно и для плавления. Однако

Как зависит температура от давления

Температура (t) и давление (P) – две взаимосвязанные между собой физические величины. Проявляется это взаимосвязь во всех трех агрегатных состояниях веществ. От колебания этих величин зависит большинство природных явлений.

Как зависит температура от давления

Инструкция

Очень тесную взаимосвязь можно найти между температурой жидкости и атмосферным давлением. Внутри любой жидкости существует много маленьких пузырьков воздуха, имеющих свое внутреннее давление. При нагревании в эти пузырьки испаряется насыщенный пар из окружающей его жидкости. Все это продолжается до тех пор, пока внутреннее давление не станет равным внешнему (атмосферному). Тогда пузырьки не выдерживают и лопаются – происходит процесс, который называется кипением.

Аналогичный процесс происходит и в твердых телах при плавлении или при обратном процессе — кристаллизации. Твердое тело состоит из кристаллических решеток, разрушить которые можно при отдалении атомов друг от друга. Давление же, увеличиваясь, действует в обратном направлении – прижимает атомы друг к другу. Соответственно, для того чтобы тело расплавилось, требуется больше энергии и температура повышается.

Уравнение Клапейрона-Менделеева описывает зависимость температуры от давления в газе. Формула выглядит так: PV = nRT. Р – давление газа в сосуде. Так как n и R – постоянные величины, становится ясно, что давление прямо пропорционально температуре (при V=const). Это значит, что чем выше Р, тем выше и t. Этот процесс обусловлен тем, что при нагревании межмолекулярное пространство увеличивается, и молекулы начинают двигаться быстро в хаотичном порядке, а значит чаще ударяться об стенки сосуда, в котором находится газ. Температура в уравнении Клапейрона-Менделеева измеряется обычно в градусах Кельвина.

Существует понятие стандартной температуры и давления: температура равна -273° по Кельвину (или 0 °С), а давление — 760 мм ртутного столба.

Обратите внимание

Лед имеет высокую удельную теплоемкость, равную 335 кДж/кг. Поэтому, чтобы его растопить, нужно потратить много тепловой энергии. Для сравнения: таким же количеством энергии можно нагреть воду до 80 °С.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

   Данный калькулятор поможет Вам определить температуру кипения воды (°C), удельный объем насыщенного пара (м3/кг) и удельную теплоту парообразования (кДж/кг) при заданном давлении (мбар).
   Кипение представляет собой внутреннее парообразование, которое происходит во всем объеме жидкости при температуре, когда давление насыщенного пара равно давлению в жидкости. Согласно исследованиям и уравнению Клапейрона — Клаузиуса, градус кипения напрямую зависит от атмосферного давления, так как кипение происходит, когда давление пара жидкости равно атмосферному давлению над этой жидкостью. Ниже представлен график зависимости температуры кипения воды от деления.
                                                                                     зависимость температуры кипения от давления
  С ростом давления температура кипения увеличивается, а с уменьшением, наоборот, становится все ниже. При нормальном атмосферном давлении 760 мм рт. ст. вода кипит при + 100 °C.
  В горной местности давление уменьшается, а под землей (в шахте) увеличивается. Так температура кипения воды на вершине самой высокой горы Эверест будет составлять примерно 69 °C.

Выберите способ ввода данных:

Температура кипения воды при этом давлении:

Удельный объем насыщенного пара:

Удельная теплота парообразования:

Понравилась статья? Поделить с друзьями:
  • Как найти лайкнувшие видео в тик токе
  • Как найти номер налоговой инспекции по инн
  • Как найти точку на карте по координате
  • Как найти моменты каждой силы
  • Пиксельные шрифты в windows 10 как исправить