Содержание
- Как рассчитать гкал на отопление — правильная формула расчета
- Общие принципы выполнения расчетов гкал
- Порядок вычислений при расчете потребляемого тепла
- Иные способы вычислений объема тепла
- Итог всех вычислений
- АЛГОРИТМЫ РАСЧЕТА ТЕПЛОВОЙ ЭНЕРГИИ
- Расчет тепловой энергии для закрытой системы
- Расчет тепловой энергии для открытой системы
- Рассмотрим первый вариант. Если температура холодной воды Tхв учитывается теплоснабжающей организацией на источнике тепловой энергии (для расчетов берется среднемесячная температура холодной воды на источнике), то конфигурация тепловычислителя должна соответствовать формуле 2). В этом случае помимо Qи=М1(h1-h2) в теплоснабжающую организацию должны быть предоставлены данные по расходу М2 и температуре Т2 для схемы рис. 2, для расчета Qгвс. Тогда полная тепловая энергия будет рассчитана теплоснабжающей организацией по следующей формуле: 5) Q=Qи+Qгвс или Q=М1(h1-h2)+(М1-М2)(h2-hхв) Должны быть предоставлены данные по расходам М3 и М4, тогда полная тепловая энергия будет рассчитана теплоснабжающей организацией по следующей формуле: 6) Q=М1(h1-h2)+(М3-М4)(h2-hхв) Должны быть предоставлены данные по расходам М3 и М4, тогда полная тепловая энергия будет рассчитана теплоснабжающей организацией по следующей формуле: 6) Q=М3(h1-h2)+(М3-М4)(h2-hхв) Если на тепловом узле измеряется непосредственно Мгвс, то расчет производиться по следующей формуле: 7) Q=М1(h1-h2)+Мгвс(h2-hхв) Важное замечание! Конфигурация тепловычислителя в этом случае должна соответствовать формуле 2) как для закрытой системы.
- Рассмотрим второй вариант
- Как правильно провести расчет тепловой энергии на отопление
- Что нужно для расчета
- Тепловой расчет
- Формула расчета
- Размеры комнат и этажность здания
- Гидравлический расчет
- Заключение по теме
Как рассчитать гкал на отопление — правильная формула расчета
Зачастую одной из проблем, с которой сталкиваются потребители как в частных постройках, так и в многоквартирных домах, заключается в том, что расход тепловой энергии, получаемой в процессе отопления жилища, является очень большим. Для того чтобы избавить себя от необходимости переплаты за излишнее тепло и для экономии финансов следует определить с тем, как именно должен проходить расчет количества тепла на отопление. Решить это помогут обычные вычисления, с помощью которых станет ясно, какой объем должно иметь поступающее в радиаторы тепло. Именно об этом далее и пойдет речь.
Общие принципы выполнения расчетов гкал
Расчет квт для отопления подразумевает выполнение специальных вычислений, порядок которых регламентирован особыми нормативными актами. Ответственность за них лежит на коммунальных организациях, которые способны помочь при выполнении данной работы и дать ответ касательно того, как рассчитать гкал на отопление и расшифровка гкал.
Безусловно, подобная проблема будет полностью исключена в случае наличия в жилом помещении счетчика на горячую воду, так как именно в этом приборе имеются уже заранее выставленные показания, отображающие полученное тепло. Умножив эти результаты на установленный тариф, модно получить конечный параметр расходуемого тепла.
Порядок вычислений при расчете потребляемого тепла
При отсутствии такого устройства, как счетчик на горячую воду, формула расчета тепла на отопление должна быть следующей: Q = V * (T1 – T2) / 1000. переменные в данном случае отображают такие значения, как:
- Q в данном случае — это общий объем энергии тепла;
- V – показатель потребления горячей воды, который измеряется либо в тоннах, либо в кубических метрах;
- T1 – температурный параметр горячей воды (измеряется в привычных градусах Цельсия). В данном случае более уместно будет брать в расчет ту температуру, которая характерна для определенного рабочего давления. Этот показатель имеет специальное название – энтальпия. Но в случае отсутствия требуемого датчика можно принять за основу ту температуру, которая будет максимально приближена к энтальпии. Как правило, ее средний показатель варьируется в пределах от 60 до 65°C;
- T2 в этой формуле – температурный показатель холодной воды, который также измеряется в градусах Цельсия. Ввиду того, что попасть к трубопроводу с холодной водой весьма проблематично, подобные значения определяются постоянными величинами, которые отличаются в зависимости от погодных условий за пределами жилища. К примеру, в зимнее время года, то есть в самый разгар отопительного сезона, эта величина составляет 5°C, а летом, когда отопительный контур отключен – 15°C;
- 1000 – это обычный коэффициент, при помощи которого можно получить результат в гигакалориях, что более точно, а не в обычных калориях.
Расчет гкал на отопление в закрытой системе, которая является более удобной для эксплуатации, должен проходить несколько иным образом. Формула расчета отопления помещения с закрытой системой является следующей: Q = ((V1 * (T1 – T)) — (V2 * (T2 – T))) / 1000.
- Q – все тот же объем тепловой энергии;
- V1 – это параметр расхода теплоносителя в подающей трубе (источником тепла может выступать как обычная вода, так и водяной пар);
- V2 – объем расхода воды в трубопроводе отвода;
- T1 – температурное значение в трубе подачи теплоносителя;
- T2 – показатель температуры на выходе;
- T – температурный параметр холодной воды.
Можно сказать, что расчет теплоэнергии на отопление в данном случае зависит от двух значений: первое из них отображает поступившее в систему тепло, измеряемое в калориях, а второе – тепловой параметр при отводе теплоносителя по обратному трубопроводу.
Иные способы вычислений объема тепла
Рассчитать количества поступающего в отопительную систему тепла можно и другими способами.
Формула расчета за отопление в данном случае может несколько отличаться от вышеупомянутой и иметь два варианта:
- Q = ((V1 * (T1 — T2)) + (V1 — V2) * (T2 – T)) / 1000.
- Q = ((V2 * (T1 — T2)) + (V1 — V2) * (T1 – T)) / 1000.
Все значения переменных в этих формулах являются теми же, что и ранее.
Исходя из этого, можно с уверенностью сказать, что расчет киловатт отопления вполне можно выполнить своими собственными силами. Однако не стоит забывать о консультации со специальными организациями, ответственными за подачу тепла в жилища, поскольку их принципы и система расчетов могут быть абсолютно другими и состоять из совершенного иного комплекса мероприятий.
Решившись конструировать в частном доме систему так называемого «теплого пола», нужно быть готовым к тому, что процедура расчета объема тепла будет значительно сложнее, так как в данном случае следует учитывать не только особенности отопительного контура, но и предусмотреть параметры электрической сети, от которой и будет подогреваться пол. При этом и организации, отвечающие за контроль над такими монтажными работами, будут совершенно иными.
Многие хозяева зачастую сталкиваются с проблемой, связанной с переводом нужного количества килокалорий в киловатты, что обусловлено использованием многими вспомогательными пособиями измерительных единиц в международной системе, называемой «Си». Здесь требуется запомнить, что коэффициент, переводящий килокалории в киловатты, будет составлять 850, то есть, говоря более простым языком, 1 кВт – это 850 ккал. Такой порядок расчетов значительно проще, поскольку высчитать нужный объем гигакалорий не составит труда – приставка «гига» означает «миллион», следовательно, 1 гигакалория – 1 миллион калорий.
Для того чтобы избежать ошибок в вычислениях, важно помнить, что абсолютно все современные тепловые счетчики имеют некоторую погрешность, при этом зачастую в допустимых пределах. Расчет такой погрешности также можно выполнить самостоятельно, воспользовавшись следующей формулой: R = (V1 — V2) / (V1+V2) * 100, где R – погрешность общедомового счетчика на отопление. V1 и V2 – это уже упомянутые выше параметры расхода воды в системе, а 100 – коэффициент, отвечающий за перевод полученного значения в проценты.
В соответствии с эксплуатационными нормами максимально допустимая погрешность может составлять 2%, но обычно этот показатель в современных приборах не превышает 1%.
Итог всех вычислений
Правильно выполненный расчет потребления тепловой энергии – это залог экономного расхода финансовых средств, затрачиваемых на отопление. Приводя пример среднего значения, можно отметить, что при обогреве жилой постройки площадью в 200 м² в соответствии с вышеописанными формулами вычислений объем тепла будет составлять приблизительно 3 гкал за один месяц. Таким образом, приняв во внимание тот факт, что стандартный отопительный сезон длится полгода, то за шесть месяцев объем расхода будет составлять 18 гкал.
Безусловно, все мероприятия по расчету тепла гораздо удобнее и проще выполнять в частных постройках, нежели в многоквартирных домах с централизованной отопительной системой, где простым оборудованием обойтись не получится.
Таким образом, можно сказать, что все расчеты по определению расхода энергии тепла в конкретном помещении вполне могут быть выполнены своими силами (прочитайте также: «Годовой расход тепла на отопление загородного дома «). Важно лишь, чтобы данные были просчитаны максимально точно, то есть по специально предназначенным для этого математическим формулам, а все процедуры были согласованы с особыми органами, контролирующими проведение подобных мероприятий. Помощь в вычислениях также могут оказать профессиональные мастера, регулярно занимающиеся такой работой и имеющие в наличии различные видеоматериалы, подробно описывающие весь процесс расчетов, а также фото образцов отопительных систем и схемы по их подключению.
АЛГОРИТМЫ РАСЧЕТА ТЕПЛОВОЙ ЭНЕРГИИ
Расчеты между потребителем и теплоснабжающей организацией по теплопотреблению и использованию горячей воды производятся в соответствии с «Правилами учета тепловой энергии и теплоносителя №954 1995г.» [1].
Количество тепловой энергии и масса (объем) теплоносителя, полученные потребителем, определяются энергоснабжающей организацией на основании приборов узла учета потребителя по формуле:
1) Q=Qи+Qп+(Мп+Мгвс+Му)*(h2-hхв)*10-3
где h – энтальпия воды при температуре Т.
Qи=М1(h1-h2) – рассчитываемая тепловая энергия на основе измерений температур и расхода по подающему трубопроводу
Qп – тепловые потери от границы балансовой принадлежности системы до узла учета, рис.10. Указывается в договоре с теплоснабжающей организацией.
Мп – масса теплоносителя израсходованного на подпитку систем отопления (учитывается только для систем независимого типа рис. 3 )
Мгвс – масса теплоносителя израсходованного на ГВС, определяется по показаниям водосчетчика (учитывается для открытых систем теплопотребления рис.2, 7, 8. для систем с циркуляцией рис.6 Мгвс определяется как разность расходов Мгвс=М3-М4).
Му – масса утечки сетевой воды в системах теплопотребления определяется как разность Му=М1-(М2+Мгвс).
Т2 – температура в обратном трубопроводе потребителя Тхв – температура холодной воды на источнике.
Расчет тепловой энергии для закрытой системы
Рассмотрим алгоритмы расчета тепловой энергии для закрытой системы. При такой схеме теплоснабжающей организации предоставляются данные по теплопотреблению, полученные с тепловычислителя по формуле 2).
2) Qи=М1(h1-h2)
Подпитка в закрытой системе отсутствует Мп=0.
Расчет утечки производиться по показаниям расходомеров как Му=М1-М2. В большинстве случаев для закрытых систем Му принимается равным нулю или рассчитывается теплоснабжающей организацией. Тогда в этом случае формула 1) преобразуется к следующему виду:
3) Q=Qи+Qп.
Конфигурация тепловычислителя для рассматриваемого случая с закрытой системой должна соответствовать формуле 2).
Расчет тепловой энергии для открытой системы
Рассмотрим открытую систему теплопотребления.
Для открытой системы теплопотребления существует несколько вариантов учета потребляемой тепловой энергии. Данная ситуация связана с учетом температуры холодной воды, так как она должна измеряться на источнике тепловой энергии, а не у потребителя.
Если принять Му=0 и Мп=0, Qп=0, то формулу 1) можно представить в следующем виде Q=Qи+Qгвс, где
4) Qгвс=Мгвс(h2-hхв).
Масса теплоносителя, расходуемая на ГВС должна определятся по водомеру Мгвс (рис.7, 8 ) или определяется как разность расходов Мгвс=М1-М2 (рис.2), а для схем представленных на рис.6, 9 определяется как разность Мгвс=М3-М4.
Рассмотрим первый вариант.
Если температура холодной воды Tхв учитывается теплоснабжающей организацией на источнике тепловой энергии (для расчетов берется среднемесячная температура холодной воды на источнике), то конфигурация тепловычислителя должна соответствовать формуле 2). В этом случае помимо Qи=М1(h1-h2) в теплоснабжающую организацию должны быть предоставлены данные по расходу М2 и температуре Т2 для схемы рис. 2, для расчета Qгвс. Тогда полная тепловая энергия будет рассчитана теплоснабжающей организацией по следующей формуле:
5) Q=Qи+Qгвс или Q=М1(h1-h2)+(М1-М2)(h2-hхв)
Должны быть предоставлены данные по расходам М3 и М4, тогда полная тепловая энергия будет рассчитана теплоснабжающей организацией по следующей формуле:
6) Q=М1(h1-h2)+(М3-М4)(h2-hхв)
Должны быть предоставлены данные по расходам М3 и М4, тогда полная тепловая энергия будет рассчитана теплоснабжающей организацией по следующей формуле:
6) Q=М3(h1-h2)+(М3-М4)(h2-hхв)
Если на тепловом узле измеряется непосредственно Мгвс, то расчет производиться по следующей формуле:
7) Q=М1(h1-h2)+Мгвс(h2-hхв)
Важное замечание!
Конфигурация тепловычислителя в этом случае должна соответствовать формуле 2) как для закрытой системы.
Рассмотрим второй вариант
При согласовании с теплоснабжающей организацией температура холодной воды Тхв может задаваться константой в тепловычислителе (зимой Тхв как правило задается 5 градусов, в неотопительный сезон 15 градусов). В этом случае тепловычислитель должен иметь конфигурацию для открытой системы с формулой 5).
В некоторых тепловычислителях представлен другой вариант формулы 5).
При Мгвс=М1-М2 формулу 5) можно преобразовать к виду
Q=М1(h1-h2)+(М1-М2)(h2-hхв)=
=М1h1-М1h2+М1h2-М1hхв-М2h2+М2hхв=
=М1h1-М1hхв-М2h2+М2hхв=
=М1(h1-hхв)-М2(h2-hхв)
Формулы Q=М1(h1-h2)+(М1-М2)(h2-hхв),
Q=М2(h1- h2)+(М1-М2)(h1-hхв),
Q=М1(h1-hхв)-М2(h2-hхв) идентичны при Мгвс=М1-М2.
Важное замечание!
Конфигурация тепловычислителя в этом случае должна соответствовать формуле 5) как для открытой системы с установленной температурой холодной воды Тхв в отопительный сезон 5 градусов в неотопительный 15 градусов.
Как правильно провести расчет тепловой энергии на отопление
Расход тепловой энергии на отопление
Система отопления вашего дома должна быть собрана грамотно. Только так можно гарантировать эффективное ее функционирование, экономию топлива, высокую теплоотдачу и бесшумность работы. Все четыре качества определяют степень комфортного проживания зимой внутри дома. Поэтому расчет тепла — это необходимая процедура.
Чтобы правильно провести расчет, нужны знания формул и различных коэффициентов, которые основываются на состоянии дома в целом.
Что нужно для расчета
Так называемый тепловой расчет проводится в несколько этапов:
- Сначала необходимо определить тепловые потери самого здания. Обычно теплопотери рассчитываются для помещений, у которых есть хотя бы одна внешняя стена. Этот показатель поможет определить мощность отопительного котла и радиаторов.
- Затем определяется температурный режим. Здесь надо учитывать взаимосвязь трех позиций, а точнее, трех температур — котла, радиаторов и воздуха в помещении. Оптимальный вариант в той же последовательности — 75С-65С-20С. Он является основой европейского стандарта EN 442.
- С учетом теплопотерь помещения определяется мощность отопительных батарей.
- Следующий этап — гидравлический расчет. Именно он позволит точно определить все метрические характеристики элементов системы отопления — диаметр труб, фитингов, запорной арматуры и прочее. Плюс на основе расчета будет выбран расширительный бак и циркуляционный насос.
- Рассчитывается мощность отопительного котла.
- И последний этап — это определение общего объема отопительной системы. То есть, сколько теплоносителя понадобится, чтобы заполнить ее. Кстати, объем расширительного бачка тоже будет определяться исходя из этого показателя. Добавим, что объем отопления поможет узнать, хватит ли объема (количества литров) расширительного бака, который встроен в отопительный котел, или придется приобретать дополнительную емкость.
Кстати, по поводу тепловых потерь. Существуют определенные нормы, которые выставлены специалистами в качестве стандарта. Этот показатель, а, точнее, соотношение, определяет будущую эффективную работу всей отопительной системы в целом. Это соотношение равно — 50/150 Вт/м². То есть здесь используется соотношение мощности системы и отапливаемой площади помещения.
Тепловой расчет
Итак, перед тем как рассчитывать систему отопления собственного дома, вы должны выяснить некоторые данные, которые касаются самой постройки.
- Из проекта дома вы узнаете размеры отапливаемых помещений — высоту стен, площадь, количество оконных и дверных проемов, а также их размеры.
- Как расположен дом относительно сторон света. Не забывайте про среднюю температуру зимой в вашем регионе.
- Из какого материала сооружено само здание. Особое внимание наружным стенам.
- Обязательно определяем составляющие от пола до грунта, куда входит фундамент здания.
- То же самое относится и к верхним элементам, то есть к потолку, кровле и перекрытиям .
Именно эти параметры строения позволят вам перейти к проведению гидравлического расчета. Скажем прямо, вся вышеописанная информация доступна, так что проблем с ее сбором не должно возникнуть.
Формула расчета
Нормативы расхода тепловой энергии
Тепловые нагрузки рассчитываются с учетом мощности отопительного агрегата и тепловых потерь здания. Поэтому, чтобы определить мощность проектируемого котла, необходимо теплопотери здания умножить на повышающий коэффициент 1,2. Это своеобразный запас, равный 20%.
Для чего необходим такой коэффициент? С его помощью можно:
- Прогнозировать падение давления газа в магистрали. Ведь зимой потребителей прибавляется, и каждый старается взять топлива больше, чем остальные.
- Варьировать температурный режим внутри помещений дома.
Добавим, что тепловые потери не могут распределяться по всей конструкции здания равномерно. Разность показателей может быть достаточно большой. Вот некоторые примеры:
- Через наружные стены покидает здание до 40% тепла.
- Через полы — до 10%.
- То же самое относится и к крыше.
- Через вентиляционную систему — до 20%.
- Через двери и окна — 10%.
Итак, с конструкцией здания разобрались и сделали одно очень важное заключение, что от архитектуры самого дома и места его расположения зависят потери тепла, которые необходимо компенсировать. Но многое также определяется и материалами стен, крыши и пола, а также наличием или отсутствием теплоизоляции. Это немаловажный фактор.
К примеру, определим коэффициенты, снижающие теплопотери, зависящие от оконных конструкций:
- Обычные деревянные окна с обычными стеклами. Для расчета тепловой энергии в данном случае используется коэффициент, равный 1,27. То есть через такой вид остекления происходит утечка тепловой энергии, равной 27% от общего показателя.
- Если установлены пластиковые окна с двухкамерными стеклопакетами, то используется коэффициент 1,0.
- Если установлены пластиковые окна из шестикамернного профиля и с трехкамерным стеклопакетом, то берется коэффициент 0,85.
Идем дальше, разбираясь с окнами. Существует определенная связь площади помещения и площади оконного остекления. Чем больше вторая позиция, тем выше тепловые потери здания. И здесь есть определенное соотношение:
- Если площадь окон по отношению к площади пола имеет всего лишь 10%-ный показатель, то для расчета тепловой мощности системы отопления используется коэффициент 0,8.
- Если соотношение располагается в диапазоне 10-19%, то применяется коэффициент 0,9.
- При 20% — 1,0.
- При 30% —2.
- При 40% — 1,4.
- При 50% — 1,5.
И это только окна. А есть еще влияние материалов, которые использовались в строительстве дома, на тепловые нагрузки. Расположим их в таблице, где стеновые материалы будут располагаться с уменьшением тепловых потерь, а значит, их коэффициент будет также снижаться:
Вид строительного материала
Как видите, разница от используемых материалов существенная. Поэтому еще на стадии проектирования дома необходимо точно определиться с тем, из какого материала он будет возводиться. Конечно, многие застройщики строят дом на основе бюджета, выделенного на строительство. Но при таких раскладках стоит пересмотреть его. Специалисты уверяют, что лучше вложиться первоначально, чтобы впоследствии пожинать плоды экономии от эксплуатации дома. Тем более что система отопления зимой составляет одну из главных статей расхода.
Размеры комнат и этажность здания
Схема системы отопления
Итак, продолжаем разбираться в коэффициентах, влияющих на формулу расчета тепла. Как влияют размеры помещения на тепловые нагрузки?
- Если высота потолков в вашем доме не превышает 2,5 метра, то в расчете учитывается коэффициент 1,0.
- При высоте 3 м уже берется 1,05. Незначительная разница, но она существенно влияет на тепловые потери, если общая площадь дома достаточно велика.
- При 3,5 м — 1,1.
- При 4,5 м —2.
А вот такой показатель, как этажность постройки, влияет на теплопотери помещения по-разному. Здесь необходимо учитывать не только количество этажей, но и место помещения, то есть, на каком этаже оно расположено. К примеру, если это комната на первом этаже, а сам дом имеет три-четыре этажа, то для расчета используется коэффициент 0,82.
При перемещении помещения в верхние этажи повышается и показатель теплопотерь. К тому же придется учитывать чердак — утеплен он или нет.
Как видите, чтобы точно подсчитать тепловые потери здания, необходимо определиться с различными факторами. И их все обязательно надо учитывать. Кстати, нами были рассмотрены не все факторы, снижающие или повышающие тепловые потери. Но сама формула расчета будет в основном зависеть от площади отапливаемого дома и от показателя, который называется удельным значением тепловых потерь. Кстати, в данной формуле оно стандартное и равно 100 Вт/м². Все остальные составляющие формулы — коэффициенты.
Гидравлический расчет
Итак, с теплопотерями определились, мощность отопительного агрегата подобрана, остается лишь определиться с объемом необходимого теплоносителя, а, соответственно, и с размерами, а также материалами используемых труб, радиаторов и запорной арматуры.
В первую очередь определяем объем воды внутри отопительной системы. Для этого потребуются три показателя:
- Общая мощность отопительной системы.
- Разница температур на выходе и входе в отопительный котел.
- Теплоемкость воды. Этот показатель стандартный и равен 4,19 кДж.
Гидравлический расчет системы отопления
Формула такова — первый показатель делим на два последних. Кстати, этот тип расчета может быть использован для любого участка системы отопления. Здесь важно разбить магистраль на части, чтобы в каждой скорость движения теплоносителя была одинаковой. Поэтому специалисты рекомендуют делать разбивку от одной запорной арматуры до другой, от одного радиатора отопления к другому.
Теперь переходим к расчету потерь напора теплоносителя, которые зависят от трения внутри трубной системы. Для этого используются всего две величины, которые в формуле перемножаются между собой. Это длина магистрального участка и удельные потери трения.
А вот потери напора в запорной арматуре рассчитываются совершенно по другой формуле. В ней учитываются такие показатели, как:
- Плотность теплоносителя.
- Его скорость в системе.
- Суммарный показатель всех коэффициентов, которые присутствуют в данном элементе.
Чтобы все три показателя, которые выведены формулами, подходили к стандартным величинам, необходимо правильно подобрать диаметры труб. Для сравнения приведем пример нескольких видов труб, чтобы было понятно, как их диаметр влияет на тепловую отдачу.
- Металлопластиковая труба диаметром 16 мм. Ее тепловая мощность варьируется в диапазоне 2,8-4,5 кВт. Разность показателя зависит от температуры теплоносителя. Но учитывайте, что это диапазон, где установлены минимальный и максимальный показатель.
- Та же труба с диаметром 32 мм. В этом случае мощность варьируется в пределах 13-21 кВт.
- Труба из полипропилена. Диаметр 20 мм — диапазон мощности 4-7 кВт.
- Та же труба диаметром 32 мм — 10-18 кВт.
И последнее — это определение циркуляционного насоса. Чтобы теплоноситель равномерно распределялся по всей отопительной системе, необходимо, чтобы его скорость была не меньше 0,25 м/сек и не больше 1,5 м/сек. При этом давление не должно быть выше 20 МПа. Если скорость теплоносителя будет выше максимально предложенной величины, то трубная система будет работать с шумом. Если скорость будет меньше, то может произойти завоздушивание контура.
Заключение по теме
Для обычных потребителей, неспециалистов, не понимающих нюансов и особенностей теплотехнических расчетов, все, что было описано выше — тема непростая и где-то даже непонятная. И это на самом деле так. Ведь разобраться во всех тонкостях подбора того или иного коэффициента достаточно сложно. Вот почему расчет тепловой энергии, а точнее, расчет ее количества, если такая необходимость возникает, лучше доверить инженеру-теплотехнику. Но и не делать такой расчет нельзя. Вы сами смогли убедиться, что от него зависит достаточно широкий ряд показателей, которые влияют на правильность монтажа отопительной системы.
Как вам статья?
О тепловой энергии простым языком!
Опубликовано 13 Окт 2013
Рубрика: Теплотехника | 117 комментариев
Человечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва,…
…энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.
Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.
Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.
Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С?.. Какая нужна мощность источника тепла, чтобы сделать это за 1 час?.. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!
Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов. Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!
Количество теплоты при различных физических процессах.
Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.
Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q, подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.
1. Твердое тело, имеющее температуру T1, нагреваем до температуры Tпл, затрачивая на этот процесс количество теплоты равное Q1.
2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2— Q1.
3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп, затрачивая на это количество теплоты равное Q3—Q2.
4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4—Q3.
5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2. При этом затраты количества теплоты составят Q5—Q4. (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)
Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5, переводя вещество через три агрегатных состояния.
Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5, пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до температуры Т1. Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.
Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.
Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.
Главные формулы теплопередачи.
Формулы очень просты.
Количество теплоты Q в Дж рассчитывается по формулам:
1. Со стороны потребления тепла, то есть со стороны нагрузки:
1.1. При нагревании (охлаждении):
Q=m*c*(Т2—Т1)
Здесь и далее:
m – масса вещества в кг
с – удельная теплоемкость вещества в Дж/(кг*К)
1.2. При плавлении (замерзании):
Q=m*λ
λ – удельная теплота плавления и кристаллизации вещества в Дж/кг
1.3. При кипении, испарении (конденсации):
Q=m*r
r – удельная теплота газообразования и конденсации вещества в Дж/кг
2. Со стороны производства тепла, то есть со стороны источника:
2.1. При сгорании топлива:
Q=m*q
q – удельная теплота сгорания топлива в Дж/кг
2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):
Q=t*I*U=t*R*I^2=(t/R)*U^2
t – время в с
I – действующее значение тока в А
U – действующее значение напряжения в В
R – сопротивление нагрузки в Ом
Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности (c, λ, r, q) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).
Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:
N=Q/t
Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.
В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…
Условия задачи:
В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)
Расчет выполним в программе MS Excel или в программе OOo Calc.
С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице «О блоге».
Исходные данные:
1. Названия веществ пишем:
в ячейку D3: Сталь
в ячейку E3: Лед
в ячейку F3: Лед/вода
в ячейку G3: Вода
в ячейку G3: Воздух
2. Названия процессов заносим:
в ячейки D4, E4, G4, G4: нагрев
в ячейку F4: таяние
3. Удельную теплоемкость веществ c в Дж/(кг*К) пишем для стали, льда, воды и воздуха соответственно
в ячейку D5: 460
в ячейку E5: 2110
в ячейку G5: 4190
в ячейку H5: 1005
4. Удельную теплоту плавления льда λ в Дж/кг вписываем
в ячейку F6: 330000
5. Массу веществ m в кг вписываем соответственно для стали и льда
в ячейку D7: 3000
в ячейку E7: 20
Так как при превращении льда в воду масса не изменяется, то
в ячейках F7 и G7: =E7=20
Массу воздуха находим произведением объема помещения на удельный вес
в ячейке H7: =24*15*7*1,23=3100
6. Время процессов t в мин пишем только один раз для стали
в ячейку D8: 60
Значения времени для нагрева льда, его плавления и нагрева получившейся воды рассчитываются из условия, что все эти три процесса должны уложиться в сумме за такое же время, какое отведено на нагрев металла. Считываем соответственно
в ячейке E8: =E12/(($E$12+$F$12+$G$12)/D8)=9,7
в ячейке F8: =F12/(($E$12+$F$12+$G$12)/D8)=41,0
в ячейке G8: =G12/(($E$12+$F$12+$G$12)/D8)=9,4
Воздух также должен прогреться за это же самое отведенное время, читаем
в ячейке H8: =D8=60,0
7. Начальную температуру всех веществ T1 в ˚C заносим
в ячейку D9: -37
в ячейку E9: -37
в ячейку F9: 0
в ячейку G9: 0
в ячейку H9: -37
8. Конечную температуру всех веществ T2 в ˚C заносим
в ячейку D10: 18
в ячейку E10: 0
в ячейку F10: 0
в ячейку G10: 18
в ячейку H10: 18
Думаю, вопросов по п.7 и п.8 быть недолжно.
Результаты расчетов:
9. Количество теплоты Q в КДж, необходимое для каждого из процессов рассчитываем
для нагрева стали в ячейке D12: =D7*D5*(D10-D9)/1000=75900
для нагрева льда в ячейке E12: =E7*E5*(E10-E9)/1000= 1561
для плавления льда в ячейке F12: =F7*F6/1000= 6600
для нагрева воды в ячейке G12: =G7*G5*(G10-G9)/1000= 1508
для нагрева воздуха в ячейке H12: =H7*H5*(H10-H9)/1000= 171330
Общее количество необходимой для всех процессов тепловой энергии считываем
в объединенной ячейке D13E13F13G13H13: =СУММ(D12:H12) = 256900
В ячейках D14, E14, F14, G14, H14, и объединенной ячейке D15E15F15G15H15 количество теплоты приведено в дугой единице измерения – в ГКал (в гигакалориях).
10. Тепловая мощность N в КВт, необходимая для каждого из процессов рассчитывается
для нагрева стали в ячейке D16: =D12/(D8*60)=21,083
для нагрева льда в ячейке E16: =E12/(E8*60)= 2,686
для плавления льда в ячейке F16: =F12/(F8*60)= 2,686
для нагрева воды в ячейке G16: =G12/(G8*60)= 2,686
для нагрева воздуха в ячейке H16: =H12/(H8*60)= 47,592
Суммарная тепловая мощность необходимая для выполнения всех процессов за время t рассчитывается
в объединенной ячейке D17E17F17G17H17: =D13/(D8*60) = 71,361
В ячейках D18, E18, F18, G18, H18, и объединенной ячейке D19E19F19G19H19 тепловая мощность приведена в дугой единице измерения – в Гкал/час.
На этом расчет в Excel завершен.
Выводы:
Обратите внимание, что для нагрева воздуха необходимо более чем в два раза больше затратить энергии, чем для нагрева такой же массы стали.
При нагреве воды затраты энергии в два раза больше, чем при нагреве льда. Процесс плавления многократно больше потребляет энергии, чем процесс нагрева (при небольшой разности температур).
Нагрев воды в десять раз затрачивает больше тепловой энергии, чем нагрев стали и в четыре раза больше, чем нагрев воздуха.
Мы вспомнили понятия «количество теплоты» и «тепловая мощность», рассмотрели фундаментальные формулы теплопередачи, разобрали практический пример. Надеюсь, что мой язык был прост и понятен.
Ссылка на скачивание файла: raschet-teplovoy-moshchnosti (xls 19,5KB).
Другие статьи автора блога
На главную
Статьи с близкой тематикой
Отзывы
Содержание
Зачем нужен расчет тепловой энергии
Расчет потребления тепловой энергии на отопление по объему здания
Годовой расчет расхода тепла на отопление
Снижение расхода теплоэнергии в квартире
Расчет тепловой энергии на отопление по площади
Измерение общих теплопотерь дома
Расчет теплопотерь через стены и перекрытия
Расчет количества поступающего тепла через окна
Коротко о главном
Каждую зиму жители сталкиваются с необходимостью отапливать свое жилье. Чтобы система отопления работала эффективно, должна быть применена методика расчета тепловой энергии на отопление. Эти вычисления помогут адаптировать систему обогрева под условия на улице и дома, сохранив нужное количество тепло в помещении.
Потери тепла
Зачем нужен расчет тепловой энергии
Среднее месячное значение расхода тепла в России приближенно к 0,9342 Гкал на 1 кв. м. В зависимости от погоды показатель в разных регионах может значительно отличаться.
1 Гкал равна 1162,2 кВт/ч. Чтобы нагреть 1 тонну воды на 1 градус, требуется 1 Гкал энергии.
Измерения в квартирах
В современных многоквартирных домах устанавливают счетчики, измеряющие количество затрачиваемой энергии в отопительный сезон. Они могут быть общедомовыми и индивидуальными для установки в квартире. При втором варианте потребуется проведение двух стояков – подающего и обратного – с разводкой коллекторной, горизонтальной.
Возможность установить теплосчетчик есть не всегда, тогда как считается тепловая энергия на отопление без него: по площади отапливаемого помещения.
Купить теплосчетчик можно в нашем интернет-магазине.
Измерения в домах и административных зданиях
Расчет тепла на отопление помещения позволяет получить следующие данные:
- почасовой расход топлива, м3/ч;
- расход топлива за год, м3/год;
- почасовой тепловой расход, Гкал/ч;
- тепловой расход за год, Гкал/год;
- требуемая мощность оборудования для обогрева.
Пример вычислений расхода энергии
Расчет потребления тепловой энергии на отопление по объему здания
Расчет потребления тепловой энергии на отопление по объему помещения можно произвести с учетом различных отрезков времени: например, за год или за час. Чтобы определить показатель потребления за час, нужно воспользоваться формулой: Qр.от = q x V (tв – tрн ) х 10-6, где
- Qр.от – часовое потребление энергии, Гкал/ч;
- q – удельное тепловое значение сооружения, м3°С;
- V – объем дома по наружному периметру;
- tв – температура в помещении;
- tрн – температура снаружи.
Годовой расчет расхода тепла на отопление
Как рассчитать тепловую энергию на отопление за год: использовать формулу Qгод.от = Zот х Qотр х (( Тв – Тсо)/( Тв – Тн)) х Ро, где
- Qгод.от – годовой расход энергии, Гкал/год;
- Qотр – максимальный расход ресурсов в течение часа, Гкал/ч;
- Zот – время работы отопительного оборудования в день, ч;
- Тв – температура внутри отапливаемого помещения;
- Тсо – среднее температура воздуха на улице за отопительный период;
- Тн – расчетная температура наружного воздуха для проектирования отопления и вентиляции;
- Po – продолжительность отопительного периода.
Снижение расхода теплоэнергии в квартире
Чтобы уменьшить затраты на энергию в квартирном здании, можно выполнить несколько действий.
Схема централизованного отопления
Дросселировать батареи
Снизится проходимость и температура радиаторов, потому и уменьшатся траты.
С появлением металлопластиковых труб понижение давления таким способом стало популярным. Металлическую трубу диаметром 3/4 дюйма меняют на металлопластиковую диаметром 20 мм. Ее внутреннее сечение составляет 16 мм. Диаметр можно дополнительно уменьшить переходным фитингом в 14 мм.
В обвязке батарей применяют и металлопластиковые трубы диаметром 16 мм, что оставляет в проходимости фитинга лишь 8 мм. Такое сужение и называют эффектом дросселирования. Он может приводить к большой разнице температур на каждом этаже здания.
Заказать установку радиаторов отопления можно в нашей компании. Чтобы ознакомиться со стоимостью работ и порядком оказания услуги и связаться со специалистом, перейдите в раздел «услуги».
Установить термостат
В целях экономии можно установить термостат. Его крепят на обратную трубу. Прибор контролирует температуру воздуха внутри помещения. При ее повышении выше допустимого значения расход теплоносителя снизится.
Расчет тепловой энергии на отопление по площади
Чтобы произвести расчет количества тепла на отопление помещения частного дома, необходимо учитывать тип используемого топлива:
- природный газ;
- дизельное топливо;
- сжиженный газ;
- угольная продукция;
- пеллеты;
- электричество.
Классификация энергетического топлива
Чтобы рассчитать расход и стоимость топлива, необходимо знать:
- общую площадь дома или части, которая будет отапливаться;
- удельный расход вентиляции и энергии за отопительный сезон.
Расчет потерь на вентиляцию и отопление
Существует формула, которая учитывает больше факторов, принимая во внимание и расход на вентиляцию: Qwnот=[Qwnгод -(Qбытгод+Qинсгод)vz]Bwn(1-ξ).
- Qотгод – расход энергии, кВт/ч;
- Qwnгод – количество теплопотери за отопительный сезон, кВт/ч;
- Qбытгод – бытовые поступления тепла за отопительный период, кВт/ч;
- Qинсгод – поступление энергии из внешних источников, таких как солнечный свет или фонари, кВт/ч;
- v – снижение поступлений тепла за счет тепловой инерции ограждений;
- z – коэффициент эффективности регулирования теплоподачи в системе;
- Bwn – дополнительный расход тепла, связанный с трубопроводами, которые проложены через неотапливаемые зоны, потреблением других приборов, зарадиаторными участками с повышенным температурным показателем в угловых участках;
- ξ – снижение теплопотребления за счет поквартирного контроля расхода.
Расчет теплопотерь
Коэффициент снижения поступлений тепла за счет тепловых свойств ограждений рассчитывают по формуле: v = 0,7+0,000025(ГСОП-1000). ГСОП – градусо-сутки за сезон.
ГСОП вычисляют по формуле: ГСОП – (tв – tот) * zот, в которой
- tв – температура внутри помещений;
- tот – среднесуточная температура воздуха снаружи;
- zот – продолжительность отопительного сезона.
Значения эффективности регулирования теплоподачи в системе (z)
- 0,5 – централизованное регулирование из котельной или теплопункта, отсутствие авторегуляторов и термостатов;
- 0,7 – система регуляторами на вводе с поправкой на внутренний температурный показатель, отсутствие термостатов;
- 0,85 – однотрубный контур с термостатами без регулировки на вводе;
- 0,9 – однотрубная система с авторегулировкой и термостатами, однотрубный контур с пофасадной регулировкой без термостатов, двухтрубный контур с термостатами без регулировки на вводе;
- 0,95 – двухтрубная система с авторегулировкой и термостатами;
- 1,0 – однотрубный контур с пофасадным регулированием и термостатическими приборами, однотрубный контур с поквартирной горизонтальной разводкой.
В видео приводят пример расчета теплопотерь
Дополнительный расход тепла (Bwn)
- 1,05 – здания с чердаками и подвальными помещениями, которые отапливаются, с поквартирными генераторами тепла;
- 1,07 – здания с чердаками и подвальными помещениями, которые отапливаются;
- 1,11 – сооружения башенного типа;
- 1,13 – протяженные здания с большим количеством секций.
Значение снижения теплопотребления (ξ)
- 0,1 – централизованные системы с измерением на котле или стояке;
- 0,15 – квартирные системы с счетчиком тепла для каждой квартиры.
Измерение общих теплопотерь дома
Общую теплопотерю дома определяют по формуле: Qтпгод=Qогргод + Qинф год:
- Qтпгод – теплопотери, кВт/ч;
- Qогргод – потери через стены за сезон;
- Qинфгод – теплопотери вентиляции с учетом инфильтрации (поступления воздуха снаружи) за сезон.
Расчет теплопотерь через стены и перекрытия
Трансмиссионные потери тепла, выходящего через ограждающие поверхности, вычисляют по формуле: Qогргод= 24*10-³*Kтр*ГСОП*Аогр.сум
- Qогргод – теплопотери, кВт/ч;
- Kтр – общий коэффициент передачи тепла через наружные стены помещения.
Модель для расчетов
Общий коэффициент передачи тепла через наружные стены помещения (Ктр)
Рассчитывают по формуле: Ктр=(nAст/Rпрп.ст+nAок/Rпрп.ок+nAдв/Rпрп.дв+nAпок/Rпрп.пок+nAчерд/Rпрп.черд+nAцок/Rпрп.цок+nAпр/Rпрп.пр)/Аогр.сум
- Ктр – общий коэффициент передачи тепла через наружные стены, Вт/(м2·°С);
- Aст – площадь помещения по наружному периметру;
- Rпрп.ст – сопротивление стен снаружи теплопередаче (исключение составляют проемы);
- Аок – площадь проемов (окна);
- Rпрп.ок – сопротивление окон и проемов теплопередаче;
- Адв – площадь наружных дверей;
- Rпрп.дв – сопротивление наружных дверей теплопередаче;
- Апокр – площадь совмещенных покрытий (например, эркеров);
- Rпрп.пок – сопротивление совмещенных покрытий теплопередаче;
- Ачерд – площадь чердачного перекрытия;
- Rпрп.черд – сопротивление чердачного перекрытия теплопередаче;
- Ацок – площадь цокольного перекрытия;
- Rпрп.цок – сопротивление цокольного перекрытия теплопередаче;
- Апр – площадь перекрытия над проездной частью и под эркерами;
- Rпрп.пр – сопротивление перекрытий над проездной частью и под эркерами теплопередаче;
- n – показатель положения наружных поверхностей по отношению к воздуху снаружи;
- Аогр.сум – сумма показателей площади всех наружных стен отапливаемого здания;
- ГСОП – градусо-сутки за сезон.
Ознакомиться с примером расчета тепловых характеристик можно при просмотре ролика
Для отапливаемых цокольных этажей или для проектов с полом по грунту значения Ацок и Rпрп.цок заменяют площадью и удельным сопротивлением теплопередаче стен, граничащих с грунтом, а также поверхности полов.
Показатель положения наружных поверхностей по отношению к воздуху снаружи (n)
- 1 – наружные поверхности, стены, перекрытия, контактирующие с воздухом снаружи;
- 0,9 – перекрытия над охлажденными подвальными помещениями и чердаками, граничащие с воздухом снаружи.
Для отапливаемых подвальных помещений и чердаков с разводкой отопительных систем и водоснабжения расчет проводят по формуле: n = (tв – tв*)/(tв – tнр), где
- tв – температура воздуха внутри;
- tв* – температура воздуха в подвале или на чердаке;
- tнр – температура воздуха снаружи.
Теплоотдача ограждающих поверхностей
Расчет количества поступающего тепла через окна
Чтобы вычислить количество тепла от света фонарей и солнечных лучей, проникающего в комнату через окна, нужно воспользоваться формулой: Qинсгод=τ1ок*t2ок(Аок1*I1+Аок2*I2+Аок3*I3+Aок4*I4)+τ1фон*τ2фон*Aфон*Iгор
- Qинсгод – количество тепла от солнечных лучей и фонарей, кВт/ч;
- τ1фон, τ1ок – относительное проникновение солнечных лучей по техпаспорту, если такого нет, мансардные окна и прочие проемы с уклоном свыше 45 градусов считают вертикальными окнами, менее 45 градусов – зенитными фонарями;
- t2фон, t2ок – уровень затенения проемов непрозрачными элементами;
- Aок4, Aок3, Аок2, Aок1 – площадь проемов фасада;
- Aфон – площадь проемов зенитных фонарей;
- I4, I3, I2, I1 – величина радиации при облачности по вертикальным сторонам здания;
- Iгор – величина радиации при облачности по горизонтальным поверхностям.
Тепловые потери в процентном отношении
Коротко о главном
Расчеты затрат тепловой энергии для систем отопления включают в себя вычисления количества тепла от солнечных лучей, проникающих внутрь помещения, тепловой отдачи ограждающих поверхностей, тепловых затрат на вентиляцию. Для подведения подсчетов можно использовать стандартные значения, прописанные в тех. паспорте здания, а также формулы.
Проводили ли вы расчеты тепловой энергии на отопление? Какие результаты получили?
На практике часто приходится проводить различные тепловые расчёты. Для увеличения эргономичности тепловой системы жилых домов измеряют количество тепловой энергии, рассеиваемой через вентиляцию, окна, расщелины.
Для расчёта количества тепловой энергии нужно измерить массу (m), разность температуры в начале и в конце процесса
Δt=tкон−tнач
, а также знать теплоёмкость (c) данного вещества.
Чтобы нагреть некоторое вещество массой (1) кг на (1°C), необходимо затратить количество теплоты, равное удельной теплоёмкости (c) данного вещества.
Количество теплоты, получаемое веществом при нагревании, прямо пропорционально удельной теплоёмкости вещества, его массе и разности температур, то есть:
Q=cmΔt
или
Данная формула даёт возможность найти и выделяемую при охлаждении вещества теплоту.
Чтобы рассчитать количество теплоты, необходимое для нагревания вещества (или выделяемое им при охлаждении), следует удельную теплоёмкость вещества умножить на его массу и на разность между конечной и начальной температурой вещества.
Так как конечная температура остывающего вещества меньше его начальной температуры:
то изменение температуры оказывается отрицательным числом:
Значит, и выделяемое веществом количество теплоты выражается отрицательным числом:
Последний факт обозначает не рост, а убыль внутренней энергии вещества.
Физика под удельной теплоемкостью понимает количество теплоты, которое термодинамическое вещество или система способно поглотить до повышения температуры.
Определение из учебника говорит, что это количество тепла, необходимое для создания температуры при нагревании.
Количество теплоты
Единица измерения — джоуль. Другой распространенной формой измерения является использование калорий.
Обозначается латинской буквой Q.
Удельная теплоемкость вещества
Это физическая величина, выражающая количество тепла, необходимое веществу на единицу массы для повышения температуры на одну единицу.
Таким образом, удельная теплоёмкость является свойством вещества, поскольку его значение является репрезентативным для каждого вещества, каждое из которых, в свою очередь, имеет различные значения в зависимости от того, в каком состоянии оно находится (жидкое, твердое или газообразное).
Удельная теплоёмкость обозначается маленькой буквой c и измеряется в Дж/кг∗°С, представляет собой коэффициент повышения температуры в одной единице всей системы или всей массы вещества.
Кроме того, удельная теплоёмкость меняется в зависимости от физического состояния вещества, особенно в случае твердых частиц и газов, поскольку его молекулярная структура влияет на теплопередачу в системе частиц. То же самое относится и к условиям атмосферного давления: чем выше давление, тем ниже удельное тепло.
Основной состав удельной теплоты вещества должен быть с = С/m, т. е. удельная теплота равна соотношению калорийности и массы. Однако когда это применяется к данному изменению температуры, говорят о средней удельной теплоемкости, которая рассчитывается на основе следующей формулы:
где:
Q — передача тепловой энергии между системой и средой (Дж);
m — масса системы (кг);
Δt или (t2 — t1) — повышение температуры, которой она подвергается (°C).
Формула для нахождения количества теплоты Q:
Q = c∗m(t2 — t1)
Чем выше удельная теплоёмкость вещества, тем больше тепловой энергии потребуется, чтобы его температура повысилась. Например, для нагрева воды (своды = 4200 Дж/кг∗°С) потребуется больше тепловой энергии, чем для нагрева свинца (ссвинца = 140 Дж/кг∗°С).
Уравнение теплового баланса:
Q отданное + Q полученное = 0.
Ниже представлена таблица значений удельной теплоёмкости некоторых веществ:
Примеры решения задач
Следующие задачи покажут примеры расчета необходимого количества теплоты.
Задача №1
Сколько теплоты нужно, чтобы изо льда массой 2 кг, взятого при температуре -10°С, получить пар при 100°С?
Решение:
Ответ: чтобы изо льда массой 2 кг, взятого при температуре -10°С, получить пар при 100°С, нужно взять 6,162 мегаджоулей теплоты.
Задача №2
В железный котёл массой 5 кг налита вода массой 10 кг. Какое количество теплоты нужно передать котлу с водой для изменения их температуры от 10 до 100°С?
Начнем решение и отметим, что нагреваться будет и котёл, и вода. Разница температур составит 1000С — 100С = 900С. Т. е. и температура котла изменится на 90 градусов, и температура воды также изменится на 90 градусов.
Количества теплоты, которые получили оба объекта (Q1
– для котла и Q2 — для воды), не будут одинаковыми. Мы найдем общее количество теплоты по формуле теплового баланса Q = Q1 + Q2.