Как найти теплоту плавления вещества по графику

1. Какой тип ответа: расчёт физической величины.

2. Что проверяет задание: сформированность умения правильно вычислять значение величины при анализе явлений с использованием законов и формул.

3. Какие разделы физики определяют содержание задания: тепловые явления.

4Какой уровень сложности задания: базовый.

5Как оценивается задание:

  • (1) балл — ответ записан в той форме, которая указана в инструкции по выполнению задания, и полностью совпадает с эталоном ответа;
  • (0) баллов — выставляется во всех других случаях.

6. Какова форма ответа: запиши в бланк ответов  (1) целое число или конечную десятичную дробь с учётом
указанных в ответе единиц измерения (без пробелов, запятых и других дополнительных символов; каждая цифра в отдельной клеточке).

Пример:

найди значение удельной теплоёмкости вещества, учитывая информацию из диаграммы (рис. (1)), где показаны значения количества теплоты в процессах нагревания (5) кг вещества на (50)(°C) и плавления (500) г вещества при соответствующей температуре плавления. Физические характеристики диаграммы: (Q_1) (=) (10) кДж.

7_3.png

Рис. (1). Диаграмма

Как решить задание из примера?

Дано Решение

(m_н) (=) (5) кг;

(m_п) (=) (500) г

(=) (500·10^{-3}) кг;

(Delta t) (=) (50)(°C);

(Q_1) (=) (10) кДж (=)

(=) (10·10^{3}) Дж

1. Физическая модель задачи:

— процесс нагревания вещества массой (m_н), на который расходуется количество теплоты (3Q_1) (=) (30·10^3) Дж (рис. (2)).

7_4.png

Рис. (2). Количество теплоты, необходимое для нагревания вещества

Обрати внимание!

В задании представлена избыточная информация: 1) изображение столбца в диаграмме (голубой цвет), характеризующего процесс плавления вещества и, соответственно, удельную теплоту плавления вещества; 2) масса вещества (m_п), которое плавится при температуре плавления.

2. Физический закон:

— количество теплоты, необходимое для нагревания вещества:

(Q=m_нcDelta t.)  ((1))

3. Математическое решение задачи:

— выразим (c) из формулы ((1)) с учётом значения количества теплоты (3Q_1):

(c=frac{3Q_1}{m_нDelta t};)  ((2))

— проверяем размерность формулы ((2)):

([c]=frac{Дж}{кг·°C};)

— проводим вычисления:

(c=frac{30·10^3}{5·50}=120) Дж/(кг · °C)

Найти: (c) Правильный ответ: (120) Дж/(кг · °C)

Обрати внимание!

Решение расчётных физических задач оформляется в следующей последовательности.

  1. Физическая модель задачи, которая описывает явление согласно условию задания (это позволяет во втором пункте соотнести конкретное физическое явление с физическими законами (закономерностями), которые его объясняют).

  2. Физические законы (запись функциональных зависимостей между физическими величинами, которые представляют собой физические характеристики физического явления).

  3. Математическое решение задачи (в данном пункте проводятся математические процедуры (решение линейных и нелинейных уравнений, нахождение неизвестного множителя из пропорции и др.) с формулами из второго пункта). В данном пункте также проводится проверка размерности конечной формулы, по которой вычисляется искомая физическая величина, где данная процедура позволяет: а) доказать правильность выведенной формулы по соответствию её единицам измерения искомой физической величины; б) запомнить формулы не в формате «зубрёжки», а применяя каждый раз к решению разных физических задач.

Типичные ошибки

  • Неверное определение степени изменения (увеличение или уменьшение) внутренней энергии вещества при следующих процессах, происходящих с веществом (например, твёрдым телом): 1) нагревание твёрдого тела; 2) плавление; 3) нагревание жидкости; 4) кипение; 5) нагревание пара; 6) охлаждение пара; 7) конденсация; 8) охлаждение жидкости; 9) кристаллизация (отвердевание); 10) охлаждение твёрдого тела.

    Внутренняя энергия вещества увеличивается в процессах (1)–(5) и уменьшается в процессах (6)–(10).

  • Неверный перевод множителей размерностей при использовании в расчётах физических величин, значения которых указаны на графике, диаграмме.

Источники:

Рис. 1. Диаграмма. © ЯКласс.

Рис. 2. Количество теплоты, необходимое для нагревания вещества. © ЯКласс.

Тема: График
плавления и отвердевания. Удельная теплота плавления.

Цели: научить учащихся понимать суть
таких тепловых явлений, как плавление и кристаллизация; изучить особенности в
поведении вещества при переходе из твердого состояния в жидкое и обратно;
определить способ расчета количества теплоты в изучаемых процессах.

Образовательная:

·        
усваивают знания
о понятии “удельная теплота плавления”;

·        
формируют
умения читать график плавления и отвердевания кристаллических тел;

Развивающая:

·        
развивают
познавательный интерес, внимание, логическое мышление;

Воспитательная:

·        
воспитывают
инициативность, требовательность к себе, уважительное отношение к учителю и
ученикам;

Тип урока: комбинированный.

Методы урока: словесный, наглядный.

Ход урока

                                          
I.           
Орг.
момент.

Приветствует учащихся, создает доброжелательный
настрой.

Отмечает отсутствующих. Проверка готовности учащихся к
уроку.

                                       
II.           
Актуализация
опорных знаний

Прием «Продолжить
предложение»

·        
Плавлением
называют …

·        
Температурой
плавления вещества называют …

·        
Кристаллизацией
называют …

·        
Температурой
кристаллизации называют …

                                    
III.           
Сообщение
темы и целей урока

Запишите
тему урока: «График плавления и отвердевания. Удельная теплота плавления».  Задача
урока: усвоить суть понятия «удельная теплота плавления»; научиться читать
график плавления и отвердевания кристаллических тел.

                                    
IV.           
Изучение
нового материала

Прием «Мини-исследование»

Учитель поясняет, что плавление
кристаллического тела – довольно сложный процесс. Для его изучения используют
график зависимости температуры кристаллического тела от времени его нагревания.
На нем по горизонтальной оси отложено время, а по вертикальной – температура
вещества (льда).

Вопросы исследования:

·        
Какой температура была изначально?

·        
При какой температуре лед начал плавиться?

·        
Менялась ли температура в течение всего времени
плавления льда?

·        
После чего температура начала повышаться?

·        
При какой температуре начался процесс
кристаллизации?

Удельная теплота плавления

Вся энергия, которую получает
кристаллическое тело после того, как оно уже нагрето до температуры плавления,
расходуется на разрушение кристалла. В связи с этим температура тела перестает
повышаться. Физическая величина, показывающая, какое количество теплоты
необходимо сообщить кристаллическому телу массой 1 кг, чтобы при температуре
плавления полностью перевести его в жидкое состояние, называется удельной
теплотой плавления.
Удельную теплоту плавления обозначают
 (греч. лямбда). Ее единица
1 Дж/кг. При температуре плавления внутренняя энергия вещества в жидком
состоянии больше внутренней энергии такой же массы вещества в твердом
состоянии. Чтобы вычислить количество теплоты
Q, необходимое
для плавления кристаллического тела массой
m, взятого при
его температуре плавления и нормальном атмосферном давлении, нужно удельную
теплоту плавления
 умножить на массу тела m:

Следовательно: ; m = Q/.

Прием «Мини-исследование»

Учитель предлагает учащимся исследовать в
учебнике таблицу с показаниями удельной теплоты плавления некоторых веществ и
ответить на вопросы:

·        
Какое вещество имеет наибольшую удельную теплоту
плавления?

·        
Какое вещество имеет наименьшую удельную теплоту
плавления?

·        
У каких веществ больше удельная теплота плавления:
золота или серебра; меди или олова; парафина или льда?

                                        
V.           
Закрепление
изученного материала

Прием «Рисунок»

Используя информацию в
графическом виде, ученикам предлагается пояснить понятие «удельная теплота
плавления».

                                    
VI.           
Решение
заданий и упражнений

1.     
Для приготовления
чая турист положил в котелок лед массой 2 кг, температурой 0 0С.
Какое количество теплоты необходимо для превращения этого льда в кипяток при
температуре 100 0С? Энергию, израсходованную на нагревание котелка,
не учитывать.

2.     
Тающий
лед принесли в помещение, температура которого 0 0С. Будет ли лед
таять?

3.     
В ведре
с водой плавают куски льда. Общая температура воды и льда 0 0С.
Растает ли лед или вода замерзнет? От чего это зависит?

4.     
Сколько
энергии нужно затратить, чтобы расплавить лед массой 4 кг при температуре 0 0С?

                                 
VII.           
Рефлексия

·       Все ли было понятно на
уроке? Что вызвало трудности?

·       Что меня больше всего
впечатлило на уроке?

·       Какой информацией,
полученной на уроке, мне хочется поделиться с другими людьми?

·       Достиг ли я поставленных
целей урока?

·       Доволен ли я своей работой
на уроке?

                              
VIII.           
Оценивание

Как вы работали на уроке? Как вы себя оцениваете?

Выставляет
оценки за урок, с комментариями

IX               
Домашнее
задание:
прочитать
§14 – 15, выучить основные понятия, задание 2 (2).

Фазовые переходы

  • Темы кодификатора ЕГЭ: изменение агрегатных состояний вещества, плавление и кристаллизация, испарение и конденсация, кипение жидкости, изменение энергии в фазовых переходах.

  • Плавление и кристаллизация

  • График плавления

  • Удельная теплота плавления

  • График кристаллизации

  • Парообразование и конденсация

  • Кипение

  • График кипения

  • График конденсации

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: изменение агрегатных состояний вещества, плавление и кристаллизация, испарение и конденсация, кипение жидкости, изменение энергии в фазовых переходах.

Лёд, вода и водяной пар — примеры трёх агрегатных состояний вещества: твёрдого, жидкого и газообразного. В каком именно агрегатном состоянии находится данное вещество — зависит от его температуры и других внешних условий, в которых оно находится.

При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы — изменения агрегатных состояний вещества тела. Нас будут интересовать следующие фазовые переходы.

Плавление (твёрдое тело rightarrow жидкость) и кристаллизация (жидкость rightarrow твёрдое тело).
Парообразование (жидкость rightarrow пар) и конденсация (пар rightarrow жидкость).

к оглавлению ▴

Плавление и кристаллизация

Большинство твёрдых тел являются кристаллическими, т.е. имеют кристаллическую решётку — строго определённое, периодически повторяющееся в пространстве расположение своих частиц.

Частицы (атомы или молекулы) кристаллического твёрдого тела совершают тепловые колебания вблизи фиксированных положений равновесия — узлов кристаллической решётки.

Например, узлы кристаллической решётки поваренной соли rm NaCl — это вершины кубических клеток «трёхмерной клетчатой бумаги» (см. рис. 1, на котором шарики большего размера обозначают атомы хлора (изображение с сайта en.wikipedia.org.)); если дать испариться воде из раствора соли, то оставшаяся соль будет нагромождением маленьких кубиков.

Рис. 1. Кристаллическая решётка rm NaCl

Плавлением называется превращение кристаллического твёрдого тела в жидкость. Расплавить можно любое тело — для этого нужно нагреть его до температуры плавления, которая зависит лишь от вещества тела, но не от его формы или размеров. Температуру плавления данного вещества можно определить из таблиц.

Наоборот, если охлаждать жидкость, то рано или поздно она перейдёт в твёрдое состояние. Превращение жидкости в кристаллическое твёрдое тело называется кристаллизацией или отвердеванием. Таким образом, плавление и кристаллизация являются взаимно обратными процессами.

Температура, при которой жикость кристаллизуется, называется температурой кристаллизации. Оказывается, что температура кристаллизации равна температуре плавления: при данной температуре могут протекать оба процесса. Так, при 0^{circ} rm C лёд плавится, а вода кристаллизуется; что именно происходит в каждом конкретном случае — зависит от внешних условий (например, подводится ли тепло к веществу или отводится от него).

Как происходят плавление и кристаллизация? Каков их механизм? Для уяснения сути этих процессов рассмотрим графики зависимости температуры тела от времени при его нагревании и охлаждении — так называемые графики плавления и кристаллизации.

к оглавлению ▴

График плавления

Начнём с графика плавления (рис. 2). Пусть в начальный момент времени (точка A на графике) тело является кристаллическим и имеет некоторую температуру t_A.

Рис. 2. График плавления

Затем к телу начинает подводиться тепло (скажем, тело поместили в плавильную печь), и температура тела повышается до величины t_n — температуры плавления данного вещества. Это участок AB графика.

На участке AB тело получает количество теплоты

Q = c_{T}m(t_n - t_A),

где c_{T} — удельная теплоёмкость вещества твёрдого тела, m — масса тела.

При достижении температуры плавления (в точке B) ситуация качественно меняется. Несмотря на то, что тепло продолжает подводиться, температура тела остаётся неизменной. На участке BC происходит плавление тела — его постепенный переход из твёрдого состояния в жидкое. Внутри участка BC мы имеем смесь твёрдого вещества и жидкости, и чем ближе к точке C, тем меньше остаётся твёрдого вещества и тем больше появляется жидкости. Наконец, в точке C от исходного твёрдого тела не осталось ничего: оно полностью превратилось в жидкость.

Участок CD соответствует дальнейшему нагреванию жидкости (или, как говорят, расплава). На этом участке жидкость поглощает количество теплоты

Q = cm(t_D-t_n),

где c — удельная теплоёмкость жидкости.

Но нас сейчас больше всего интересует BC — участок фазового перехода. Почему не меняется температура смеси на этом участке? Тепло-то подводится!

Вернёмся назад, к началу процесса нагревания. Повышение температуры твёрдого тела на участке AB есть результат возрастания интенсивности колебаний его частиц в узлах кристаллической решётки: подводимое тепло идёт на увеличение кинетической энергии частиц тела (на самом деле некоторая часть подводимого тепла расходуется на совершение работы по увеличению средних расстояний между частицами — как мы знаем, тела при нагревании расширяются. Однако эта часть столь мала, что её можно не принимать во внимание.).

Кристаллическая решётка расшатывается всё сильнее и сильнее, и при температуре плавления размах колебаний достигает той предельной величины, при которой силы притяжения между частицами ещё способны обеспечивать их упорядоченное расположение друг относительно друга. Твёрдое тело начинает «трещать по швам», и дальнейшее нагревание разрушает кристаллическую решётку — так начинается плавление на участке BC.

С этого момента всё подводимое тепло идёт на совершение работы по разрыву связей, удерживающих частицы в узлах кристаллической решётки, т.е. на увеличение потенциальной энергии частиц. Кинетическая энергия частиц при этом остаётся прежней, так что температура тела не меняется. В точке C кристаллическая структура исчезает полностью, разрушать больше нечего, и подводимое тепло снова идёт на увеличение кинетической энергии частиц — на нагревание расплава.

к оглавлению ▴

Удельная теплота плавления

Итак, для превращения твёрдого тела в жидкость мало довести его до температуры плавления. Необходимо дополнительно (уже при температуре плавления) сообщить телу некоторое количество теплоты Q_n для полного разрушения кристаллической решётки (т.е. для прохождения участка BC).

Это количество теплоты идёт на увеличение потенциальной энергии взаимодействия частиц. Следовательно, внутренняя энергия расплава в точке C больше внутренней энергии твёрдого тела в точке B на величину Q_n.

Опыт показывает, что величина Q_n прямо пропорциональна массе тела:

Q_n = lambda m.

Коэффициент пропорциональности lambda не зависит от формы и размеров тела и является характеристикой вещества. Он называется удельной теплотой плавления вещества. Удельную теплоту плавления данного вещества можно найти в таблицах.

Удельная теплота плавления численно равна количеству теплоты, необходимому для превращения в жидкость одного килограмма данного кристаллического вещества, доведённого до температуры плавления.

Так, удельная теплота плавления льда равна 340 кДж/кг, свинца — 25 кДж/кг. Мы видим, что для разрушения кристаллической решётки льда требуется почти в 14 раз больше энергии! Лёд относится к веществам с большой удельной теплотой плавления и поэтому весной тает не сразу (природа приняла свои меры: обладай лёд такой же удельной теплотой плавления, как и свинец, вся масса льда и снега таяла бы с первыми оттепелями, затопляя всё вокруг).

к оглавлению ▴

График кристаллизации

Теперь перейдём к рассмотрению кристаллизации — процесса, обратного плавлению. Начинаем с точки D предыдущего рисунка. Предположим, что в точке D нагревание расплава прекратилось (печку выключили и расплав выставили на воздух). Дальнейшее изменение температуры расплава представлено на рис. (3).

Рис. 3. График кристаллизации

Жидкость остывает (участок DE), пока её температура не достигнет температуры кристаллизации, которая совпадает с температурой плавления t_n.

С этого момента температура расплава меняться перестаёт, хотя тепло по-прежнему уходит от него в окружающую среду. На участке EF происходит кристаллизация расплава — его постепенный переход в твёрдое состояние. Внутри участка EF мы снова имеем смесь твёрдой и жидкой фаз, и чем ближе к точке F, тем больше становится твёрдого вещества и тем меньше — жидкости.Наконец,вточке F жидкостинеостаётсявовсе—онаполностьюкристаллизовалась.

Следующий участок FG соответствует дальнейшему остыванию твёрдого тела, возникшего в результате кристаллизации.

Нас опять-таки интересует участок фазового перехода EF: почему температура остаётся неизменной, несмотря на уход тепла?

Снова вернёмся в точку D. После прекращения подачи тепла температура расплава понижается, так как его частицы постепенно теряют кинетическую энергию в результате соударений с молекулами окружающей среды и излучения электромагнитных волн.

Когда температура расплава понизится до температуры кристаллизации (точка E), его частицы замедлятся настолько, что силы притяжения окажутся в состоянии «развернуть» их должным образом и придать им строго определённую взаимную ориентацию в пространстве. Так возникнут условия для зарождения кристаллической решётки, и она действительно начнёт формироваться благодаря дальнейшему уходу энергии из расплава в окружающее пространство.

Одновременно начнётся встречный процесс выделения энергии: когда частицы занимают свои места в узлах кристаллической решётки, их потенциальная энергия резко уменьшается, за счёт чего увеличивается их кинетическая энергия — кристаллизующаяся жидкость является источником тепла (часто у проруби можно увидеть сидящих птиц. Они там греются!). Выделяющееся в ходе кристаллизации тепло в точности компенсирует потерю тепла в окружающую среду, и потому температура на участке EF не меняется.

В точке F расплав исчезает, а вместе с завершением кристаллизации исчезает и этот внутренний «генератор» тепла. Вследствие продолжающегося рассеяния энергии во внешнюю среду понижение температуры возобновится, но только остывать уже будет образовавшееся твёрдое тело (участок FG).

Как показывает опыт, при кристаллизации на участке EF выделяется ровно то же самое количество теплоты Q=lambda m, которое было поглощено при плавлении на участке BC.

к оглавлению ▴

Парообразование и конденсация

Парообразование — это переход жидкости в газообразное состояние (в пар). Существует два способа парообразования: испарение и кипение.

Испарением называется парообразование, которое происходит при любой температуре со свободной поверхности жидкости. Как вы помните из листка «Насыщенный пар», причиной испарения является вылет из жидкости наиболее быстрых молекул, которые способны преодолеть силы межмолекулярного притяжения. Эти молекулы и образуют пар над поверхностью жидкости.

Разные жидкости испаряются с разными скоростями: чем больше силы притяжения молекул друг к другу — тем меньшее число молекул в единицу времени окажутся в состоянии их преодолеть и вылететь наружу, и тем меньше скорость испарения. Быстро испаряются эфир, ацетон, спирт (их иногда называют летучими жидкостями), медленнее — вода, намного медленнее воды испаряются масло и ртуть.

Скорость испарения растёт с повышением температуры (в жару бельё высохнет скорее), поскольку увеличивается средняя кинетическая энергия молекул жидкости, и тем самым возрастает число быстрых молекул, способных покинуть её пределы.

Скорость испарения зависит от площади поверхности жидкости: чем больше площадь, тем большее число молекул получают доступ к поверхности, и испарение идёт быстрее (вот почему при развешивании белья его тщательно расправляют).

Одновременно с испарением наблюдается и обратный процесс: молекулы пара, совершая беспорядочное движение над поверхностью жидкости, частично возвращаются обратно в жидкость. Превращение пара в жидкость называется конденсацией.

Конденсация замедляет испарение жидкости. Так, в сухом воздухе бельё высохнет быстрее, чем во влажном. Быстрее оно высохнет и на ветру: пар сносится ветром, и испарение идёт более интенсивно

В некоторых ситуациях скорость конденсации может оказаться равной скорости испарения. Тогда оба процесса компенсируют друг друга и наступает динамическое равновесие: из плотно закупоренной бутылки жидкость не улетучивается годами, а над поверхностью жидкости в этом случае находится насыщенный пар.

Конденсацию водяного пара в атмосфере мы постоянно наблюдаем в виде облаков, дождей и выпадающей по утрам росы; именно испарение и конденсация обеспечивают круговорот воды в природе, поддерживая жизнь на Земле.

Поскольку испарение — это уход из жидкости самых быстрых молекул, в процессе испарения средняя кинетическая энергия молекул жидкости уменьшается, т.е. жидкость остывает. Вам хорошо знакомо ощущение прохлады и порой даже зябкости (особенно при ветре), когда выходишь из воды: вода, испаряясь по всей поверхности тела, уносит тепло, ветер же ускоряет процесс испарения (nеперь понятно, зачем мы дуем на горячий чай. Кстати сказать, ещё лучше при этом втягивать воздух в себя, поскольку на поверхность чая тогда приходит сухой окружающий воздух, а не влажный воздух из наших лёгких ;-)).

Ту же прохладу можно почувствовать, если провести по руке кусочком ваты, смоченным в летучем растворителе (скажем, в ацетоне или жидкости для снятия лака). В сорокаградусную жару благодаря усиленному испарению влаги через поры нашего тела мы сохраняем свою температуру на уровне нормальной; не будь этого терморегулирующего механизма, в такую жару мы бы попросту погибли.

Наоборот, в процессе конденсации жидкость нагревается: молекулы пара при возвращении в жидкость разгоняются силами притяжения со стороны находящихся поблизости молекул жидкости, в результате чего средняя кинетическая энергия молекул жидкости увеличивается (сравните это явление с выделением энергии при кристаллизации расплава!).

к оглавлению ▴

Кипение

Кипение — это парообразование, происходящее по всему объёму жидкости.

Кипение оказывается возможным потому, что в жидкости всегда растворено какое-то количество воздуха, попавшего туда в результате диффузии. При нагревании жидкости этот воздух расширяется, пузырьки воздуха постепенно увеличиваются в размерах и становятся видимы невооружённым глазом (в кастрюле с водой они осаждают дно и стенки). Внутри воздушных пузырьков находится насыщенный пар, давление которого, как вы помните, быстро растёт с повышением температуры.

Чем крупнее становятся пузырьки, тем большая действует на них архимедова сила, и определённого момента начинается отрыв и всплытие пузырьков. Поднимаясь вверх, пузырьки попадают в менее нагретые слои жидкости; пар в них конденсируется, и пузырьки сжимаются опять. Схлопывание пузырьков вызывает знакомый нам шум, предшествующий закипанию чайника. Наконец, с течением времени вся жидкость равномерно прогревается, пузырьки достигают поверхности и лопаются, выбрасывая наружу воздух и пар — шум сменяется бульканьем, жидкость кипит.

Пузырьки, таким образом, служат «проводниками» пара изнутри жидкости на её поверхность. При кипении наряду с обычным испарением идёт превращение жидкости в пар по всему объёму — испарение внутрь воздушных пузырьков с последующим выводом пара наружу. Вот почему кипящая жидкость улетучивается очень быстро: чайник, из которого вода испарялась бы много дней, выкипит за полчаса.

В отличие от испарения, происходящего при любой температуре, жидкость начинает кипеть только при достижении температуры кипения — именно той температуры, при которой пузырьки воздуха оказываются в состоянии всплыть и добраться до поверхности. При температуре кипения давление насыщенного пара становится равно внешнему давлению на жидкость (в частности, атмосферному давлению). Соответственно, чем больше внешнее давление, тем при более высокой температуре начнётся кипение.

При нормальном атмосферном давлении (1 атм или 10^5 Па) температура кипения воды равна 100^{circ} rm C. Поэтому давление насыщенного водяного пара при температуре 100^{circ} rm C равно 10^5 Па. Этот факт необходимо знать для решения задач — часто он считается известным по умолчанию.

На вершине Эльбруса атмосферное давление равно 0,5 атм, и вода там закипит при температуре 82^{circ} rm C. А под давлением 15 атм вода начнёт кипеть только при 200^{circ} rm C.

Температура кипения (при нормальном атмосферном давлении) является строго определённой для данной жидкости величиной (температуры кипения, приводимые в таблицах учебников и справочников — это температуры кипения химически чистых жидкостей. Наличие в жидкости примесей может изменять температуру кипения. Скажем, водопроводная вода содержит растворённый хлор и некоторые соли, поэтому её температура кипения при нормальном атмосферном давлении может несколько отличаться от 100^{circ} rm C). Так, спирт кипит при 78^{circ} rm C, эфир — при 35^{circ} rm C, ртуть — при 357^{circ} rm C. Обратите внимание: чем более летучей является жидкость, тем ниже её температура кипения. В таблице температур кипения мы видим также, что кислород кипит при -183^{circ} rm C. Значит, при обычных температурах кислород — это газ!

Мы знаем, что если чайник снять с огня, то кипение тут же прекратится — процесс кипения требует непрерывного подвода тепла. Вместе с тем, температура воды в чайнике после закипания перестаёт меняться, всё время оставаясь равной 100^{circ} rm C. Куда же при этом девается подводимое тепло?

Ситуация аналогична процессу плавления: тепло идёт на увеличение потенциальной энергии молекул. В данном случае — на совершение работы по удалению молекул на такие расстояния, что силы притяжения окажутся неспособными удерживать молекулы неподалёку друг от друга, и жидкость будет переходить в газообразное состояние.

к оглавлению ▴

График кипения

Рассмотрим графическое представление процесса нагревания жидкости — так называемый график кипения (рис. 4).

Рис. 4. График кипения

Участок AB предшествует началу кипения. На участке BC жидкость кипит, её масса уменьшается. В точке C жидкость выкипает полностью.

Чтобы пройти участок BC, т.е. чтобы жидкость, доведённую до температуры кипения, полностью превратить в пар, к ней нужно подвести некоторое количество теплоты Q_n. Опыт показывает, что данное количество теплоты прямо пропорционально массе жидкости:

Q_n = Lm.

Коэффициент пропорциональности L называется удельной теплотой парообразования жидкости (при температуре кипения). Удельная теплота парообразования численно равна количеству теплоты, которое нужно подвести к 1 кг жидкости, взятой при температуре кипения, чтобы полностью превратить её в пар.

Так, при 100^{circ} rm C удельная теплота парообразования воды равна 2300 кДж/кг. Интересно сравнить её с удельной теплотой плавления льда (340 кДж/кг) — удельная теплота парообразования почти в семь раз больше! Это и не удивительно: ведь для плавления льда нужно лишь разрушить упорядоченное расположение молекул воды в узлах кристаллической решётки; при этом расстояния между молекулами остаются примерно теми же. А вот для превращения воды в пар нужно совершить куда большую работу по разрыву всех связей между молекулами и удалению молекул на значительные расстояния друг от друга.

к оглавлению ▴

График конденсации

Процесс конденсации пара и последующего остывания жидкости выглядит на графике симметрично процессу нагревания и кипения. Вот соответствующий график конденсации для случая стоградусного водяного пара, наиболее часто встречающегося в задачах (рис. 5).

Рис. 5. График конденсации

В точке C имеем водяной пар при 100^{circ} rm C. На участке CD идёт конденсация; внутри этого участка — смесь пара и воды при 100^{circ} rm C. В точке D пара больше нет, имеется лишь вода при 100^{circ} rm C. Участок DE — остывание этой воды.

Опыт показывает, что при конденсации пара массы m (т. е. при прохождении участка CD) выделяется ровно то же самое количество теплоты Q = Lm, которое было потрачено на превращение в пар жидкости массы m при данной температуре.

Давайте ради интереса сравним следующие количества теплоты:

Q_1, которое выделяется при конденсации 1 г водяного пара;
Q_2, которое выделяется при остывании получившейся стоградусной воды до температуры, скажем, 20^{circ} rm C.

Имеем:

Q_1 = Lm = 2300000 cdot 0,001 = 2300 Дж;
Q_2 = cm Delta t = 4200 cdot 0,001 cdot 80 = 336 Дж.

Эти числа наглядно показывают, что ожог паром гораздо страшнее ожога кипятком. При попадании на кожу кипятка выделяется «всего лишь» Q_2 (кипяток остывает). А вот при ожоге паром сначала выделится на порядок большее количество теплоты Q_1 (пар конденсируется), образуется стоградусная вода, после чего добавится та же величина Q_2 при остывании этой воды.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Фазовые переходы» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Понравилась статья? Поделить с друзьями:
  • Как найти папку с кэшем на компьютер
  • Gta 5 как найти части космического корабля
  • Как найти угол трапеции описанной около окружности
  • Space engine как найти черную дыру
  • Как найти brawl stars в google play