Как найти теплоту сгорания дизельного топлива

Удельная теплота сгорания топлива и горючих материалов - таблицы

В таблицах представлена массовая удельная теплота сгорания топлива (жидкого, твердого и газообразного) и некоторых других горючих материалов. Рассмотрено такое топливо, как: уголь, дрова, кокс, торф, керосин, нефть, спирт, бензин, природный газ и т. д.

Перечень таблиц:

  1. Удельная теплота сгорания твердого топлива
  2. Удельная теплота сгорания жидкого топлива
  3. Удельная теплота сгорания газообразного топлива
  4. Удельная теплота сгорания некоторых горючих материалов

При экзотермической реакции окисления топлива его химическая энергия переходит в тепловую с выделением определенного количества теплоты. Образующуюся тепловую энергию принято называть теплотой сгорания топлива. Она зависит от его химического состава, влажности и является основным показателем топлива. Теплота сгорания топлива, отнесенная на 1 кг массы или 1 м3 объема образует массовую или объемную удельную теплоты сгорания.

Удельной теплотой сгорания топлива называется количество теплоты, выделяемое при полном сгорании единицы массы или объема твердого, жидкого или газообразного топлива. В Международной системе единиц эта величина измеряется в Дж/кг или Дж/м3.

Удельную теплоту сгорания топлива можно определить экспериментально или вычислить аналитически. Экспериментальные методы определения теплотворной способности основаны на практическом измерении количества теплоты, выделившейся при горении топлива, например в калориметре с термостатом и бомбой для сжигания. Для топлива с известным химическим составом удельную теплоту сгорания можно определить по формуле Менделеева.

Различают высшую и низшую удельные теплоты сгорания. Высшая теплота сгорания равна максимальному количеству теплоты, выделяемому при полном сгорании топлива, с учетом тепла затраченного на испарение влаги, содержащейся в топливе. Низшая теплота сгорания меньше значения высшей на величину теплоты конденсации водяного пара, который образуется из влаги топлива и водорода органической массы, превращающегося при горении в воду.

Для определения показателей качества топлива, а также в теплотехнических расчетах обычно используют низшую удельную теплоту сгорания, которая является важнейшей тепловой и эксплуатационной характеристикой топлива и приведена в таблицах ниже.

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)

В таблице представлены значения удельной теплоты сгорания сухого твердого топлива в размерности МДж/кг. Топливо в таблице расположено по названию в алфавитном порядке.

Наибольшей теплотворной способностью из рассмотренных твердых видов топлива обладает коксующийся уголь — его удельная теплота сгорания равна 36,3 МДж/кг (или в единицах СИ 36,3·106 Дж/кг). Кроме того высокая теплота сгорания свойственна каменному углю, антрациту, древесному углю и углю бурому.

К топливам с низкой энергоэффективностью можно отнести древесину, дрова, порох, фрезторф, горючие сланцы. Например, удельная теплота сгорания дров составляет 8,4…12,5, а пороха — всего 3,8 МДж/кг.

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)

Топливо Удельная теплота сгорания, МДж/кг
Антрацит 26,8…34,8
Древесные гранулы (пиллеты) 18,5
Дрова сухие 8,4…11
Дрова березовые сухие 12,5
Кокс газовый 26,9
Кокс доменный 30,4
Полукокс 27,3
Порох 3,8
Сланец 4,6…9
Сланцы горючие 5,9…15
Твердое ракетное топливо 4,2…10,5
Торф 16,3
Торф волокнистый 21,8
Торф фрезерный 8,1…10,5
Торфяная крошка 10,8
Уголь бурый 13…25
Уголь бурый (брикеты) 20,2
Уголь бурый (пыль) 25
Уголь донецкий 19,7…24
Уголь древесный 31,5…34,4
Уголь каменный 27
Уголь коксующийся 36,3
Уголь кузнецкий 22,8…25,1
Уголь челябинский 12,8
Уголь экибастузский 16,7
Фрезторф 8,1
Шлак 27,5

Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)

Приведена таблица удельной теплоты сгорания жидкого топлива и некоторых других органических жидкостей. Следует отметить, что высоким тепловыделением при сгорании отличаются такие топлива, как: бензин, авиационный керосин, дизельное топливо и нефть.

Удельная теплота сгорания спирта и ацетона существенно ниже традиционных моторных топлив. Кроме того, относительно низким значением теплоты сгорания обладает жидкое ракетное топливо и этиленгликоль — при полном сгорании 1 кг этих углеводородов выделится количество теплоты, равное 9,2 и 13,3 МДж, соответственно.

Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)

Топливо Удельная теплота сгорания, МДж/кг
Ацетон 31,4
Бензин А-72 (ГОСТ 2084-67) 44,2
Бензин авиационный Б-70 (ГОСТ 1012-72) 44,1
Бензин АИ-93 (ГОСТ 2084-67) 43,6
Бензол 40,6
Дизельное топливо зимнее (ГОСТ 305-73) 43,6
Дизельное топливо летнее (ГОСТ 305-73) 43,4
Жидкое ракетное топливо (керосин + жидкий кислород) 9,2
Керосин авиационный 42,9
Керосин осветительный (ГОСТ 4753-68) 43,7
Ксилол 43,2
Мазут высокосернистый 39
Мазут малосернистый 40,5
Мазут низкосернистый 41,7
Мазут сернистый 39,6
Метиловый спирт (метанол) 21,1
н-Бутиловый спирт 36,8
Нефть 43,5…46
Нефть метановая 21,5
Толуол 40,9
Уайт-спирит (ГОСТ 313452) 44
Этиленгликоль 13,3
Этиловый спирт (этанол) 30,6

Удельная теплота сгорания газообразного топлива и горючих газов

Представлена таблица удельной теплоты сгорания газообразного топлива и некоторых других горючих газов в размерности МДж/кг. Из рассмотренных газов наибольшей массовой удельной теплотой сгорания отличается водород. При полном сгорании одного килограмма этого газа выделится 119,83 МДж тепла. Также высокой теплотворной способностью обладает такое топливо, как природный газ — удельная теплота сгорания природного газа равна 41…49 МДж/кг (у чистого метана 50 МДж/кг).

Удельная теплота сгорания газообразного топлива и горючих газов (водород, природный газ, метан)

Топливо Удельная теплота сгорания, МДж/кг
1-Бутен 45,3
Аммиак 18,6
Ацетилен 48,3
Водород 119,83
Водород, смесь с метаном (50% H2 и 50% CH4 по массе) 85
Водород, смесь с метаном и оксидом углерода (33-33-33% по массе) 60
Водород, смесь с оксидом углерода (50% H2 50% CO2 по массе) 65
Газ доменных печей 3
Газ коксовых печей 38,5
Газ сжиженный углеводородный СУГ (пропан-бутан) 43,8
Изобутан 45,6
Метан 50
н-Бутан 45,7
н-Гексан 45,1
н-Пентан 45,4
Попутный газ 40,6…43
Природный газ 41…49
Пропадиен 46,3
Пропан 46,3
Пропилен 45,8
Пропилен, смесь с водородом и окисью углерода (90%-9%-1% по массе) 52
Этан 47,5
Этилен 47,2

Удельная теплота сгорания некоторых горючих материалов

Приведена таблица удельной теплоты сгорания некоторых горючих материалов (стройматериалы, древесина, бумага, пластик, солома, резина и т. д.). Следует отметить материалы с высоким тепловыделением при сгорании. К таким материалам можно отнести: каучук различных типов, пенополистирол (пенопласт), полипропилен и полиэтилен.

Удельная теплота сгорания некоторых горючих материалов

Топливо Удельная теплота сгорания, МДж/кг
Бумага 17,6
Дерматин 21,5
Древесина (бруски влажностью 14 %) 13,8
Древесина в штабелях 16,6
Древесина дубовая 19,9
Древесина еловая 20,3
Древесина зеленая 6,3
Древесина сосновая 20,9
Капрон 31,1
Карболитовые изделия 26,9
Картон 16,5
Каучук бутадиенстирольный СКС-30АР 43,9
Каучук натуральный 44,8
Каучук синтетический 40,2
Каучук СКС 43,9
Каучук хлоропреновый 28
Линолеум поливинилхлоридный 14,3
Линолеум поливинилхлоридный двухслойный 17,9
Линолеум поливинилхлоридный на войлочной основе 16,6
Линолеум поливинилхлоридный на теплой основе 17,6
Линолеум поливинилхлоридный на тканевой основе 20,3
Линолеум резиновый (релин) 27,2
Парафин твердый 11,2
Пенопласт ПХВ-1 19,5
Пенопласт ФС-7 24,4
Пенопласт ФФ 31,4
Пенополистирол ПСБ-С 41,6
Пенополиуретан 24,3
Плита древесноволокнистая 20,9
Поливинилхлорид (ПВХ) 20,7
Поликарбонат 31
Полипропилен 45,7
Полистирол 39
Полиэтилен высокого давления 47
Полиэтилен низкого давления 46,7
Резина 33,5
Рубероид 29,5
Сажа канальная 28,3
Сено 16,7
Солома 17
Стекло органическое (оргстекло) 27,7
Текстолит 20,9
Толь 16
Тротил 15
Хлопок 17,5
Целлюлоза 16,4
Шерсть и шерстяные волокна 23,1

Источники:

  1. Абрютин А. А. и др. Тепловой расчет котлов. Нормативный метод.
  2. ГОСТ 147-2013 Топливо твердое минеральное. Определение высшей теплоты сгорания и расчет низшей теплоты сгорания.
  3. ГОСТ 21261-91 Нефтепродукты. Метод определения высшей теплоты сгорания и вычисление низшей теплоты сгорания.
  4. ГОСТ 22667-82 Газы горючие природные. Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе.
  5. ГОСТ 31369-2008 Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава.
  6. Земский Г. Т. Огнеопасные свойства неорганических и органических материалов: справочник М.: ВНИИПО, 2016 — 970 с.

1.1. Элементарный состав твердого, газообразного и жидкого топлива

В базовой и промышленной энергетике для получения электрической и тепловой энергии используется в основном топливо органического происхождения.

Все виды органического топлива (горючие) представляют собой углеводородные соединения, в которые входят небольшие количества других веществ.

К твердому топливу относят: антрацит, каменный и бурый уголь, торф, дрова, сланцы, отходы лесопильных заводов и деревообделочных цехов, а также растительные отходы сельскохозяйственного производства — солому, костру, лузгу и др.

К жидкому топливу относят нефть, а также различные продукты ее переработки: бензин, керосин, лигроин, разнообразные масла и остаточный продукт нефтепереработки нефти — мазут.

До 70 % и более видов жидкого топлива используется на транспорте — авиационном, автомобильном, специальном водном, железнодорожном (тепловозы), около 30 % сжигается в виде мазута на тепловых электростанциях и в промышленных котельных.

К газообразному топливу относят природный газ, добываемый из недр земли, попутный нефтяной газ, газообразные отходы металлургического производства (коксовый и доменный газ), крекинговый газ, а также генераторный газ, получаемый искусственным путем из твердого топлива в особых газогенераторных установках.

Топливо в том виде, в каком оно поступает для сжигания в топки котлов или в двигатели внутреннего сгорания, называется рабочим.

В общем случае в состав рабочего (твердого или жидкого) топлива входят углерод С, водород Н, кислород О, азот N и летучая сера S, а также негорючие минеральные примеси — зола А и влага W.

Для рабочей массы топлива имеет место равенство:

Cp+ Hp+ Op+ Np+ Sp+ Ap+ Wp= 100 %, (1.1)

где СР, НР, ОР и т. д. — элементы рабочего топлива, % общей массы топлива.

Влага, содержащаяся в топливе совместно с золой, называется балластом топлива.

В естественных видах ископаемого твердого топлива встречается сера трех разновидностей:

1) органическая Sо, связанная с другими элементами топлива С, Н, N и О в виде сложных органических соединений;

2) колчеданная Sк в виде пирита, колчедана FeS2;

3) сульфатная Sсульф в виде солей серной кислоты (гипс, FeSО4и др.). Сульфаты представляют собой высокие окислы серы, поэтому находящаяся в них сера гореть не может. Присутствующие в топливе органическая и колчеданная серы сгорают, образуя токсичный сернистый ангидрид SO2и (в небольших количествах) еще более токсичный серный ангидрид SO3. Выброс их с продуктами сгорания вызывает загрязнение воздушного бассейна.

Органическая и колчеданная сера образуют вместе летучую горючую серу Sл. Общее содержание серы в топливе

Sобщ = Sо + Sк + Sсульф = Sл + Sсульф. (1.2)

В горючую часть топлива входит только летучая сера, остальная сера в горении участия не принимает и может быть отнесена к балласту топлива.

Для правильного представления тепловых свойств топлива вводится понятие горючей массы, для которой

Сг+ Нг+ Ог+ Nг+ Sгл= 100 %, (1.3)

где индекс вверху показывает, что процентный состав отдельных элементов отнесен к горючей массе.

Название «горючая масса» носит условный характер, так как действительно горючими ее элементами являются только углерод, водород и сера. Углерод — преобладающий компонент твердых и жидких топлив, в топливах его обычно содержится от 50 до 95 %, тогда как содержание водорода Нг колеблется в пределах от 1 до 11 %, а серы Sг — от 0 до 8 %. Горючую массу можно характеризовать как топливо, не содержащее золы и в абсолютно сухом состоянии. Содержание азота в горючей массе твердых топлив обычно составляет 1—2 % по массе. Несмотря на столь малое количество, азот является весьма вредным компонентом, поскольку при сгорании азотсодержащих соединений в высокотемпературных топках образуются сильнотоксичные оксиды NО и NO2(они образуются также и из атмосферного азота, но в

меньшей степени).

Для топлива, содержащего большое количество влаги (бурый уголь, торф, дрова, некоторые растительные отходы), в некоторых случаях удобно использовать понятие сухой массы, т. е. характеризовать состав абсолютно сухого топлива суммой элементов Сс, Нс, Ос, Nс, Sс и Ас. При этом

Сс + Нс + Ос + Nс + Sс + Ас = 100 %, (1.4)

где индекс показывает, что процентный состав отдельных элементов отнесен к сухой массе.

Для взаимного пересчета массы топлива в соответствии с понятием о массах топлива служат формулы, объединенные в табл. 1.1.

Таблица 1.1. Формулы для пересчета состава топлива с одной массы на другую

Заданная масса топлива

Искомая масса топлива, %

рабочая

сухая

горючая

Рабочая

1

Сухая

1

Горючая

1

Зольность топлива. Золой называют твердый негорючий остаток, остающийся после сжигания топлива в атмосфере воздуха. Зола может быть в виде сыпучей массы с плотностью в среднем 600 кг/м3 и в виде сплавленных пластин и кусков, называемых шлаками, с плотностью до 800 кг/м3.

В состав золы большинства видов твердого топлива входят: глинозем Al2O3, кремниевая кислота SiO2, известь СаО, магнезия MgO, щелочи Na2O, окислы железа FeO и Fe2О3.

Влажность твердого топлива. Влажность твердого топлива Wрдоходит

до 50 % и более и определяет экономическую целесообразность использования данного горючего материала и возможность его сжигания. Влага снижает температуру в топке и увеличивает объем дымовых газов. Увеличенный объем дымовых газов требует дополнительной энергии на их удаление.

Очевидно, что влага является балластной примесью, так как уменьшает тепловую ценность исходного топлива. Кроме того, часть теплоты, выделяемой топливом при его сгорании, расходуется на испарение влаги.

Летучие вещества. При нагревании твердого топлива без доступа воздуха его органическая масса разлагается, в результате чего образуются газы, водяные и смоляные пары и углесодержащий остаток. Суммарное количество выделяющихся летучих веществ увеличивается с увеличением температуры и времени выдержки, этот процесс в основном заканчивается при 700—800 оС. Выход летучих веществ Vг, в процентах на горючую массу, является важнейшей характеристикой горючей массы твердого топлива и уменьшается по мере увеличения его возраста. Чем больше выход летучих веществ, т.е. чем больше топлива превращается при нагревании в горючий газ, тем проще зажечь это топливо и легче поддерживать устойчивое горение. Органическая часть древесины и горючих сланцев при нагревании без доступа воздуха почти целиком переходит в летучие вещества

(Vг= 85÷90%), в то время как у антрацитов Vг= 3÷4 %. Именно большой выход летучих веществ определяет хорошую горючесть древесины.

Состав некоторых видов твердого топлива представлен в табл. 1.2.

Таблица 1.2. Примерный состав и теплотехнические характеристики горючей массы основных видов твердого топлива

Топливо

Состав горючей массы, %

Выход летучих веществ, Vг, %

Низшая теплота сгорания, МДж/кг

Сг

Sг

Нг

Oг

Nг

Дрова

51

6,1

42,2

0,6

85

19

Торф

58

0,3

6

33,6

2,5

70

8,12

Горючий сланец

60—75

4—13

7—10

12—17

0,3—1,2

80—90

7,66

Бурый уголь

64—78

0,3—6

3,8—6,3

15,26

0,6—1,6

40—60

27

Каменный уголь

75—90

0,5—6

4—6

2—13

1—2,7

9—50

33

Полуантрацит

90—94

0,5—3

3—4

2—5

1

6—9

34

Антрацит

93—94

2—3

2

1—2

1

3—4

33

Жидкое топливо. Практически все виды жидкого топлива получают путем переработки нефти (бензин, керосин, дизельное топливо и мазут). Мазут представляет собой сложную смесь жидких углеводородов, в состав которых входят в основном углерод (Ср= 84÷86 %) и водород (Нр= 10÷12 %); Ор + Nр= 1÷2 %, содержание воды и зольность не превышают 0,2—1,5%.

Мазуты, полученные из нефти ряда месторождений, могут содержать много серы (до 4,5—5%), что резко усложняет защиту окружающей среды при их сжигании.

Характеристики основных видов жидкого топлива приведены в табл. 1.3. Из указанных выше видов жидкого топлива в промышленных и котельных печах сжигаются только топочные мазуты, которые классифицируются по степени их вязкости: М20, М40, М60, М80, М100 и М120 (цифры в указанных марках мазута означают условную вязкость в градусах Энглера).

Для транспортных установок применяют так называемый мазут флотский марок Ф5 и Ф12.

В табл. 1.4 приведены характеристики топочных и флотских мазутов.

Газообразное топливо. Газообразное топливо по сравнению с другими видами топлива имеет ряд существенных преимуществ: сгорает при небольшом избытке воздуха, образуя продукты полного горения без дыма и копоти; не дает твердых остатков; удобно для транспортировки по газопроводам на большие расстояния и позволяет простейшими средствами осуществлять сжигание в установках самых различных конструкций и мощностей. Газообразное топливо делится на естественное и искусственное. Естественное топливо в свою очередь делится на природное и нефтепромысловое.

Таблица 1.3. Характеристики некоторых видов жидкого топлива, получаемого из нефти

Топливо

Состав горючей массы, %

Зольность сухого топлива Ас, %

Влага рабочего топлива Wр, %

Низшая теплота сгорания рабочего топлива, МДж/кг

углерод Сг

водород Нг

сера Sг

кислород и азот Oг + Nг

Бензин

85

14,9

0,05

0,05

0

0

43,8

Керосин

86

13,7

0,2

0,1

0

0

43

Дизельное

86,3

13,3

0,3

0,1

Следы

Следы

42,4

Солярное

86,5

12,8

0,3

0,4

0,02

Следы

42

Моторное

86,5

12,6

0,4

0,5

0,05

1,5

41,5

Мазут:

малосернистый

86,5

12,5

0,5

0,5

0,1

1

41,3

сернистый

85

11,8

2,5

0,7

0,15

1

40,2

многосернистый

84

11,5

3,5

0,5

0,1

1

40

Таблица 1.4. Основные характеристики котельных мазутов

Показатель

Нормы по маркам мазута

флотского

топочного

Ф5

Ф12

40

100

200

Вязкость (условная), оВУ, не более:

при 50 °С

5

12

при 80 °С

8

15,5

при 100 °С

6,5—9,5

Температура застывания °С, не выше

мазута

–5

–8

+10

+25

+ 36

мазута из высокопарафиновых нефтей

+25

+42

+42

Температура вспышки, °С, не ниже, при

определении в тигле:

закрытом

80

90

открытом

90

110

140

Природный газ получают из чисто газовых месторождений, где он выбрасывается из недр земли под давлением, доходящим иногда до 100 атм и более. Основным его компонентом является метан СН4, кроме того, в газе разных месторождений содержатся небольшие количества водорода Н2, азота N2, высших углеводородов СnНm, оксида (СО) и диоксида (СO2) углерода. В табл. 1.5 представлены характеристики горючих газов, входящих в состав газообразного топлива.

Таблица 1.5. Характеристика горючих газов, входящих в состав газообразного топлива

Газ

Химическая формула

Низшая теплота сгорания 1 м3 газа Qнс

Плотность газа r, кг/м3, при нормальных условиях

Удельный объем, м3/кг

Теоретическая температура горения, °С

МДж/м3

ккал/м3

Водород

Н2

10,8

2 580

0,09

11,112

Метан

СН4

35,82

8 555

0,717

1,4

1 980

Этан

С2Н6

63,75

15 226

1,342

0,746

2 150

Пропан

С3Н8

91,25

21 795

1,967

1,51

Бутан

С4Н10

118,65

28 338

2,593

0,385

2 080

Пентан

C5H12

146,08

34 890

3,218

0,321

2 090

Этилен

С2Н4

59,06

14 107

1,261

2 200

Пропилен

С3Н6

86,00

20 541

1,915

2 270

Бутилен

C4H8

113,51

27 111

2,372

2 100

Оксид углерода

СО

12,64

3 018

1,25

0,8

Сероводород

H2S

23,38

5 585

1,5392

0,650

1900

При добыче нефти выделяется так называемый попутный газ, содержащий меньше метана, чем природный, но больше высших углеводородов и поэтому выделяющий при сгорании больше теплоты. Проблема полного его использования сейчас весьма актуальна.

К искусственным газам относят доменный газ, являющийся продуктом при выплавке чугуна на металлургических заводах; коксовый, образующийся при получении кокса в коксовых батареях; светильный, получаемый при сухой перегонке угля; генераторный, получаемый в газогенераторах.

Коксовый и доменный газ используют главным образом на месте в доменном и других цехах металлургического завода.

В табл. 1.6 представлены состав и теплота сгорания некоторых видов газообразного топлива.

Теплота сгорания топлива. Основной характеристикой топлива является так называемая теплота сгорания. Теплотой сгорания твердого и жидкого топлива называется количество тепла, кДж, выделяемое 1 кг топлива при полном его сгорании. Теплоту сгорания обозначают буквой Q и измеряют в килоджоулях на килограмм (кДж/кг) [в системе МКГСС в килокаллориях на килограмм (ккал/кг)].

Теплоту сгорания газообразного топлива относят обычно к 1 м3, взятому при нормальных условиях (0 °С, 760 мм рт.ст.), и измеряют в килоджоулях на метр кубический (кДж/м3).

Таблица 1.6. Состав и теплота сгорания основных горючих газов

Газы

Состав сухого газа, % по объему

Низшая теплота сгорания газа Qнс , МДж/м3

СН4

Н2

СО

СmHn

O2

СО2

S

N2

Природный

Коксовый (очищенный)

Доменный

Сжиженный (ориентировочно)

94,9

22,5

0,3

4

57,5

2,7

6,8

28

3,8

1,9

0,8

0,4

2,3

10,2

0,4

0,3

0,9

7,8

58,5

36,7

16,6

4,0

88,5

Пропан 79, этан 6, Н — изобутан 11

Теплота сгорания зависит от химического состава топлива и условий его сжигания.

В соответствии с понятием органической, горючей и других масс топлива она может быть отнесена к той или другой из этих масс. Наибольший практический интерес представляет теплота сгорания рабочей массы топлива Qнр.

Низшей теплотой сгорания Qнр рабочего топлива называют тепло, выделяемое при полном сгорании 1 кг топлива, за вычетом тепла, затраченного на испарение как влаги, содержащейся в топливе, так и влаги, образующейся от сгорания водорода.

Теплоту сгорания топлива определяют по формулам, учитывающим, что углерод С, водород Н и сера S, участвующие в горении, выделяют определенное количество тепла.

Для определения Qнр используют формулу Д.И. Менделеева, которая дает достаточно точные результаты для самых разнообразных видов топлива.

Формула для определения Qнр, кДж/кг, твердого и жидкого топлива имеет вид

Qнр = 338 Ср+ 1025 Нр– 108,5 (Ор– Sр)– 25 Wр, (1.5)

где коэффициенты выражают теплоту сгорания отдельных горючих элементов, деленную на 100.

Низшую теплоту сгорания сухого газообразного топлива определяют как сумму произведений теплот сгорания горючих газов на их объемное содержание в смеси, кДж/м3:

Qнр = 127 СО + 10 Н2 + 358 СН4 + 591С2Н6 + 911 С3Н8 + 234 Н2S. (1.6)

Условное топливо. Большая разница в теплоте сгорания различных видов топлива затрудняет в некоторых случаях проведение сравнительных расчетов, например, при выявлении запасов топлива, при оценке целесообразности применения разных сортов топлива и пр. Поэтому принято понятие условного топлива. Условным называется такое топливо, теплота сгорания 1 кг или 1 м3 которого равна 29330 кДж (Qусл).

Для перевода действительного топлива в условное пользуются соотношением (безразмерным коэффициентом):

Эк= Qнр /29330 (в системе МКГСС —Эк= Qнр/7000), (1.7)

где Эк — калорийный эквивалент, указывающий какая часть теплоты сгорания условного топлива соответствует низшей теплоте сгорания рассматриваемого топлива (табл. 1.7).

Таблица 1.7. Калорийные эквиваленты различных видов топлива

Вид топлива

Низшая теплота сгорания Qнр, кДж/кг

Калорийный эквивалент

Эк=Qнр/Qусл

Твердое топливо

Дрова смешанные

12 580

0,43

Торф фрезерный

8460

0,29

Бурый уголь (Подмосковный бассейн)

10760

0,37

Бурый уголь (Назаровское месторождение)

13020

0,44

Антрацит АШ (Донецкий бассейн)

24240

0,83

Сланцы эстонские

10340

0,35

Жидкое топливо

Нефть сырая

43000

1,47

Мазут М-100 (многосернистый)

40030

1,37

Мазут М-100 (малосернистый)

40820

1,39

Газообразное топливо *

Природный газ

34860

1,65

Доменный газ

3770

0,1

Коксовый газ

18000

1,21

Генераторный водяной

10030

0,3

Сжиженный газ (технический пропан)

93750

3,2

* Теплота сгорания газообразного топлива, кДж/м3, при нормальных условиях.

Расход условного топлива

Вусл= B Qнр /Qусл , (1.8)

где В — расход рассматриваемого топлива; Qнр — теплота сгорания топлива.

1.2. Расчеты горения топлива

При тепловом расчете топливосжигающих установок (паровых и водогрейных котлов, промышленных огневых печей, двигателей внутреннего

сгорания), а также при обработке результатов их испытаний определяют следующие характеристики и величины:

• теоретический и действительный расходы воздуха V0 и Vд, необходимые для сгорания 1 кг твердого и жидкого топлива или 1 м3 газообразного топлива;

• состав и объем продуктов сгорания Vг (дымовых газов);

• энтальпию дымовых газов при требующихся температурах и коэффициентах избытка воздуха Тг.

Для полного сгорания топлива требуется некоторый избыток воздуха против теоретического расхода. Избыток воздуха характеризуется так называемым коэффициентом избытка aт (иногда называемым коэффициентом расхода воздуха). Он зависит от способа сжигания топлива, качества смесеобразования топлива с воздухом и ряда других факторов.

Коэффициент избытка воздуха представляет собой отношение действительного расхода воздуха к теоретическому, т. е.

aт= Vд/V0. (1.9)

При полном сгорании дымовые газы (продукты сгорания) состоят из СО2 и SО2, получившихся при сгорании углерода и летучей серы, водяного пара, образующегося при испарении влаги топлива и сгорании его водорода, азота, подводимого в топку (камеру сгорания) с воздухом, и, наконец, кислорода, не использованного при горении.

Объем продуктов сгорания определяется по формуле

Vг= VCO2 + VSO2+ VH2O+ VN2+ VO2. (1.10)

При проведении химического анализа дымовых газов содержание СО2 и SO2 определяется совместно, поэтому в расчетные формулы вводится сумма количества СО2 и SO2, обозначаемая символом RO2, тогда

Vг= VRO2+ VN2+ VO2+ VH2O= Vс. г+ VH2O. (1.11)

где Vс. г — объем сухих дымовых газов:

Vс. г= VRO2+ VN2+ VO2. (1.12)

В табл. 1.8 приведены расчетные формулы для определения объемов воздуха и продуктов полного сгорания для твердых, жидких и газообразных видов топлива. В этих формулах Ср, Нр, …; СО, Н2, СН4, … — содержание соответствующих элементов и компонентов в рабочем топливе, %; aт— коэффициент избытка воздуха; dв влагосодержание сухого воздуха, г/м3 (обычно принимается 10 г/м3).

В случае отсутствия элементарного состава сжигаемого топлива при известном значении Qнр и Wр можно пользоваться эмпирическими формулами
табл. 1.9.

Основой тепловых расчетов топливоиспользующих устройств является энтальпия продуктов сгорания, которую принято рассчитывать на единицу количества топлива, из которого получились эти продукты.

Таблица 1.8. Расчетные формулы для определения объемов воздуха и продуктов полного сгорания при нормальных условиях

Определяемые величины

Для твердого и жидкого топлива, м3/кг

Для газообразного топлива, м33

Теоретически необходимое количество воздуха

V0=[0,0889(Ср+ 0,375Sр)+ 0,2665HP – 0,033Ор]*(1 + 0,00124dв)

V0= 0,0476[0,5СО+ 0,5Н2+1,5H2S + 2CH4+ ∑(m + n/4)CmHn— O2](1 + 0,00124dв)

Действительное количество воздуха

Vд= aтV0

Количество продуктов полного сгорания

VCO2= 0,0187 + Cp;

VH2O= 0,112Hp+ 0,00124WP+ 0,0124Vдdв;

VSO2= 0,07 Sp ;

VO2= 0,21(aт— 1)V0;

VN2= 0,008Np + 0,79Vд

VCO2=(СО + CО2+ СН4+ ∑mCmHn)0,01;

VH2O=(H2+ H2S + 2CH4+ CmHn+ 0,124Vдdв)0,01;

VSO2= 0,01 H2S;

VO2= 0,21 (aт+ l) VO; VN2=(N2+ 79Vд)0,01

Состав продуктов сгорания, %

Vг= VCO2+ VH2O+ VSO2+ VO2+ VN2

СО2=(VCO2/ Vг)100 и т.д.

Таблица 1.9. Эмпирические формулы для определения V0и Vг, м3/кг или м33 при нормальных условиях

Топливо

Теоретически необходимое количество воздуха

Действительное количество продуктов сгорания

Дрова

Уголь

Жидкое топливо

Газообразное топливо с Qнр< 12 МДж/м3

То же с Qнр> 12 МДж/м3

Коксодоменная печь

V0= 4,66 (1 – Wp/1000)

V0 = 0,24 Qнр+ 0,5

V0= 0,2 Qнр+ 2

V0= 0,21 Qнр

V0 = 0,26 Qнр— 0,25

V0 = 0,24 Qнр— 0,2

Vг= 5,3 — 4,055Wp/1000 +(a — 1)V0

Vг= 0,21Qнр+ 1,65 +(a — 1)V0

Vг= 0,265 Qнр+(-1)V0

Vг= 0,17 Qнр+ 1 +(a — 1)V0

Vг= 0,27 Qнр+ 0,25 +(- 1)V0

Vг= 0,225 ×+ 0,765 + (a — 1)V0

Примечание: Qнр — в МДж/кг или МДж/м3 при нормальных условиях (1 ккал = 4,187 кДж).

Энтальпия продуктов сгорания вычисляется как произведение их объема при нормальных условиях на объемную теплоемкость при постоянном давлении и на температуру, кДж/кг или кДж/м3:

Iг = Vгсгt, (1.13)

где t — температура, оС; Vг —полный объем продуктов сгорания, м3/кг или м33, на единицу топлива; сг — средняя в диапазоне температур 0 — t оС теплоемкость продуктов сгорания, кДж/(кг× оС) или кДж/(м3× оС).

Расчет энтальпии продуктов сгорания, кДж/кг или кДж/м3, производится по формуле

Iг= VCO2(cϑ)CO2+ VSO2(cϑ)SO2+VH2O(cϑ)H2O+VN2(cϑ)N2+VO2, (1.14)

где VCO2, VSO2, VH2O, VN2, VO2— объемы продуктов полного сгорания, определяемые по табл. 1.8; (cϑ)CO2, (cϑ)SO2, (cϑ)H2O,(cϑ) — энтальпии газов, определяемые по температуре (табл. 1.10).

Таблица 1.10. Энтальпия газов и воздуха при различных температурах и постоянном давлении 101 кН/м2 (760 мм рт. ст.), кДж/м3

Температура,°С

(cϑ)CO2

(cϑ)H2O

Сухой воздух

(cϑ)N2

(cϑ)O2

(cϑ)H2

(cϑ)CO

(cϑ)SO2

0

0

0

0

0

0

0

0

0

100

171

150

130

130

132,3

129,2

130,2

182

200

360,6

302,4

261,9

261,6

267,2

259,6

261,5

379,4

300

563,9

418,7

395,7

394,6

409,4

390,6

395,7

589,5

400

777,1

623,4

533

530,1

551,4

521,7

532,2

810,2

500

1001,1

600,2

672,4

667,8

699,6

654

671

1037,9

600

1236,4

964,3

814,7

389,4

850,8

785,9

802,2

1272,4

700

1475,1

1143

959

950,9

1004,5

919,5

960,7

1510,7

800

1718,8

1328,9

1106,9

1098,7

1160,5

1086,9

1110,3

1751,8

900

1967,5

1526,8

1259,4

1247,7

1320,2

1245,3

1261,1

1997,6

1000

2219,5

1721

1412,3

1399,3

1479,7

1330,2

1414,4

2243,8

Энтальпию Iгопределяют для нескольких значений ϑ и a. На основании этих подсчетов строят кривые зависимости Iгот ϑ для нескольких a, по которым можно определить объемную энтальпию дымовых газов при заданных температуре и коэффициенте избытка воздуха.

Теплотой
сгорания топлива называют то количество
теплоты, которое выделяется при полном
сгорании объемной или массовой единицы
топлива.

Различают
высшую Н0
и низшую Нu
теплоту
сгорания топлива.

Под
высшей
теплотой сгорания

понимается то количество теплоты,
которое выделяется при полном сгорании
топлива, включая теплоту конденсации
водяных паров при охлаждения продуктов
сгорания.

Под
низшей
теплотой сгорания

понимается количество теплоты, которое
выделяется при полном сгорания топлива,
но без учета теплоты конденсации водяного
пара. Нu,
меньше высшей теплоты сгорания Н0
на величину скрытой теплоты парообразования
воды. Так как в двигателях внутреннего
сгорания выпуск отработавших газов
происходит при температуре выше
температуры конденсации водяного пара,
то для практической оценки тепловой
ценности топлива обычно служит низшая
теплота сгорания топлива.

Если
известен элементный состав жидкого
топлива, то для при- ближенного определения
его низшей теплоты сгорания (МДж/кг)
обычно пользуются формулой Д. И. Менделеева

Нu
= 33,91С+125,60Н — 10,89 (О—S) – 2,51 (9Н +W),
(3.22)

где
W
— количество водяных паров в продуктах
сгорания массовой или объемной единицы
топлива.

Для
газообразного топлива его низшая теплота
сгорания (МДж/м3)

Нu’=
12,8СО+ 10,8Н2
+ 35,7Н4
+ 56,0С2Н2
+ 59,5С2Н4
+ 63,3С2Н6
+

90,9С3Н8+
119,7С4Н10
+ 146,2С5Н12
(3.23)

Примерные
значения низшей теплоты сгорания
автотракторных топлив Нu,
приведены ниже:

Топливо……
Бензин Дизельное
Природный газ Пропан
Бутан

Нu
(
МДж/кг(м3))
44,0
42,5 35,0
85,5 112,0

Для
более полной характеристики тепловой
оценки топлива необходиьло знать не
только теплоту сгорания самого топлива,
но и теплоту сгорания топливовоздушных
смесей. Отношение теплоты сгорания
единицы топлива к общему количеству
горючей смеси принято называть теплотой
сгорания горючей смеси
.
При отношении единцы объема (кмоль)
теплота сгорания будет выражена в
МДж/кмоль гор. см., а к единице массы —
в МДж/кг гор.см.

Н
гор. см
=
Нu1
или Н
гор. см
=
Нu/m1

(3.24)

В
двигателях, работающих при α <1, имеет
место химическая неполнота сгорания
топлива (МДж/кг) из- за недостатка
кислорода

ΔНu=
119,95 (1— α)Lо.
(3.25)

Следовательно,
формула (3.24) при α <1 примет вид

Н
гор. см
=
u
— ΔНu)
1
или
Н гор. см =
u
— ΔНu)
/m1
(3.26)

На
рис. 3.5 представлены зависимости теплоты
сгорания топливовоздушных смесей от
коэффициента избытка воздуха α.
Необходимо отметить, что, теплота
сгорания горючей смеси не пропорциональна
теплоте сгорания топлива. При одинаковых
значениях теплота сгорания смеси
дизельного топлива с воздухом несколько
выше теплоты сгорания смеси бензина с
воздухом Это объясняется тем, что для
полного сгорания единицы дизельного
топлива требуется меньшее количество
воздуха, чем для сгорания такого же
бензина.

Так
как в процессе сгорания участвует не
горючая смесь, а рабочая (горючая смесь
+ остаточные газы), то целесообразно
теплоту сгорания топлива относить к
общему количеству рабочей смеси
(МДж/кмоль раб. см):

при
α ≥ 1

Нраб.
см
= Нu/(M1
+ Мr)
= Нu /[М1
(1+ γr)],
(3.27)

при
α < 1

Нраб.
см
= (Нu
-ΔНu)/[М1
(1+ γr)]
(3.28)

Из
уравнений (3.27) и (3.28) следует, что теплота
сгорания рабочей смеси меняется
пропорционально изменению теплоты
сгорания горючей смеси.

При
одинаковых значениях коэффициента
избытка воздуха теплота сгорания рабочей
смеси увеличивается при уменьшении
коэффициента остаточных газов (рис.
3.6) Это положение справедливо как для
бензина, так и для дизельного топлива.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

У любого вида топлива есть набор характеристик, которые определяют его класс и качество. К одному из основных показателей относится удельная теплота сгорания. Этот параметр количественно выражает теплоту, выделяемую при сгорании одного килограмма топлива (если речь идет о жидком или твердом продукте) или 1 кубического метра топлива (для газообразного вещества).

Почему удельная теплота сгорания – это важная характеристика для топлива, что такое низшая теплота и что показывает температура возгорания – об этом поговорим в данной статье.

Удельная теплота сгорания топлива

Содержание:

  1. Удельная теплота сгорания топлива
  2. Теплота сгорания низшая и высшая
  3. Удельная теплота сгорания бензина
  4. Удельная теплота сгорания керосина
  5. Удельная теплота сгорания дизельного топлива
  6. Теплота сгорания топлива: таблица

Удельная теплота сгорания топлива

Полностью сгорая, определенное количество топлива выделяет конкретное количество тепла. Чем больше тепла выделяется одним килограммом или литром топлива (в этой статье преимущественно речь пойдет о жидком топливе), тем больше энергетической ценностью он обладает. А это значит, что топливо будет расходоваться экономично.

В физике используется формула вычисления Q = q * m, где Q – это количество выделенной теплоты в Дж, q – удельная теплота сгорания, выраженная в Дж/м3, m – масса в килограммах. Чем выше q, тем больше энергии получается в процессе работы двигателя.

Теплота сгорания топлива

Путем сложных исследовательских процессов была определена стандартная удельная теплота сгорания большинства видов твердого, жидкого и газообразного топлива, поэтому q представляет собой табличную величину. Удельная теплота сгорания самых востребованных жидких видов смесей колеблется в пределах 43-46 МДж/кг.

Теплота сгорания низшая и высшая

Поскольку определение точной удельной теплоты – это сложный процесс, необходимо заранее определиться с используемыми терминами. В нашем случае нужно отделить низкую теплоту сгорания от высшей.

Высшая теплота – это количество теплоты при сгорании топлива в полном объеме, включая выпадение конденсата в виде водяных паров во время охлаждения веществ. Процесс горения сопровождается выделением воды из-за содержания в топливном продукте органического водорода, под воздействием высокой температуры вода переходит в состояние пара. Низшая теплота не включает в себя конденсацию паров – в этом случае конденсация количественно выражается в скрытой теплоте сгорания.

В исследовательской среде низшая теплота сгорания принимается за 100%, а охлаждение горючего допускается до температуры, при которой начинается конденсироваться пар. Все остальное относят уже к области скрытой теплоты сгорания, которая может дополнительно составлять свыше 10%.

Теплота сгорания низшая и высшая

Посчитать низшую теплоту корректно не считается возможным, поэтому её определяют путем вычитания из количественного выражения высшей теплоты сгорания числового выражения теплоты, получаемой от образования водяных паров как самого топлива, так и продуктов сжигания. Низшая теплота является табличной величиной и для основных видов топлива определена путем тестирований.

Поскольку q определена как справочная величина, становится легко сравнить целесообразность использования того или иного вида топлива в различных ситуациях. Благодаря составленным таблицам можно сравнить энергоэффективность твердого и жидкого топлива с газовым эквивалентом. Так, один литр бензина по КПД сопоставим с 1,3 м3 газового топлива.

Удельная теплота сгорания бензина

Удельная теплота сгорания бензина не зависит от октанового числа топлива и определяется только химическим составом продукта. Чем больше в нем соединений водорода, тем больше влаги и паров будет образовываться во время горения и тем ниже будет удельная теплота. Это прямым образом снижает КПД продукта.

Определенная исследовательским методом удельная теплота бензина составляет 43,5–44,5 МДж/кг. Для примера – числовая характеристика для бензина марки АИ-93 – 43,6 МДж/кг. А вот у авиационного бензина (Б-70 в соответствии с ГОСТ) показатель уже равен 44,1 МДж/кг. Это значит, что Б-70 – более энергоэффективное топливо.

Удельная теплота сгорания бензина

На практике, простому автолюбителю определить влияние удельной теплоты сгорания на работу транспортного средства сложно. Однако существуют ситуации, в которых происходит заметное снижение количества теплоты и энергии топлива. Одна из них – наличие в составе топливной массы минеральных соединений и несгорающих остатков. Концентрация горючей массы снижается, а минеральные соединения и зола, не подверженные сгоранию, забирают часть выделяемой энергии.

Наличие серного компонента в составе топливного продукта также снижает q. В процессе нагрева и горения, сера выделяет газ, который оседает на внутренних деталях рабочего механизма и попадает в легкие человека. Это приводит к образованию коррозии и преждевременному изнашиванию рабочих элементов, загрязняет окружающий воздух. Поэтому очень важно выбирать топливо, свободное от большинства вредных примесей, и заправляться в проверенных сетях АЗС, следящих за репутацией представляемых продуктов.

Удельная теплота сгорания керосина

Химическая структура керосина представляет собой прямую или разветвленную цепь углеводородов, различные добавки и присадки позволяют использовать этот нефтяной дистиллят для массового питания автотранспортных средств.

Чтобы использование керосина в качестве топлива было оправдано, выбранная марка этой горючей смеси должна обладать предельной удельной теплотой сгорания. В случае с керосином табличное определение удельной теплоты имеет погрешность – из-за непостоянного состава горючего, в который входит 4 типа углеводородов, вследствие чего приходится делать расчеты на основании изначальных характеристик использованной нефти.

Удается определить оптимальную удельную теплоту горения, используя в подсчетах минимальную температуру горения жидкости (+215 градусов). Чем ближе температура к данному числу, тем выше удельная теплоемкость продукта, а значит, и выше удельная теплота сгорания. Уже при +200 градусах теплоемкость достигает отметки в 2900 Дж/кг*К. В нормальных условиях удельная теплота сгорания керосина составляет 43 МДж/кг, с погрешностью в 1000 пунктов в любую сторону.

Удельная теплота сгорания керосина

Показатель удельной теплоты прямым образом влияет на процессы горения керосина внутри двигателей. Кроме того, механизмы, функционирующие на этом нефтепродукте, подвергаются адиабатическим процессам вследствие прямой зависимости давления и объема горючего внутри рабочей камеры. Отсутствие теплообмена с внешней средой приводит к максимальной энергоэффективности используемого керосина.

Вследствие сложности определения точного параметра удельной теплоты сгорания керосина для описания химических свойств данного вида топлива предпочтительно используется коэффициент удельной теплоемкости (показывает соотношение удельной теплоемкости при неизменяемом объеме и уровне давления), который также имеет постоянную незначительную погрешность. Физический смысл точного вычисления данных величин — в последующем определении реактивной тяги и скорости выхлопа.

Удельная теплота сгорания дизельного топлива

Чем выше удельная теплота сгорания дизеля, тем меньший объем жидкости сгорает при работе двигателя. Следовательно, расход горючего будет экономичным. Высокая удельная теплота является главным критерием энергоэффективности дизельного топлива.

Табличное значение удельной теплоты сгорания дизеля благодаря исследовательским тестам имеет четкие границы и составляет 39,2 – 43,3 МДж/кг. В разных странах цифры могут меняться в пределах этих двух границ.

Удельная теплота сгорания дизельного топлива

Для расчетов относительно дизельного горючего используется только низшая удельная теплота сгорания, которая не включает в себя энергию, образующуюся при образовании и сгорании водородных соединений и образующегося водяного пара. Низшая удельная теплота сгорания дизельного горючего ниже, чем у алканов.

Энергоэффективность мотора, работающего на дизеле, зависит от степени вязкости жидкости. Чем меньше вязкость, тем выше фактическая температура возгорания и тем выше низшая удельная теплота сгорания топлива.

Теплота сгорания топлива таблица

Поскольку удельная теплота сгорания – это справочная величина, представляем таблицу с данным показателем, определенным индивидуально в каждом случае лабораторным путем. Таблица содержит информацию по основным видам горючего, используемого в коммерческих и промышленных целях.

Теплота сгорания топлива: таблица

Таблица 1

Теплота сгорания топлива

Наименование

Удельная теплота сгорания, МДж/кг

Ацетилен

48,3

Водород

119,83

Пропан-бутан

43,8

Изобутан

45,6

Метан

50

n-гексан

45,1

Природный газ

41…49

Сжиженный газ

45,2

Пропан

46,3

Пропилен

45,8

Этан

47,5

Бензин марки АИ-72

44,2

Бензин марки АИ-93

43,6

Бензин авиационный Б-70

44,1

Дизельное топливо

43,4 – 43,6

Ракетное топливо с керосином

9,2

Авиационный керосин

42,9

Мазут

39 – 41,7

Метанол

21,1

Бутанол-1

36,8

Нефть

43,5 – 46

Этанол

30,6

Толуол

40,9

Статьи по теме

Различные виды топлива (твёрдое, жидкое и газообразное) характеризуются общими и специфическими свойствами. К общим свойствам топлива относятся удельная теплота сгорания и влажность, к специфическим — зольность, сернистость (содержание серы), плотность, вязкость и другие свойства.

Удельная теплота сгорания топлива — это количество теплоты, которое выделяется при полном сгорании (1) кг твёрдого или жидкого топлива или (1) м³ газообразного топлива.

Энергетическая ценность топлива в первую очередь определяется его удельной теплотой сгорания.

Удельная теплота сгорания обозначается буквой (q). Единицей удельной теплоты сгорания является (1) Дж/кг для твёрдого и жидкого топлива и (1) Дж/м³ — для газообразного топлива.

Удельную теплоту сгорания на опыте определяют довольно сложными методами.

Таблица (2). Удельная теплота сгорания некоторых видов топлива.

Твёрдое топливо

Вещество

Удельная теплота сгорания,

МДж/кг

Бурый уголь

(9,3)

Древесный уголь

(29,7)

Дрова сухие

(8,3)

Древесные чурки

(15,0)

Каменный уголь

марки А-(I)

(20,5)

Каменный уголь

марки А-(II)

(30,3)

Кокс

(30,3)

Порох

(3,0)

Торф

(15,0)

Жидкое топливо

Вещество

Удельная теплота сгорания,

МДж/кг

Бензин, нефть

(46,0)

Дизельное топливо

(42,0)

Керосин

(43,0)

Мазут

(40,0)

Спирт этиловый

(27,0)

Газообразное топливо

(при нормальных условиях)

Вещество

Удельная теплота сгорания,

МДж/м³

Водород

(120,8)

Генераторный газ

(5,5)

Коксовый газ

(16,4)

Природный газ

(35,5)

Светильный газ

(21,0)

Из этой таблицы видно, что наибольшей является удельная теплота сгорания водорода, она равна (120,8) МДж/м³. Это значит, что при полном сгорании водорода объёмом (1) м³ выделяется (120,8) МДж (=) (120,8)

⋅106

Дж энергии.

Водород — один из высокоэнергетических видов топлива. Кроме того, продуктом сгорания водорода является обычная вода, в отличие от других видов топлива, где продуктами сгорания являются углекислый и угарный газы, зола и топочные шлаки. Это делает водород экологически наиболее чистым топливом.

Однако газообразный водород взрывоопасен. К тому же он имеет самую малую плотность в сравнении с другими газами при равной температуре и давлении, что создаёт сложности со сжижением водорода и его транспортировкой.

Общее количество теплоты (Q), выделяемое при полном сгорании (m) кг твёрдого или жидкого топлива, вычисляется по формуле:

Общее количество теплоты (Q), выделяемое при полном сгорании (V) м³ газообразного топлива, вычисляется по формуле:

Влажность (содержание влаги) топлива снижает его теплоту сгорания, так как увеличивается расход теплоты на испарение влаги и увеличивается объём продуктов сгорания (из-за наличия водяного пара).
Зольность — это количество золы, образующейся при сгорании минеральных веществ, содержащихся в топливе. Минеральные вещества, содержащиеся в топливе, понижают его теплоту сгорания, так как уменьшается содержание горючих компонентов (основная причина) и увеличивается расход тепла на нагрев и плавление минеральной массы.
Сернистость (содержание серы) относится к отрицательному фактору топлива, так как при его сгорании образуются сернистые газы, загрязняющие атмосферу и разрушающие металл. Кроме того, сера, содержащаяся в топливе, частично переходит в выплавляемый металл, сваренную стекломассу, снижая их качество. Например, для варки хрустальных, оптических и других стёкол нельзя использовать топливо, содержащее серу, так как сера значительно понижает оптические свойства и колер стекла.

Понравилась статья? Поделить с друзьями:
  • Как найти номер своих старых прав
  • Как найти заповеди в библии
  • Как найти цвет машины по вин
  • Как найти силу притяжения пластин конденсатора
  • Как исправить неровное обесцвечивание волос